最新发电机自并励励磁自动控制系统

合集下载

发电机自并励励磁自动控制系统

发电机自并励励磁自动控制系统

课程设计(论文)任务及评语目录第1章课程设计目的与要求 (1)1.1 课程设计目的 (1)1.2 课程设计的实验环境 (1)1.3 课程设计的预备知识 (1)1.4 课程设计要求 (1)第2章课程设计内容 (2)2.1发电机励磁自动控制系统的概述 (2)2.2发电机自动励磁自动控制系统传递函数 (2)2.3同步发电机励磁自动控制系统特性的分析 (2)2.3.1线性化分析 (2)2.3.2稳定性分析 (3)2.3.3稳态误差分析 (5)2.3.4根轨迹分析 (5)2.4 改变励磁控制系统稳定性措施 (8)第3章课程设计总结..................................................................................................... ..9参考文献......................................................................................................................... ..9第一章 课程设计目的与要求1.1 课程设计目的“电力系统自动化”课程设计是在教学及实验的基础上,对课程所学的理论知识进行深化和提高。

因此,要求学生能综合应用所学的理论知识,能够较全面地巩固和应用本课程中所学到的基本理论和基本方法,进行发电机励磁自动控制系统特性分析与计算,加深理解发电机励磁自动控制系统的基本原理,并分析系统的稳定性、稳态误差以及根轨迹的特性。

通过这次课程设计培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。

1.2 课程设计的实验环境在计算机上绘制相关电路图和编写相关公式,并利用word2000编辑课程设计说明书。

1.3 课程设计的预备知识熟悉电力系统自动化课程的基础理论和基本知识。

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题【摘要】发电机自并励励磁系统是发电机的关键部件之一,具有独特的特点和存在问题。

系统的特点包括:具有自动励磁功能,提高了系统的稳定性和灵活性;自动调节输出电压,使发电机工作在最佳状态;具有较高的效率和节能性。

该系统也面临一些问题,如系统稳定性不足,可能导致电压波动;励磁系统过热,影响系统的正常运行;励磁系统故障率高,需加强维护和监测;系统维护困难,需要专业技术人员进行维护和修理。

发电机自并励励磁系统在提高发电效率的同时也存在一些需要解决的问题,需要不断优化和改进。

【关键词】发电机、自并励、励磁系统、稳定性、过热、故障率、维护、特点、问题、系统、结论1. 引言1.1 引言在现代社会中,电力是我们生活中不可或缺的重要能源,而发电机作为电力的重要生产设备,发挥着至关重要的作用。

发电机的自并励励磁系统是发电机中一个重要的部件,其功能是通过自身产生的磁场来激励发电机产生电力。

在整个电力系统中,自并励励磁系统的稳定性和性能直接影响了发电机的正常运行和电力供应的稳定性。

对于发电机自并励励磁系统的特点及问题进行深入探讨,有助于我们更好地理解和解决发电机运行过程中可能出现的各种异常情况。

本文将从自并励励磁系统的特点入手,探讨其在实际运行中可能出现的问题,包括系统稳定性不足、励磁系统过热、励磁系统故障率高以及系统维护困难等方面进行分析和总结。

希望通过本文的探讨,能引起更多人对发电机自并励励磁系统的关注,从而提升整个电力系统的运行效率和稳定性。

结束。

2. 正文2.1 发电机自并励励磁系统的特点发电机自并励励磁系统是一种常见的发电机励磁方式,具有一些独特的特点。

该系统不需要外部励磁源来提供励磁电流,而是通过发电机自身的励磁系统来实现。

这种自励磁方式具有节能、环保的优点,无需额外消耗能源。

自并励磁系统具有较快的响应速度,能够快速调节励磁电流,确保发电机的稳定运行。

该系统结构简单,维护成本低,是一种经济实用的励磁方式。

同步发电机励磁自动控制系统

同步发电机励磁自动控制系统

时,输出波形不连续,周期为2π/3
三相半控整流电路输出电压与控制角α的关系式为:
静止励磁系统(发电机自并励系统)中发电机的励磁电源不用励 磁机,而由机端励磁变压器供给整流装置。
这类励磁装置采用大功率晶闸管元件,没有转动部分,故称静
止励磁系统。由于励磁电源是发电机本身提供,故又称为发电
机202自1/5/并27 励系统。
21
第三节 励磁系统中的整流电路
同步发电机励磁系统中整流电路的主要任务是将交流电压 整流成直流电压供给发电机励磁绕组或励磁机的励磁绕组。
一 励磁系统的历史
直流励磁机励磁系统
换流困难
交流励磁机励磁系统(交流发电机和半导体整流元件组成) 为缩短主轴长度,降低造价,减少环节。
20静21/止5/27励磁系统 (发电机自并励系统)
13
二 直流励磁机励磁系统(100MW以下) 按励磁机的励磁绕 ➢ 自励直流励磁机励磁系统 组供电方式的不同 ➢ 他励直流励磁机励磁系统
1 自励直流励磁机励磁系统
IEE
IR DE =
IE
G
IAVR
R
励磁调节器
发电机转子绕组由专用的直流励磁机DE供电,调整励磁
2021机/5/2磁7 场电阻R可改变励磁机励磁电流
14
2 他励直流励磁机励磁系统
IR
PE =
= IAVR IEE DE
IE
G
励磁调节器
他励直流励磁机的励磁绕组是由副励磁机供电的,比自励多用 了一台副励磁机
ug1
t0 t1
VS5 V6
VS1 V2
ug3
ug5
VS3 V4
VS5 V6
t
t
t
27

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题发电机自并励励磁系统是一种常见的发电机励磁系统,它具有很多独特的特点和问题。

本文将试论发电机自并励励磁系统的特点及问题,以期能够更好地了解和应用这一系统。

发电机自并励励磁系统是指发电机自身产生励磁电流,使发电机的励磁系统实现自动调节和控制。

这种系统具有以下几个特点:1. 自动调节:发电机自并励励磁系统能够根据负载的变化自动调节励磁电流,使发电机的输出电压可以稳定在设定值附近。

2. 简化结构:相比外部励磁系统,发电机自并励励磁系统的结构更加简单,因为它不需要额外的励磁电源和控制装置,减少了设备成本和维护成本。

3. 自身稳定性:发电机自并励励磁系统由于采用了自激励原理,具有一定的自身稳定性,使得发电机在瞬时负载变化时能够更快地调节励磁电流,提高系统的稳定性。

4. 适用范围广:发电机自并励励磁系统适用于各种类型的发电机,包括交流发电机和直流发电机,无论是小型发电机还是大型发电机,都可以采用这种系统。

发电机自并励励磁系统也存在一些问题,需要引起我们的重视和解决:1. 励磁电压调节问题:发电机自并励励磁系统在励磁电压调节方面存在一定的困难,特别是在大功率发电机上更加突出。

因为自激励原理很容易受到电磁参数变化的影响,导致励磁电压波动较大。

2. 预磁电流问题:发电机自并励励磁系统需要一定的预磁电流来保证自激励的正常进行,因此需要在系统设计和调试时合理确定预磁电流的数值,太小会导致自激励困难,太大则会浪费电能。

3. 兼容性问题:发电机自并励励磁系统虽然适用范围广,但是在与其他系统的兼容性方面可能存在问题,特别是在与电力系统自动化控制系统结合时,可能需要经过较长的调试过程。

4. 自激励失效问题:如果发电机自并励励磁系统自激励失效,可能会导致发电机输出电压不稳定甚至无法正常工作,对于一些对供电稳定性要求较高的场合,这种情况需要引起特别重视。

针对以上问题,我们需要注意以下几点解决方案:1. 优化励磁系统设计:在发电机自并励励磁系统的设计中,需要充分考虑到励磁电压调节、预磁电流和系统兼容性等因素,采用合理的电路结构和控制算法,使得系统具有更好的稳定性和可靠性。

同步发电机自动励磁

同步发电机自动励磁

调试步骤与注意事项
调试步骤
检查励磁系统的所有设备是否正常,包括励磁机、 整流器、调节器等。
按照励磁系统的设计要求,调整励磁机的输入电 压和电流,观察励磁机的输出是否正常。
调试步骤与注意事项
测试励磁调节器的调节功能,确保其 能够根据输入信号的变化进行相应的 调节。
对励磁系统进行空载和负载试验,检 查系统的稳定性和响应速度。
02
同步发电机自动励磁系统 的组成
励磁功率单元
直流励磁机
作为励磁系统的电源,为发电 机转子提供励磁电流。
交流励磁机
通过整流和逆变,将交流电转 换为直流电,为发电机转子提 供励磁电流。
静止励磁机
采用半导体整流技术,直接将 交流电转换为直流电,为发电 机转子提供励磁电流。
开关励磁机
通过控制开关的通断,实现励 磁电流的调节。
用于调节主励磁绕组的磁场强度,实 现发电机的电压和无功功率的调节。
其他辅助设备
灭磁电阻器
在发电机停机或故障时,用于吸收转子励磁绕组中的能量,保护 励磁系统不受损坏。
电压互感器和电流互感器
用于监测发电机的电压和电流,为励磁调节器提供反馈信号。
断路器和隔离开关
用于控制励磁系统的电源通断和安全隔离。
03
同步发电机自动励磁 系统
目录
• 同步发电机自动励磁系统概述 • 同步发电机自动励磁系统的组成 • 同步发电机自动励磁系统的控制策略
目录
• 同步发电机自动励磁系统的调试与维护 • 同步发电机自动励磁系统的未来发展
01
同步发电机自动励磁系统 概述
定义与工作原理
定义
同步发电机自动励磁系统是用于 控制同步发电机输出电压的装置 ,通过调节励磁电流来改变发电 机的输出电压。

自并励在同步发电机励磁系统的应用

自并励在同步发电机励磁系统的应用

自并励在同步发电机励磁系统的应用在现代电力系统中,同步发电机作为主要的发电设备,其性能和运行稳定性对于保障电力供应的质量和可靠性至关重要。

而励磁系统作为同步发电机的重要组成部分,对发电机的运行特性和电力系统的稳定性有着显著的影响。

自并励励磁系统作为一种常见的励磁方式,在同步发电机中得到了广泛的应用。

自并励励磁系统的基本构成包括励磁变压器、可控硅整流装置和自动励磁调节器等部分。

励磁变压器将发电机端的电压降压后,为可控硅整流装置提供交流电源。

可控硅整流装置将交流电源转换为直流电源,供给发电机的励磁绕组。

自动励磁调节器则根据发电机端的电压、电流等参数,实时调节可控硅的导通角,从而控制励磁电流的大小,实现对发电机端电压的稳定控制。

自并励励磁系统具有许多显著的优点。

首先,其结构相对简单,可靠性高。

由于减少了中间环节,降低了系统故障的概率,提高了设备的可用率。

其次,响应速度快。

自并励系统能够迅速响应发电机端电压的变化,及时调节励磁电流,从而有效地提高了电力系统的暂态稳定性。

再者,自并励系统的造价相对较低,维护成本也较为经济。

在实际应用中,自并励励磁系统对于提高同步发电机的运行性能发挥了重要作用。

例如,在电力系统发生短路故障时,发电机端电压会急剧下降。

自并励系统能够快速增加励磁电流,增强发电机的励磁磁场,提高发电机的输出电压,从而有助于维持电力系统的稳定性。

此外,自并励系统还能够提高发电机的无功调节能力,使发电机在不同的负载条件下都能够保持稳定的运行电压。

然而,自并励励磁系统也存在一些不足之处。

在发电机近端发生短路故障时,由于机端电压下降严重,可能导致励磁电流不足,影响发电机的强励能力。

为了解决这一问题,通常会采取一些措施,如采用高性能的自动励磁调节器、增加励磁变压器的容量等。

在选择自并励励磁系统时,需要根据具体的电力系统要求和发电机的运行条件进行综合考虑。

例如,对于容量较大、对稳定性要求较高的发电机,自并励系统可能是一个较好的选择;而对于一些特殊的运行条件,如长距离输电线路、弱电网等,可能需要结合其他励磁方式来提高系统的性能。

发电机自并励励磁自动控制系统电子教案

发电机自并励励磁自动控制系统电子教案

课程设计(论文)任务及评语此文档收集于网络,如有侵权请联系网站删除目录第1章课程设计目的与要求 (1)1.1 课程设计目的 (1)1.2 课程设计的实验环境 (1)1.3 课程设计的预备知识 (1)1.4 课程设计要求 (1)第2章课程设计内容 (2)2.1发电机励磁自动控制系统的概述 (2)2.2发电机自动励磁自动控制系统传递函数 (2)2.3同步发电机励磁自动控制系统特性的分析 (2)2.3.1线性化分析 (2)2.3.2稳定性分析 (3)2.3.3稳态误差分析 (5)2.3.4根轨迹分析 (5)2.4 改变励磁控制系统稳定性措施 (8)第3章课程设计总结..................................................................................................... ..9参考文献......................................................................................................................... ..9第一章 课程设计目的与要求1.1 课程设计目的“电力系统自动化”课程设计是在教学及实验的基础上,对课程所学的理论知识进行深化和提高。

因此,要求学生能综合应用所学的理论知识,能够较全面地巩固和应用本课程中所学到的基本理论和基本方法,进行发电机励磁自动控制系统特性分析与计算,加深理解发电机励磁自动控制系统的基本原理,并分析系统的稳定性、稳态误差以及根轨迹的特性。

通过这次课程设计培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。

1.2 课程设计的实验环境在计算机上绘制相关电路图和编写相关公式,并利用word2000编辑课程设计说明书。

1.3 课程设计的预备知识熟悉电力系统自动化课程的基础理论和基本知识。

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题

试论发电机自并励励磁系统的特点及问题自并励发电机是一种具有自动调节励磁电流的发电机系统。

它通过自身发电产生的电动势来激励励磁电流,从而实现发电机的自动励磁。

相比于外部励磁系统,自并励发电机具有一些独特的特点和问题。

自并励发电机具有较高的稳定性。

传统的外部励磁系统需要额外的励磁电源供电,如果电源供电不稳定或中断,会导致整个励磁系统失效,进而影响发电机的正常运行。

而自并励发电机自身产生励磁电流,不依赖外部供电,因此其稳定性较高,能够在一定程度上保证发电机的持续运转。

自并励发电机具有较快的响应速度。

自并励发电机通过改变励磁电流来调整电压和功率的输出。

当负载变化时,自并励发电机能够迅速调整励磁电流,以保持输出电压的稳定。

相比之下,传统的外部励磁系统响应速度较慢,需要较长的调节时间。

自并励发电机也存在一些问题。

自并励发电机的励磁特性比较复杂,容易受到外界因素的影响。

温度、负载变化、线路阻抗等都会对励磁特性产生影响,需要经过精确的调整和控制来保持稳定的励磁电流和输出电压。

自并励发电机的励磁电流过大或过小都会导致发电机的故障。

励磁电流过大会引起发电机绕组过热,甚至损坏绕组绝缘;励磁电流过小会导致发电机输出电压不稳定,无法满足负载要求。

自并励发电机需要通过励磁调节装置来实时监测和调整励磁电流,保持在合适的范围内。

自并励发电机的自动调节性能有限。

自并励发电机的励磁系统是一种开环控制系统,不能根据实际负载需求自动进行调节。

如果负载发生较大的变化,发电机的输出电压和功率可能出现较大的波动。

在某些情况下,需要进行手动调节或配合外部励磁控制系统来实现更精确的调节。

自并励发电机具有较高的稳定性和响应速度,但其励磁特性较复杂,励磁电流需要精确调节,同时自动调节性能有限。

在实际应用中,需要根据实际情况选择合适的励磁控制方法和装置,以确保发电机运行的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机自并励励磁自动控制系统课程设计(论文)任务及评语院(系):信息科学与工程学院教研室:电气工程及其自动化目录第1章课程设计目的与要求 (1)1.1 课程设计目的 (1)1.2 课程设计的实验环境 (1)1.3 课程设计的预备知识 (1)1.4 课程设计要求 (1)第2章课程设计内容 (2)2.1发电机励磁自动控制系统的概述 (2)2.2发电机自动励磁自动控制系统传递函数 (2)2.3同步发电机励磁自动控制系统特性的分析 (2)2.3.1线性化分析 (2)2.3.2稳定性分析 (3)2.3.3稳态误差分析 (5)2.3.4根轨迹分析 (5)2.4 改变励磁控制系统稳定性措施 (8)第3章课程设计总结..................................................................................................... ..9参考文献......................................................................................................................... ..9第一章 课程设计目的与要求1.1 课程设计目的“电力系统自动化”课程设计是在教学及实验的基础上,对课程所学的理论知识进行深化和提高。

因此,要求学生能综合应用所学的理论知识,能够较全面地巩固和应用本课程中所学到的基本理论和基本方法,进行发电机励磁自动控制系统特性分析与计算,加深理解发电机励磁自动控制系统的基本原理,并分析系统的稳定性、稳态误差以及根轨迹的特性。

通过这次课程设计培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。

1.2 课程设计的实验环境在计算机上绘制相关电路图和编写相关公式,并利用word2000编辑课程设计说明书。

1.3 课程设计的预备知识熟悉电力系统自动化课程的基础理论和基本知识。

1.4 课程设计要求独立完成课程设计,说明书应按下列要求书写:1 、选择合理定态工作点,将系统线性化。

2 、对不同i T 的值分析系统的稳定性,确定p K 的值。

3 、分析系统在单位阶跃函数作用下的稳态误差。

T的根轨迹分析稳定性。

4 、作出对应不同i5 、提出改善系统稳定性的措施。

6 、对课程设计进行总结8、课程设计说明书应层次分明、内容完整、语言通顺、图表整齐规范、数据详实。

9、课程设计说明书的格式按照教务处文件执行。

10、完成4000字左右说明书。

第2章课程设计内容2.1 发电机励磁自动按制系统的概述同步发电机励磁自动控制系统是一个反馈自动控制系统。

一个自动控制系统首先应该是稳定的,这是该系统能够运行的前提;其次应该具有良好的静态和动态特性。

2.2发电机励磁自动控制系统的传递函数图1 同步发电机自并励励磁动控制系统的传递函数框图2.3同步发电机励磁自动控制系统特性的分析2.3.1 线性化分析励磁自动控制系统的特性可以使用古典控制理论,也可以便用现代控制理论。

这些理论通常只适用于线性自动控制系统.对非线性系统是不适用的。

而发电机励磁控制系统一般都有非线性环节。

上图就是一个非线性系统,这就需要进行线性处理。

线性处理时.首先要确定在那—点线性化,也就是首先要确定系统各环节的定态工作点,然后假定在整个运行过程中各环节的输入量和输出量在定态工作点附近变化的绝对值一直保持很小。

这样就可以把本来是非线性的环节近似地当成线性环行对待。

分析发电机励磁自动控制系统,一般假定发电机在空载额定状态(即发电机空载额定转速、额定定于电压)运行时各环节对应的输入、输出为定态工作点,而且励磁系统的输入信号Ugd只有很小变化。

同时考虑到发电机空载运行时励磁电流较小。

可控硅整流电路的换相电抗压降不大,也可忽略。

这样图1可以简化成下图图2所示:图2 线性化的同步发电机自并励励磁系统传递函数框图2.3.2 稳定性分析分析励磁自动控制系统的稳定性可以使用古典控制理论和现代控制理论介绍的方法。

本课设采用劳斯判据判定图2系统分析稳定性的方法。

用劳斯判据判定系统稳定性时,首先求出系统的特性方程,然后根据特性方程列出劳斯表。

如果表中第一列元素的值都是正的,则系统是稳定的.否则就是不稳定。

对于图2所示系统,闭环传递函数由1/(1+T 2S )和它右边的闭环组成。

由于1/(1+T 2S )构成系统的—个固定闭环极点,共值为1/T 2,且在复数平面的左半侧,所以只要1/(1+T 2S )右边的闭环系统是稳定的,系统就是稳定的。

这样,判断图2所示系统的稳定性只要判断1/(1+T 2S )右边的闭环系统(以下称小闭环)是否稳定就可以了。

小闭环的前向传递函数G(S)、反馈传递函数H(S)和闭环传递函数小G B (S)分别为G(S)=*)1(*S T S T K i i P +*11S T a +S T do '+11 H(S)= ST 111+ G B (S)= )()(1)(S H S G S G + 由上式可知,小闭环的特征方程为:T i S (1+ T a S )(S T do'+1)(1+ T i S )+ )1(*+S T K i P =0将己知数据T1=0.0242S T A =0.001s ,doT '=10.42s 代人上式,得: 0.2522×10-3 T i S 4十0.2626 T i S 3十10.4452 T i S 2十(1+K P*) T i S+ K P*=0(式1) 本系统的积分时间常数T I 和动态放大系数K P*是可以整定的。

T I 的可整定值为I s 、2s 、3s 、4s 、5S 。

K P 的可整定值为10、20、30、40、50和100。

判定系统是否稳定.应计算出对应于不向的T I 保证系统稳定时K P*的允许范围。

下面以T I =1s 为例说明用劳斯判据判定系统稳定性的方法。

将T I =ls 代人式(1)得0.2522×10-3 S 4十0.2626 S 3十10.4452 S 2十(1+K P*) S+ K P*=0根据上式列出劳斯表如下:S 4 0.252*10 10.4452 K P*S 3 0.2626 1+ K P* 0S 2 2626.0)1(10*2522.04452.10*2626.0*3P K +-- 0.2626 K P* /0.2626 0S 1 ****001.04442.102626.0)1)(001.04452.10(P P P P K K K K --+- 0S 0 K P* 0根据劳斯判据,劳斯表中第一列元素的值为正时系统是稳定的,这样得出下列三式同时成立时本系统是稳定的:10.4442-0.001 K P* >010.4441+10.180.6 K P* -0.001 K 2P* >0K P* >0所以K P* <10444K2P*-10181 K P* -10444<0K P* <10182K P* >-1综上所述计算结果0< K P* <10182时,对于T I=1,本系统是稳定的.比照T I=1时的计算,可以求出T I为其它时保证系统稳定的K P* 允许范围.2.3.3稳态误差分析由自动控制理论知,闭环自动控制系统是稳定误码率差用下式表式:式中R(S)---系统的输入函数对应于本系统,分析误码率差时输入函数取单位阶跃函数R(S)=1/S将其代入上式中得所以本励磁自动控制系统为无差调节系统.误差为0主要是由积分单元决定的.2.3.4根轨迹分析图闭环函数为本课设中积分时间常数T i有五个可整定值,所以可以做出五张根轨迹图,根据这五张图可求出T i不同时的系统动态指标,找到课设中理想的T i作为本系统实际的整定值1)求系统的开环极点和开环零点由上式得出系统开环零点得出系统开环极点2)求渐近线与实轴的交点和与实轴的夹角P I和Z J的值代入上式得3)求实轴上的根轨迹若实轴上的某一区域右边开环实数零点和极点个数之和为奇数,则该区域必是根轨迹4)根轨迹的分离点分离点的坐标d是下列方程的解将本系统已知数据代入上式得:用试控法求得分离点d1=-0.05d2=-1.95d3=-245)求根轨迹与虚轴的交点闭环特征方程中,S=jw时的w即是根轨迹同虚轴的交点将S=jw代入式中得实部方程为:虚部方程为:求解以上两式得是根轨迹虚轴交点.根据上式结果得,作出本系统的根轨迹如下图图3所示:图3 根轨迹图第三章:课程设计总结:这次实习给我的最大感受就是自己的知识太贫乏。

拿到这个题目后却不知道如何下手了。

平时学的知识都很零碎的存在脑袋里。

用的时候去不能系统的组织起来。

所以课设费了很大的劲。

刚开始对计算方法不很懂,以及许多参数,每一步都不好走。

不过通过这段时间学习,我理解了电力系统的中发电机励磁自动控制系统的稳定性分析。

终于把它给弄明白了。

通过这次课程设计让我学会了查资料。

以前都没怎么进图书馆。

开始课设时,为了弄明白这个课设怎么做,不得不在图书馆翻一本又一本的厚厚的书。

还有为了看论文的格式而浏览了很多的网页。

真的快达到废寝忘食的地步了。

课设让我明白了平常都是眼高手低。

很多东西决的自己会,其实知道的只是一些皮毛。

我想学任何东西都是要深入进去的,而不是只学到表面的。

我对自己的专业知识也有了一个更深一层的认识,我知道还有很多东西需要自己去努力,认真的学习。

参考文献[1] 电力系统自动化商国才天津:天津大学出版社 1999[2] 电力系统自动化孙荧北京:中国电力出版社 2004[3] 电力系统分析夏道止北京:中国电力出版社 2004[4] 电力系统分析理论刘天琪丘晓燕编著北京:科学出版社 2005[5] 电力系统分析纪建伟主编中国水利水电出版社北京:2002。

相关文档
最新文档