车床主传动系统的设计
普通车床12级主传动系设计

一、此次课程设计的目的及主要设计参数1、机械制造装备课程设计是在学生学完《机械制造装备设计》课及其它先行课程之后进行的实践性教学环节,是学生进行设计工作的基本训练。
目的在于:(a )通过机床主传动系统的机械变速机构设计,使学生树立正确的设计思想和掌握机床设计的基本方法;(b )巩固和加深所学理论知识,扩大知识面,并运用所学理论分析和解决设计工作中的具体问题;(c )通过机械制造装备课程设计,使学生在拟订机床主传动机构、机床的构造设计、各种方案的设计、零件的计算、编写技术文件和设计思想的表达等方面,得到综合性的基本训练;(d )熟悉有关标准、手册和参考资料的运用,以培养具有初步的结构分析和结构设计计算的能力。
2、主要设计参数普通车床传动系统设计的设计参数: (a )主轴转速级数Z=12;(b )主轴转速范围n=31.5~1400r/min ; (c )公比φ=1.41; (d )电机功率为4KW ; (e )电机转速为1440r/min 。
二、运动设计1传动方案设计(选择集中传动方案)。
2转速调速范围2000max 44.4445minn Rn n ===。
3确定各级转速由φ=1.41,依据《机械制造装备设计》中的标准转速表取各级转速如下: 31.5 45 63 90 125 180 250 355 500 710 1000 1400 (单位r/min )4、确定机床传动结构式根据主变速传动系统设计的一般原则,取结构式:13612322=⨯⨯5、绘制转速图:(1)分配总降速比11450114532.232u -⎛⎫==≈⎪⎝⎭若每一个变速组最小降速比取14则三个变速组为164,则需增加定比传动副,故选用三角带传动来降低速比可以满足要求。
(2)确定传动轴数变速轴轴数=变速组数+定比变速副数+1=3+1+1=5。
(3)绘制转速图6、确定变速组齿轮齿数(1)电动机与I 轴间的传动比电动机与I 轴之间采用带传动,定比传动取小带轮直径Φ126mm ,因为所获转速为710r/min ,故大带轮直径为Φ256mm 。
CK6140数控车床主传动系统设计

CK6140数控车床主传动系统设计数控车床的主传动系统是整个机床的核心组成部分,它主要由主轴、主轴驱动装置和主动工具头等组成。
设计一个稳定可靠的数控车床主传动系统,需要考虑诸多因素,如主轴精度、刚度、转速范围、加工能力等。
首先,主轴是数控车床主传动系统的核心部件,其精度和刚度直接影响到整个机床的加工质量。
主轴通常由高强度、高刚性的合金钢材料制成,并通过精密加工和热处理工艺提高其表面质量和硬度。
主轴的设计应考虑转动稳定性、轴向和径向刚度等因素,以确保在高速运转和大负载下能保持较小的振动和变形。
其次,主轴驱动装置主要是通过电机将动力传递给主轴,实现车床的加工运行。
常见的主轴驱动装置包括皮带传动、齿轮传动、液压传动等。
不同的传动方式具有不同的特点,需要根据数控车床的具体要求进行选择。
同时,主轴驱动装置还需要考虑电机的功率、转速调节范围、动态响应性能等因素,以满足不同加工工艺和加工材料的需求。
另外,主动工具头也是数控车床主传动系统的重要组成部分。
主动工具头一般由进给系统和切削工具组成,其主要功能是控制刀具的进给速度和刀具路径,实现工件的加工。
进给系统通常由伺服电机、滚珠丝杠等组成,将电机的旋转运动转化为刀具的直线运动。
切削工具的选择要根据不同的加工工件和加工要求进行,可以是转动刀具、切削刀具或磨削工具等。
除了上述部件,数控车床主传动系统的设计还需要考虑其控制方式和辅助装置。
传统的数控车床主传动系统采用闭环控制,通过编码器和反馈系统实现对主轴和主动工具头运动的精确控制。
辅助装置如冷却系统、润滑系统、自动换刀系统等,可以提高加工效率和工作环境的安全性。
总的来说,设计一个稳定可靠的数控车床主传动系统需要充分考虑主轴精度、刚度,主轴驱动装置的选择,主动工具头的设计以及控制方式和辅助装置的配置等因素。
只有在满足加工要求的前提下,才能实现高效、精确和安全的数控车床加工操作。
数控车床的主传动系统设计PPT

在进行动态特性分析时,需要考虑主轴的转速、转矩和刚度等参数,以及传动系统的固有频率和阻尼比等特性。 通过分析这些参数,可以评估主传动系统在加工过程中的稳定性,预测可能出现的振动和噪声问题,并采取相应 的措施进行优化设计。
强度与刚度分析
总结词
强度与刚度分析是评估主传动系统在承受外力和变形时的性能表现,以确保系统的可靠性和稳定性。
总结词:传统设计
详细描述:该实例介绍了一种传统的数控车床主传动系统设计,主要采用齿轮传 动和链传动组合的方式,具有结构简单、可靠性高的优点,但效率较低,适用于 一般加工需求。
实例二:主传动系统的改进设计
总结词:优化设计
详细描述:该实例针对传统主传动系统的不足,进行了优化改进。采用新型轴承和材料,提高了传动效率和稳定性,减少了 维护成本,适用于高精度、高效率的加工需求。
设计目的和意义
设计目的
设计出高效、稳定、可靠的数控车床主传动系统,满足加工精度和效率的要求, 提高生产效率和产品质量。
意义
主传动系统设计的优劣直接影响到数控车床的性能和加工精度,进而影响到整个 机械制造行业的生产水平和产品质量。因此,对数控车床主传动系统进行合理设 计,对于提高机械制造行业的整体水平具有重要意义。
要点二
详细描述
在进行热特性分析时,需要考虑主轴的转速、切削力和材 料导热系数等参数。通过建立热传导模型,可以预测主传 动系统在不同工况下的温度变化和热变形情况。根据分析 结果,可以采取相应的散热措施和热补偿技术,提高系统 的热稳定性和加工精度。
06 主传动系统实例分析
实例一:某型号数控车床主传动系统设计
高耐磨材料
选用高耐磨材料,如陶瓷和硬质 合金,以提高主传动系统的使用 寿命和可靠性,减少维护成本。
普通车床主传动系统设计规范

Ordinary lathe main transmission system design specificationA: design, the design of a plain lathe main transmission system, complete transmission series for 8-12. Second, the design purpose: 1: through the design practice, master machine main transmission system design method. 2: cultivate comprehensive use of mechanical drawing, mechanical design, structure and process related knowledge of engineering design. 3: training manual, atlas, relevant material and design standards. 4: improving technology and prepare technical document. 5: is the graduation design teaching implementation of technical preparation. Third, the design content and the basic requirements: Design content: (a) movement design (1) transmission scheme design (concentration), separate transmission (2) rotational speed range (3) than: archduke ratio, and mixing ratio and dukedoms than male (4) to determine the structure and structured: (1) : former vice driving less dense than before and after after dredging, (2) solution: a speeding level increases, b: using variable transmission mechanism and branch (5) rendering speed diagram (1) : former slow velocity rush (2) after the former acc: after the rush Sanjiaodai (6) : sure. The variable pinion gear group (7) draw transmission system (2) power design (1) the transmission shaft, and the calculation speed: each gear (2) trunnion shaft (3) gear module (4) : spindle, trunnion (before), after the diameter size in front, before a roughers.tousegravity-flotation (stretched quantity: 100-120), support form, reasonable span of supports L (3) structure design (4) check a gear (minimum), check spindle (ocsm), torque, Basic requirements: 1: according to the requirement of design project, reasonable size, sports and determine relevant parameters. 2: correct use structured, speed diagram design tools, serious scheme analysis. 3: the correct use manual, standard, design patterns must conform to the state standards. Say to the book with engineering terms, the words written neatly, smooth succinct. 4:1 - main transmission system to control electrical tools principle chart 1. Four, design parameters: The biggest diameter serial processing spindle speed series (r/min) drive motor power and synchronous speed 1 1000,710,500,355,250,180 400mm 125,90 4.5 kw, 1500r/min, 2 1000,500,355,250,180 400mm 125,90,45, 4kw 1500r/min, 3 320mm 2000,1420,1000,710,500,360 250,180,125,90,63,42, 4kw 1500r/min, 4 320mm 2000,1000,710,500,360,250 180,125,90,63,45,22, 1500r/min 3kw, 5 320mm 2000,1260,1000,800,630,500 4kw 1500r/min, 400,320,250,200,160,100 6 320mm 2000,1250,800,630,500,400,320 250,200,160,100,63, 1500r/min 3kw, The second group of parameter selection (as design data), Five, the motion parameters design (1) transmission scheme design (choice) transmission (2) rotational speed range (3) choose than mixing (4) to determine the structure and structured: (5) rendering speed: shown below (6) determine the pinion gear speed group The calculation of the first expand group pinion gear The first group of expanding ratio, respectively: Therefore the minimum number of gear ratio for querying, take, and is, 2 basically the group is respectively: ratio, Therefore the minimum number of gear ratio for querying, there is, 3 the second expansion ratio of group, Therefore the gear combinations, at least in the table, and there, (7) transmission chart is as follows: Six, the dynamic parameter design (1) the calculation speed transmission The axis of rotation axis calculation, the calculation, for 125r/min speed. Each axis calculation speed is as follows: 1 2 3 serial electric shaft Computing speed (r/min) 1440 1000 500 177 125 The minimum gear turns as follows: the computation Axis number and minimum gear combinations, 1 (22) 2 (22) 3 (20) (50), Computing speed (r/min) 1000 500 180 125 (2) the output power of theshafts (3) of the shaft torque N.m (m) N.m (m) N.m (m) N.m (m) Seven, the design and selection of trunnion keys A: the shaft, and take into the formula: Have, however, round Choose the spline: Axis, and take into two: formula: Have, however, round Choose the spline: Axis, and take into three: formula:普通车床主传动系统设计规范答:设计,设计一种普通车床主传动系统,完整的传输系列8 - 12。
机床主传动系统设计

机床主传动系统设计机床主传动系统是机床的核心组成部分,它直接影响着机床的性能和加工质量。
主传动系统主要由电机、速度变换机构、主轴、传动装置等部分组成。
本文将从设计电机、速度变换机构、主轴和传动装置四个方面,对机床主传动系统的设计进行详细阐述。
首先是电机的设计。
电机作为机床主传动系统的动力源,其选型需考虑到机床加工的要求以及传动系统的性能要求。
一般情况下,机床加工精度要求高,所以应选择具有较高功率和较小扭矩波动的交流伺服电机。
考虑到机床的节能要求,可选择带有高效能力推力轴承和电子换向器的永磁同步电机。
其次是速度变换机构的设计。
速度变换机构主要用于实现不同速度的转换,使得机床能够适应不同加工工艺的要求。
常见的速度变换机构有齿轮传动、带式传动和链条传动等。
在实际设计中,应根据机床的加工要求和工艺特点选择合适的速度变换机构,并根据机械原理进行优化设计。
第三是主轴的设计。
主轴作为机床主传动系统的核心部件,其设计要考虑到机床的加工精度、刚性和动平衡等要求。
一般情况下,主轴采用高精度两端支撑方式,以保证主轴的刚性和稳定性。
在主轴的设计中,还应注意对主轴进行合理的冷却和润滑方式设计,以提高主轴的使用寿命和可靠性。
最后是传动装置的设计。
传动装置作为主传动系统的连接组件,其设计应满足机床的传动效率、刚性和减振要求。
常见的传动装置有皮带传动、齿轮传动和液压传动等。
对于机床主传动系统设计,可以根据机床的加工特点和需求,选用合适的传动装置进行设计,并通过结构优化和改进,提高传动效率和减少传动误差。
综上所述,机床主传动系统的设计需要综合考虑电机、速度变换机构、主轴和传动装置等多个方面因素。
在设计过程中,应根据机床的加工要求和工艺特点,选择合适的组件和参数,并进行优化设计,以提高机床的性能和加工质量。
只有设计出合理、可靠的主传动系统,机床才能够发挥其最大的潜力,达到高精度、高效率的加工效果。
电磁离合器变速式数控车床主传动系统设计

电磁离合器变速式数控车床主传动系统设计概述:数控车床是一种应用广泛的机床设备,其主要用于加工精密零件。
主传动系统是数控车床中至关重要的部分,它决定了车床的加工能力和性能。
本文将介绍电磁离合器变速式数控车床主传动系统的设计。
设计目标:1.提高车床的加工能力和性能;2.提高车床的传动效率;3.提高车床的运行平稳性;4.提高车床的控制精度。
设计原理:数控车床主传动系统由电机、离合器和变速箱组成。
电机提供动力,离合器用于连接和断开电机和传动系统,变速箱用于调整传动比。
设计原理如下:1.电机选择:选择适合的电机是设计的首要任务。
根据车床的工作负载和转速要求,选择能够提供足够功率且转速范围合适的电机。
2.离合器选择:离合器的选择对车床的性能有很大影响。
应选择耐磨损、传动效率高的离合器。
电磁离合器是一种常用的选择,其工作原理是通过电磁力连接和断开离合器,具有快速响应和稳定性好的特点。
3.变速箱设计:变速箱用于调整传动比,以适应不同工件的加工需求。
根据车床的工作范围和加工要求,选择合适的变速箱。
变速箱应具有平稳的传动和快速的换档功能。
4.控制系统设计:控制系统是数控车床的核心部分,其设计应满足车床运行的精度要求。
控制系统可以使用PLC或其他控制器,用于控制电磁离合器、变速箱和其他部件的运行。
设计优化:为提高设计的性能和效率,可以进行以下优化:1.优化传动比:根据不同工件的加工需求,优化传动比,以提高车床的加工能力和效率。
2.优化离合器选型:选择适合的离合器,以提高车床的传动效率和稳定性。
可以考虑使用升级版的电磁离合器,具有更好的响应速度和传动效率。
3.优化控制系统:优化控制系统的设计,提高控制精度和响应速度。
可以采用闭环控制和反馈控制,以提高车床的运行稳定性。
总结:电磁离合器变速式数控车床主传动系统的设计对车床的加工能力和性能有重大影响。
通过选择适当的电机、离合器和变速箱,并优化传动比和控制系统,可以提高车床的加工能力和效率,提高运行平稳性和控制精度。
(完整版)CK6163型数控车床主传动系统设计_毕业设计

CK6163型数控车床主传动系统设计第1章、机床的主要参数的确定1.1尺寸参数1.1.1主参数床身最大工件回转直径Φ630mm([1] P)1.1.2基本参数刀架上最大工件回转直径Φ320主轴通孔直径Φ80主轴头号B型 B型11号主轴前端孔锥度公制100号装刀基面至主轴中心距离根据分析,用硬质合金车刀对小直径钢材精车外圆时,主轴转速最高,据经验,并参考切削用量资料,取V max=200mmin,取R=0.5,R d=0.2,则d=R·D=0.5×630=315mm ([2] P)d=Rd·d=0.2×315=63mm ([2] P)n==1010rmin ([2] P)1.2.1.2计算n根据分析,用高速钢车刀粗车合金钢材料的梯形螺纹(丝杆),主轴转速最低。
根据调查,Φ630mm数控车床加工丝杆的最大直径为70mm。
根据经验,并参考切削用量资料,取V=7m min,则:n==32 rmin ([2] P)访问若干个使用Φ630数控车床的使用部门,了解并统计了这些机床的主轴转速如下:加工轴类零件n=400~900rmin加工盘形零件 n=150~300rmin机修工作n=80~150rmin车大导程螺纹n=32~63rmin最后综合地分析比较计算和调查所得的结果,对主轴的最高转速,计算结果为1010rmin,调查结果900rmin,根据用户需要并留有发展余地,取所设计机床的主轴最高转速为1000rmin,最低转速为32rmin。
1.2.2主轴转速级数的确定1.2.2.1主轴转速数列公比φCK6163数控车床适中、小型通用机床,取φ=1.26 ([2] P)1.2.2.2主轴转速的级数Z==+1= ([2] P)1.3动力参数主电动机功率的确定:1.3.1计算法负荷切削规范切削速度V=min /m 102100012526014.31000dn =⨯⨯=∏([2] P) 主切削力=kgf f a F p 5005.05200=⨯⨯=⨯⨯(查表,用硬质合金刀具加工中碳钢料时,F=200,加工铸铁时F=180,P= ([2] P),机床电机功率≥kw P mc28.14~76.1185.0~7.010==η)([2] P),其中Fc 主切削力,F —单位面积的切削力 1.3.2调查研究法参照普通车床CW6163B 主电机=11kw ,考虑数控车床加工特点和生产实际情况,故选用CK6163数控车床主电机功率为=13kw 。
φ400车床主传动系统设计

本科毕业设计(论文)通过答辩摘要本文主要进行¢400车床主传动系统设计,车床广泛应用于机械加工行业中,本设计主要针对车床的主轴箱主传动系统进行设计,设计的内容主要有机床主要参数的确定,主传动系统的拟定,传动方案,转速图和传动系统图的拟定,齿轮传动的设计,轴的设计,带传动的设计。
对主要零件进行了计算和验算,利用CAD画图软件进行了零件的设计和处理。
关键词:车床;主轴箱;传动本科毕业设计(论文)通过答辩AbstractIn this paper, ¢ 400 lathe main drive system design, lathe widely used in the machining industry, the design of lathe spindle box main drive system design, design of the main machine parameters to determine the formulation of the main transmission scheme, the speed chart and transmission map formulation of the gear drive design, the design of the shaft, belt drive design. The main parts were calculated and checking CAD drawing software design and handling of parts.Key words:Lathe; Spindle box; Transmission本科毕业设计(论文)通过答辩目录摘要 (Ⅰ)Abstract (Ⅱ)第1章绪论 (1)1.1 用途 (1)1.2 性能 (1)1.3 结构 (1)1.4 设计目的 (1)1.5 国内外发展 (2)1.6 研究目的和意义 (2)第2章机床的主参数和其他主要技术要求 (3)2.1 主参数和基本参数 (3)2.1.1 主参数 (3)2.1.2 基本参数 (3)2.1.3 普通车床的基本参数 (3)2.2 主传动的设计 (4)2.2.1 主轴极限的确定 (4)2.2.2 公比的确定 (4)2.2.3 主轴转速级数的确定 (5)2.2.4 主传动电动机功率的确定 (5)第3章主传动系统的拟定 (6)3.1 传动比 (6)3.2 变速的基本规律 (6)3.3 转速图的拟定 (6)3.4 分配各变速组的最小传动比 (7)3.5 确定齿轮齿数 (7)3.6 同一变速组内模数的齿轮齿数的确定 (8)第4章齿轮传动设计 (12)本科毕业设计(论文)通过答辩4.1 第一变速组齿轮的结构尺寸 (12)4.2 第二变速组齿轮结构尺寸的设计 (15)4.3 第三变速组齿轮设计 (19)第5章带传动设计 (23)第6章轴的设计 (26)6.1 Ⅰ轴的设计计算 (26)6.2 Ⅱ轴的设计计算 (28)6.3 Ⅲ轴的设计计算 (30)6.4 主轴的设计 (33)第7章箱体的结构设计 (36)7.1 箱体材料 (36)7.2 箱体结构 (37)第8章润滑与密封 (38)8.1 润滑与密封的设计 (38)8.2 润滑油的选择 (38)总结 (39)致谢 (40)参考文献 (41)本科毕业设计(论文)通过答辩CONTENTSAbstract (Ⅱ)Chapter 1Introduction (1)1.1 Application (1)1.2 Performance (1)1.3 Structure (1)1.4 The purpose of design (1)1.5 The development of at home and abroad (2)1.6 Meaning and purpose of research (2)Chapter 2The main parameters of the machine tools and other technical requirements (3)2.1 The main parameters and the basic parameters (3)2.1.1 The main referances (3)2.1.2 The essential referances (3)2.1.3 The ordinary lathecommen referances (3)2.2 The design of the main drive (4)2.2.1 The determination of the spindle limit (4)2.2.2 Determination of common ratio (4)2.2.3 Series to determine the spindle speed (5)2.2.4 The main drive motor power (5)Chapter 3 The formulation of the main transmission system (6)3.1 Drive ratio (6)3.2 The commen law of trancform speeds (6)3.3 The formulation of the speed diagram (6)3.4 Allocation of the variable speed group minimum transmission ratio (7)3.5 Determine the number of gear teeth (7)3.6 The determination of the modulus within the group of the samevariable speed gear (8)Chapter 4 Gear design (12)本科毕业设计(论文)通过答辩4.1 The structure and size of the first variable speed group gear (12)4.2 Structural dimensions of second variable speed group gear design (15)4.3 Third variable speed group gear design (19)Chapter 5 Belt Drive Design (23)Chapter 6 The design of anle (26)6.1 The design and calculate of Ⅰaxis (26)6.2 The design and calculate of Ⅱaxis (28)6.3 The design and calculate of Ⅲaxis (30)6.4 The design of spindle (33)Chapter 7 Shaft structure design (36)7.1 The shaft of material (36)7.2 The shaft of structure (37)Chapter 8 Lubricate and hermetic sealing (38)8.1 The design of lubricate and hermetic sealing (38)8.2 The choice of lubrication oil (38)Conclusion (39)Thanks (40)References (41)本科毕业设计(论文)通过答辩第1章绪论1.1 用途CA6140型卧式车床万能性大,适用于加工各种轴类、套筒类、轮盘类零件上的回转表面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车床主传动系统的设计
摘要:本文通过分析中型车床的特点,提出了该机床总体结构和参数,设计了传动方案,并对其中齿轮三角带等关键部件进行了计算和校核,通过对润滑油及润滑方式的研究确定了润滑系统,完成了该机床的设计方案,采用本文中的设计方法制作样机在实际使用中其性能满足中小企业对简易零部件的加工需求。
关键词:车床;传动方案;润滑系统
1.引言
随着科技的进步和企业对零部件精度要求的提高,数控机床成为普遍使用的设备,为延长数控机床的使用寿命,在粗加工中普通卧式车床依然发挥着重要的作用。
机床的传动系统作为机床重要的部分之一,对机床加工性能有着决定的作用,因此研究机床的传动系统有着重要的意义。
2.机床的总体参数
配用与零部件材质相对应的刀具实现对加工零部件外圆及端面或螺纹,加工范围0-250mm,切削量2-6mm ,按照切削速度和刀具直径计算主轴最高转速为637r/min最低转速12.7r/min。
电机额定功率由下式计算并在国标电机中选取得选取5.5kw。
3.传动方案的设计
3.1 传动方案的设计
选择传动平稳,效率较好并能避免震动引起误差的带式转动,在变速形式上选用分级变速形式。
在公比上选用标准公比即φ=1.41,尤其可以派生出转速数列12.5/18/25/35.5/50/71/100/140/200/280/400/500。
通过计算主轴转速级数取整为12。
按照级比指数规律求拟定结构式为:Z=31×23×26可得其转速图。
通过以上计算结合机床通用设计要求确定一下参数:最大工件长度L为350-750mm,刀架滑板上最大工件直径125mm;主轴通孔直径25mm;
3.2 齿轮齿数的确定
在选取齿数时应满足以下要求:齿数和通常小于100最大不得超过120;最
小齿数大于18;应保证齿轮及与之相配的键槽等部分的强度,以免发生断裂。
三联滑移齿轮的最大和次大齿轮之间的齿数差应大于4。
4.传动件设计
4.1 轴的转速
Ⅰ轴从电机得到运动,经传动系统转化成主轴各级转速,电机的转速和主轴的转速应相接近,Ⅰ轴转速一般取700~1000r/min左右比较合适,本设计采用带式传动因此Ⅰ轴的带轮应足够小,以避免与主轴尾端发生干涉。
小模数的轴颈和齿轮适合于中间轴的转速较高,中间传动轴和齿轮承受的扭矩小的情况,这样可是结构简单
对于中型通用机床,主轴计算转速的计算公式为:
4.2 三角带传动设计
为有效减小冲击和隔离震动,保证平稳传动,本设计选用了带传动。
三角带的计算功率为电机额定功率与工作系数(取1.1)的乘积。
带轮的直径应考虑皮带的寿命的前提下尽可能小因此选取小带轮的直径为140,大带轮直径为350mm,初定中心距A0为0.6-2倍的大小带轮直径和,经计算得三角带数目为3。
5.齿轮强度校核
Ⅰ轴到Ⅱ轴的小齿轮齿数为24,其接触应力用如下式计算:
其中:
其弯曲应力为:
其中:
接触和弯曲应力应小于许用应力。
6.润滑系统
6.1润滑系统的要求
(1)满足开机即时通入足够的润滑油;
(2)润滑系统应为自动化操作,并且润滑系统可靠工作可靠。
(3)润滑系统应有观察窗口或装置以确定系统运转正常。
(4)部分关键部位的润滑系统应可以调节。
(5)润滑系统应便于维护并且对环境友好。
润滑系统性能直接影响机床寿命,选用适合系统的润滑油及润滑方式有利于机床寿命的提高。
选择使用润滑油应考虑的因素:
(1)根据机床部件的相对运动速度选取合适的润滑油,以降低温升节约成本。
(2)部件受到的正压力越大,润滑油的粘度应该越高。
以防止在运动中润滑油被挤出使润滑失。
(3)工作温度高时,应选用粘度较大的润滑油,比保证润滑油的粘度防止因粘度下降使润滑失效。
6.2 润滑方式
(1)飞溅润滑
飞溅润滑是一种结构简单,使用方便,而且低油量消耗的润滑方式。
但该方式受到溅油齿轮或溅油盘的圆周速度的限制过大过小都不能起到润滑效果。
(2)循环润滑
当运转发热量大或需要限制温升的情况下,需要通过油泵供油进行加速循环润滑,加速降低摩擦面温度。
(3)滴油润滑
油杯或绒线间断的供少量的润滑油。
特点是结构简单,使用方便;但是难于控制油量,油量过小不能起到效果,油量过大造成污染和浪费。
(4)油雾润滑
利用雾化器形成含少量油的油雾喷入轴承。
油雾润滑的阻力小,散热性好。
(5)喷射(注射)润滑
在需要润滑的轴承周围布置3—4个喷嘴,将一定压力油喷注到轴承隔离器
的空隙内,周期性地把油送到润滑表面,供油量少,润滑效果好。
但是需要特殊装置一般适用于高速轴承的润滑。
7.结论
分析了机床传动的特点,提出了机床总体参数,对传动结构和主要零部件进行了计算,得到良好的使用效果。
参考文献:
[1]《机床设计手册》2零件设计.上册.机械工业出版社
[2]冯辛安主编.《机械制造装备设计》第二版.大连理工大学,2007.12。