最新中考数学专题训练:网格问题(含答案)

合集下载

云南中考数学题型专项(六)网格作图题(含答案)

云南中考数学题型专项(六)网格作图题(含答案)

题型专项(六) 网格作图题网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换.此类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作.此类题目属中档题,复习时注意练习即可.1.(·宁夏)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(3,-3),C(0,-4).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.2.(·昆明二模)在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转90度.解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.3.(·昆明西山区一模)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-4,3),B(-3,1),C(-1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O中心对称,画出△A2B2C2;(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标(2,1).解:(1)①如图:△A1B1C1即为所求.②如图:△A2B2C2即为所求.4.(·昆明模拟)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A,C两点的坐标;(3)根据(2)的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2,C 2两点的坐标.解:(1)△AB 1C 1如图所示.(2)如图所示,A(0,1),C(-3,1).(3)△A 2B 2C 2如图所示,B 2(3,-5),C 2(3,-1).5.(·龙东)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(-1,3)、(-4,1)、(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1;(2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达点A 2的路径总长.解:(1)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求.(3)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长为52+12+90·π·42180=26+22π. 6.(·昆明模拟)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2BC 2即为所示,线段BC 旋转过程中所扫过的面积S =90×13π360=13π4. 7.(·昆明盘龙区二模)如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC先向左,再向下都平移5个单位长度后得到的△A1B1C1;(2)请画出将△ABC绕O按逆时针方向旋转90°后得到的△A2B2C2;(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB并直接写出点P的坐标.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)如图,△PAB即为所求,P(2,0).8.(·云南模拟)图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.(1)以点O为位似中心,在方格图中画出将△ABC放大为原来的2倍得到的△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.解:(1)如图,△A′B′C′即为所求.(2)如图,△A″B′C″即为所求.S=90360π(22+42)=14π·20=5π.。

2023年中考数学《网格作图》真题及答案解析

2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。

中考数学总复习训练-网格型问题

中考数学总复习训练-网格型问题

网格型问题一、选择题1.在正方形网格中,△ABC 的位置如图所示,则cos B 的值为(B ) A.12 B.22 C.32 D.33【解析】 过点A 作AD ⊥BC 于点D ,则AD =BD =4,∴AB =42,∴cos B =442=22.(第1题)(第2题)2.如图,在方格纸上,△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上点A 的位置,(1,2)表示点B 的位置,那么点P 的位置为(A )A .(5,2)B .(2,5)C .(2,1)D .(1,2)【解析】 提示:连结BE ,AD ,分别作BE 和AD 的中垂线,其交点即为点P 的位置.3.在5×5方格纸中,将图①中的图形N 平移后的位置如图②所示,那么下面平移中正确的是(C )(第3题)A .先向下平移1格,再向左平移1格B .先向下平移1格,再向左平移2格C .先向下平移2格,再向左平移1格D .先向下平移2格,再向左平移2格4.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为(B )(第4题)A.12B.22C. 2 D .2 2【解析】 展开图的圆心角=r l ×360°=r 22×360°=90°,∴r =22.5.如图,点A ,B ,C ,D ,E ,F ,G ,H ,K 都是7×8方格纸中的格点,为使△DEM ∽△ABC ,则点M 应是F ,G ,H ,K 四点中的(C )(第5题)A .点FB .点GC .点HD .点K【解析】 ∵△DEM ∽△ABC ,∴DE DM =AB AC =46=23. ∵DE =2,∴DM =3,即点M 应是点H .6.如图所示的正方形网格中,网格线的交点称为格点.已知A ,B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是(C )(第6题)A .6B .7C .8D .9【解析】 如解图,作AB 的中垂线过4个格点,分别以A ,B 为圆心,AB 长为半径作圆过4个格点,共8个.(第6题解)二、填空题7.如图,∠1的正切值等于13.【解析】 提示:∠1和以(2,3)为顶点的角相等.(第7题)(第8题)8.如图,网格中每个小正方形的边长均为1,连结其中的三个顶点得△ABC ,则AC 边上的高是355.【解析】 ∵AC =22+12=5,S △ABC =2×2-12×1×1-12×2×1×2=32,∴12×5·h =32,解得h =355.9.二次函数y =-(x -2)2+94的图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个(提示:可利用备用图画出图象来分析).(第9题)【解析】 可画出草图如解图.(第9题解)图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为点(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1).10.如图,在一单位长度为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…都是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,-1),A 3(0,0),则依图中所示规律,A 2016的坐标为(2,1008).(第10题)【解析】∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,点A2(1,-1),A4(2,2),A6(-1,-3),A8(2,4),A10(-1,-5),A12(2,6),…,得到规律:当字母下标是2,6,10,…时,横坐标为1,纵坐标为字母下标的一半的相反数;当字母下标是4,8,12,…时,横坐标是2,纵坐标为字母下标的一半.∵2016÷4=504,∴点A2016在第一象限,横坐标是2,纵坐标是2016÷2=1008,∴点A2016的坐标为(2,1008).三、解答题11.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.(第11题)【解析】(1)如解图①所示,△CDE即为所求.(第11题解)(2)如解图②所示,▱ABFG即为所求.12.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.(第12题)【解析】(1)O(0,0),90°.(2)如解图.(第12题解)(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形. ∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC , ∴(a +b )2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab , ∴a 2+b 2=c 2.13.如图①,在矩形MNPQ 中,点E ,F ,G ,H 分别在NP ,PQ ,QM ,MN 上.若∠1=∠2=∠3=∠4,则称四边形EFGH 为矩形MNPQ 的反射四边形.图②,图③,图④中,四边形ABCD 为矩形,且AB =4,BC =8.理解与作图:(1)在图②,图③中,点E ,F 分别在BC ,CD 边上,试利用正方形网格在图上作出矩形ABCD 的反射四边形EFGH .(第13题)计算与猜想:(2)求图②,图③中反射四边形EFGH 的周长,并猜想:矩形ABCD 的反射四边形的周长是否为定值?启发与证明:(3)如图④,为了证明上述猜想,小华同学尝试延长GF 交BC 的延长线于点M ,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)作图如下(如解图①,解图②).(第13题解)(2)在解图①中,EF=FG=GH=HE=22+42=20=25,∴四边形EFGH的周长为8 5.在解图②中,EF=GH=22+12=5,FG=HE=32+62=45=35,∴四边形EFGH的周长为2×5+2×35=8 5.猜想:矩形ABCD的反射四边形的周长为定值.(3)证法一:如解图③,延长GH交CB的延长线于点N.(第13题解③)∵∠1=∠2,∠1=∠5,∴∠2=∠5.又∵FC=FC,∠FCE=∠FCM=90°,∴△FCE≌△FCM(ASA),∴EF=MF,EC=MC.同理,NH=EH,NB=EB.∴MN=2BC=16.∵∠M=90°-∠5=90°-∠1,∠N=90°-∠3,∴∠M=∠N,∴GM=GN.过点G作GK⊥BC于点K,则GK=AB=4,KM=12MN=8.∴GM=GK2+KM2=42+82=4 5.∴四边形EFGH的周长=GH+HE+GF+EF=GH+HN+GF+FM=GN+GM=2GM=8 5.证法二:∵∠1=∠2,∠1=∠5,∴∠2=∠5.又∵FC=FC,∠FCE=∠FCM=90°,∴△FCE≌△FCM(ASA),∴EF=MF,EC=MC.∵∠M=90°-∠5=90°-∠1,∠HEB=90°-∠4,∠1=∠4,∴∠M=∠HEB,∴HE∥GF.同理,GH∥EF.∴四边形EFGH是平行四边形,∴FG=HE.又∵∠1=∠4,∠FDG=∠HBE=90°,∴△FDG≌△HBE,∴DG=BE.过点G作GK⊥BC于点K,则GK=AB=4,KM=KC+CM=GD+CM=BE+EC =8.∴GM=GK2+KM2=42+82=4 5.∴四边形EFGH的周长=2(GF+EF)=2(GF+FM)=2GM=8 5.。

中考数学专题复习(三)网格作图题(含答案)

中考数学专题复习(三)网格作图题(含答案)

专题复习(三)网格作图题1.拟)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2.(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1;(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2.解:(1)如图,四边形AB1C1D1为所作.(2)如图,四边形AB2C2D2为所作.2.二模)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,写出B1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,写出B2点的坐标.解:(1)如图所示,△A1B1C1即为△ABC关于x轴对称的图形,B1点的坐标是(1,0).(2)如图所示,△A2B2C2即为△ABC绕原点O按逆时针旋转90°的三角形,B2点的坐标是(0,1).3.模)如图,已知A(2,3),B(1,1),C(4,1)是平面直角坐标系中的三点.(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移3个单位得到的△A2B2C2;(3)若△ABC中有一点P坐标为(x,y),请直接写出经过以上变换后△A2B2C2中点P的对应点P2的坐标.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)根据题意,可得P的对应点P2的坐标为(-x,y-3).4.拟)如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.5.如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.解:(1)如图所示,△A1B1C1,即为所求.(2)如图所示,△A2B2C2,即为所求.(3)如图所示,△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.6.级二模)如图所示,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A ,B ,C 在小正方形的顶点上.将△ABC 向下平移2个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1.(1)在网格中画出△A 1B 1C 1和△A 2B 2C 1;(2)计算线段AC 在变换到A 2C 1的过程中扫过区域的面积.(重叠部分不重复计算)解:(1)如图,△A 1B 1C 1和△A 2B 2C 1为所作.(2)线段AC 在变换到A 2C 1的过程中扫过区域的面积S =2×2+90·π·(22)2360=4+2π.7.如图,△ABC 三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于原点O 成中心对称的图形△A 2B 2C 2;(3)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.解:(1)如图所示.(2)如图所示.(3)找出A 关于x 轴的对称点A′(1,-1),连接BA′,与x 轴交点即为P.如图所示,点P 坐标为(2,0).8.模拟)如图,已知△ABC 的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC 的顶点A 与坐标原点O 重合,请直接写出此时点C 的对应点C 1坐标;(不必画出平移后的三角形)(2)将△ABC 绕点B 逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A 为位似中心放大△ABC ,得到△AB 2C 2,使放大前后的面积之比为1∶4,请你在网格内画出△AB 2C 2.解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.。

2022年中考数学试卷分类汇编专项33网格问题

2022年中考数学试卷分类汇编专项33网格问题

2022年中考数学试卷分类汇编专项33网格问题专题33:网格问题一、选择题1. (2020宁夏区3分)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近那个几何体的侧面积的是【】A.24.0 B.62.8 C.74.2 D.113.0【答案】B。

【考点】网格问题,圆锥的运算,由三视图判定几何体,勾股定理。

【分析】由题意和图形可知,几何体是圆锥,底面半径为4,依照勾股定理可得母线长为5。

则侧面积为πrl=π×4×5=20π≈62.8。

故选B。

2. (2020湖北孝感3分)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)【答案】B。

【考点】坐标与图形的对称和平移变化。

【分析】∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为-2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为-3。

∴点A2的坐标是(2,-3)。

故选B。

3. (2020湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A.B.C.D.4. (2020山东聊城3分)如图,在方格纸中,△ABC通过变换得到△DEF,正确的变换是【】A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°【答案】B 。

2024年中考数学复习重难点题型训练—网格作图(含答案解析)

2024年中考数学复习重难点题型训练—网格作图(含答案解析)

2024年中考数学复习重难点题型训练—网格作图(含答案解析)类型一平移1.如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.【答案】解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.2.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解析】(1)如解图①所示,△CDE即为所求.(2)如解图②所示,▱ABFG即为所求.3.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;(3)求△CC1C2的面积.【答案】(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积=12×3×6=9.【考点定位】:作图-位似变换;作图-平移变换.属基础题.【试题解析】解:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.;△CC1C2的面积=12×3×6=9.【命题意图】本题主要考查位似变换与平移变换,得出变换后的对应点的位置是解题的关键.【方法、技巧、规律】网格问题就是在网格中研究格点问题,这类问题现在在中考中比较常见,成为中考中的热点问题,具有很强的操作性,考查的类型问题有:点与有序数对的一一对应问题、平移问题、旋转问题、轴对称问题、勾股定理问题、分类思想的运用等. 4.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1.(1)写出△ABC的顶点坐标;(2)请在图中画出△A1B1C1.【答案】(1)A(1,0),B(0,-1),C(2,-2);(2)参见解析.【解析】(1)由观察得知:A(1,0),B(0,-1),C(2,-2);(2)将A,B,C三点坐标横坐标分别减3,纵坐标分别减2得A1(-2,-2),B1(-3,-3),C1(-1,-4).三点连线即可.如下图:5.作图题:(1)把△ABC向右平移5个方格;CBA(2)绕点B的对应点顺时针方向旋转90°CBA【答案】见解析【解析】(1)如图所示:(2)如图所示:6.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)P (a ,b )是△ABC 的AC 边上一点,△ABC 经平移后点P 的对称点P′(a+3,b+1),请画出平移后的△A 2B 2C 2.【答案】(1)作图见解析,A 1的坐标是(3,-4);(2)作图见解析.【解析】(1)如图所示:A 1的坐标是(3,-4);(2)△A 2B 2C 2是所求的三角形.类型二旋转7.(2021·湖北黄石·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【解析】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1),将△BOC 绕点O 逆时针旋转90度,得到△B 1OC 1,画出△B 1OC 1,并写出B 、C 两点的对应点B 1、C 1的坐标,【解析】解:如图,△B1OC1为所作,点B1,C1的坐标分别为(1,3),(-1,2).9.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.【答案】(1)E(3,3),F(3,﹣1);(2)答案不唯一,如:(﹣2,0).【解析】(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF在图中表示为:∵AO⊥AE,AO=AE,∴点E的坐标是(3,3),∵EF=OB=4,∴点F的坐标是(3,﹣1);(2)∵点F落在x轴的上方,∴EF<AO,又∵EF=OB,∴OB<AO,AO=3,∴OB<3,∴一个符合条件的点B的坐标是:答案不唯一,如:(﹣2,0).10.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(-3,-1).(1)试作出△ABC以C为旋转中心,沿逆时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.【解析】解:根据旋转中心为点C,旋转方向为逆时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(3,1).11.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解析】(1)O(0,0),90°.(2)如解图.(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形.∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC ,∴(a +b)2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,∴a 2+b 2=c 2.12.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.【解析】解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:13.如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.【答案】解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.14.如图,已知坐标平面内的三个点A(3,5),B(3,1),O(0,0),把△ABO向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出A,B,O三个对应点D、E、F的坐标;(2)画出将△AOB绕O点逆时针方向旋转90∘后得到的△A'OB';(3)求△DEF的面积.【解析】解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3).(2)如图,△A'OB'即为所求作.(3)△DEF的面积=12×4×3=6.15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解析】解:(1)如图所示;(2)如图所示.16.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【解析】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,-1).17.如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),△A1B1C1与△ABC关于原点O成中心对称,△A2B2C2是由△ABC绕着原点O顺时针旋转90°后得到的.(1)画出△A1B1C1,并写出点A的对称点A1的坐标;(2)画出△A2B2C2,并写出点A的对称点A2的坐标;(3)求出点B到达点B2的路径长度.【解析】解:(1)如图,△A1B1C1为所作,A1(1,-3);(2)如图,△A2B2C2为所作,A2(3,1);(3)∵OB=42+12=17,∴B到达点B2的路径长度.18.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .【答案】(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【解析】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.类型三对称19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【答案】(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.20.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.【答案】(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)9021.如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是________;点C 2的坐标是________;过C ,C 1,C 2三点的圆的圆弧的长是________(保留π).【答案】(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求.(3)(1,4)(1,-4)17π22.(2022年陕西中考)如图,ABC ∆的顶点坐标分别为(2,3)A -,(3,0)B -,(1,1)C --.将ABC ∆平移后得到△A B C ''',且点A 的对应点是(2,3)A ',点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是;(2)请在图中画出△A B C '''.【解答】解:(1)(2,3)--=。

初中数学网格题型测试卷

初中数学网格题型测试卷

一、选择题(每题3分,共30分)1. 下列图形中,不属于网格图形的是()A. 矩形B. 菱形C. 三角形D. 圆形2. 在网格纸上,一个长为4个格子的正方形和一个长为3个格子的正方形组成的图形,其周长为()A. 14B. 16C. 18D. 203. 在一个网格纸上,一个正方形的边长是4个格子,那么它的面积是()A. 16平方厘米B. 12平方厘米C. 8平方厘米D. 4平方厘米4. 在网格纸上,一个长方形的长是6个格子,宽是4个格子,那么它的面积是()A. 24平方厘米B. 20平方厘米C. 18平方厘米D. 16平方厘米5. 在网格纸上,一个三角形的一个顶点在格点(2,3),另外两个顶点分别在格点(4,5)和(5,6),那么这个三角形的面积是()A. 2.5平方厘米B. 3.5平方厘米C. 4.5平方厘米D. 5.5平方厘米6. 下列关于网格图形的说法正确的是()A. 所有网格图形都是轴对称图形B. 所有网格图形都是中心对称图形C. 网格图形的对称轴可以是任意一条直线D. 网格图形的对称中心可以是任意一个点7. 在网格纸上,一个平行四边形的对角线相交于点O,如果OA的长度是3个格子,OB的长度是4个格子,那么这个平行四边形的面积是()A. 12平方厘米B. 15平方厘米C. 18平方厘米D. 20平方厘米8. 下列关于网格图形的周长计算方法错误的是()A. 计算所有边的长度之和B. 计算相邻边的长度之和的两倍C. 计算对边长度之和的两倍D. 计算对角线长度之和9. 在网格纸上,一个正方形的边长是5个格子,那么它的对角线长度是()A. 10个格子B. 11个格子C. 12个格子D. 13个格子10. 下列关于网格图形的面积计算方法错误的是()A. 计算所有边的长度乘积B. 计算相邻边的长度乘积C. 计算对边长度乘积D. 计算对角线长度乘积二、填空题(每题4分,共20分)11. 在网格纸上,一个长方形的长是6个格子,宽是4个格子,那么它的面积是____平方厘米。

全国181套中考数学试题分类汇编33网格问题

全国181套中考数学试题分类汇编33网格问题

全国181套中考数学试题分类汇编33⽹格问题33⽹格问题⼀、选择题1.(浙江⾈⼭、嘉兴3分)如图,点A、B、C、D、O都在⽅格纸的格点上,若△COD是由△AOB 绕点O按逆时针⽅向旋转⽽得,则旋转的⾓度为(A)30°(B)45°(C)90°(D)135°【答案】C。

【考点】旋转的性质,勾股定理的逆定理。

【分析】△COD是由△AOB绕点O按逆时针⽅向旋转⽽得,由图可知,∠AOC为旋转⾓,可利⽤△AOC的三边关系解答:设⼩⽅格的边长为1,从图知,=AC=4。

从⽽OA,OC,AC满⾜OC2+OA2=AC2,∴△A OC是直⾓三⾓形,∴∠AOC=90°。

故选C。

2.(浙江⾦华、丽⽔3分)如图,在平⾯直⾓坐标系中,过格点A,B,C作⼀圆弧,点B与下列格点的连线中,能够与该圆弧相切的是A、点(0,3)B、点(2,3)C、点(5,1)D、点(6,1)【答案】 C。

【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理。

【分析】如图,根据垂径定理的性质得出圆⼼所在位置O(2,0),再根据切线的性质得出∠OBD+∠EBF=90°时,BF与圆相切,∴当△BOD≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1)。

故选C。

3.(⼴西贺州3分)如图,在⽅格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针⽅向90o旋转,再右平移6格D.把△ABC绕着点A逆时针⽅向90o旋转,再右平移6格【答案】D。

【考点】平移和旋转变换。

【分析】根据平移和旋转变换的特点,直接得出结果。

故选D。

4.(⼴西南宁3分)在边长为1的⼩正⽅形组成的⽹格中,有如图所⽰的A 、B 两点,在格点中任意放置点C ,恰好能使△A BC 的⾯积为1的概率为A .3 25 B .4 25 C . 1 5 D . 625【答案】D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新数学精品教学资料
中考数学专题训练:网格专题
1. (2012宁夏)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是【B】
A.24.0 B.62.8 C.74.2 D.113.0
2. (2012湖北)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向
右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【B。


A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)
3. (2012湖北)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是【 B 】
A.B.
C.D.
4. (2012聊城)如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是【 B 】
A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格
B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格
C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°
D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°
5. (2012浙江)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内
移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为▲.(﹣1,1),(﹣2,﹣2)。

6. (2012泰州)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这
些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值是▲.2
7. (2012广东)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)
(1)点A关于点O中心对称的点的坐标为;
(2)点A1的坐标为;
(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.
【答案】解:(1)(﹣3,﹣2)。

(2)(﹣2,3)。

(3)10
2。

8. (2012福建)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边
形(顶点都在格点上).
(1)先作出该四边形关于直线l成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90o后的图形;
(2)完成上述设计后,整个..图案的面积等于_________.
【答案】解:(1)作图如图所示:
(2)20。

9. (2012福建)如图,方格纸中的每个小方格是边长为1个单位长度的正方形.
①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;
②再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段
A1C1所扫过的面积(结果保留π).【答案】解:①如图所示;
②如图所示;
在旋转过程中,线段A1C1所扫过的面积等于
90·π·42
360
=4π。

10. (2012福建)如图,在方格纸中(小正方形的边长为1),反比例函数
k
y
x
与直线的交点A、B均在格点上,根据所给的直角坐标系(点O是坐标原点),解答下列问题:
(1)分别写.出点A、B的坐标后,把直线AB向右平移5个单位,再在向上平移5个单位,画.出平移后的直线A′B′.
(2)若点C在函数
k
y
x
的图像上,△ABC是以AB为底边的等腰三角形,请写出点C的坐标.
【答案】解:(1)点A的坐标是(-1,-4);点B的坐标是(-4,-1)。

平移后的直线如图:
(2).点C的坐标是(-2,-2)或(2,2)。

11. (2012四川)如图,梯形ABCD是直角梯形.
(1)直接写出点A、B、C、D的坐标;
(2)画出直角梯形ABCD关于y轴的对称图形,使它与梯形ABCD构成一个等腰梯形.
(3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形.(不要求写作法)
【答案】解:(1)如图所示,根据A,B,C,D,位置得出点A、B、C、D的坐标分别为:
(-2,-1),(-4,-4),(0,-4),(0,-1)。

(2)根据A,B两点关于y轴对称点分别为:A′(2,-1),B′(4,-4),
在坐标系中找出A′,B′,连接DA′,A′B′,B′C,即可得等腰梯形AA′B′B,即为所求,如下图所示:
(3)将对应点分别向上移动4个单位,可得等腰梯形EFGH,即为所求,如上图所示。

12. (2012辽宁)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中
...画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
【答案】解:(1)如图,△A1B1C1即为所求,C1(2,-2)。

(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10
13. (2012贵州)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形
叫做“格点三角形”,根据图形,回答下列问题.
(1)图中格点△A′B′C′是由格点△ABC通过怎样的变换得到的?
(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点△DEF各顶点的坐标,并求出△DEF的面积.
【答案】解:(1)图中格点△A′B′C′是由格点△ABC向右平移7个单位长度得到的;
(2)如果以直线a、b为坐标轴建立平面直角坐标
系后,点A的坐标为(﹣3,4),则格点△DEF各顶点的坐标分别
为D(0,﹣2),E(﹣4,﹣4),F(3,﹣3),
过点F作FG∥x轴,交DE于点G,
则G(-2,-3)。

∴S△DEF=S△DGF+S△GEF=1
2
×5×1+
1
2
×5×1=5。

14. (2012贵州)如图,方格纸中的每个小方格都是边长为1个
单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1,并写出A1的坐标;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt△A2B2C2.并计算Rt△A1B1C1在上述旋转过程中C1所经过的路程.
【答案】解:(1)如图所示,△A1B1C1即为所求作的三角形。

点A1的坐标为(1,0)。

(2)如图所示,△A2B2C2即为所求作的三角形。

根据勾股定理,A1C1=22
2+3=13,
∴旋转过程中C1所经过的路程为
901313
=
1802。

15. (2012广西)如图,在10×10的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.
(1)填空:ta n A=,AC(结果保留根号);
(2)请你在图中找出一点D(仅一个点即可),连结DE、DF,使以D、E、F为顶点的三角形与△ABC
全等,并加以证明.
【答案】解:(1)1
2
;25。

(2)如图,点D,连接DE、DF,则△ABC≌△EFD。

证明:过点C作CG⊥AB的延长线于点G,过点D作DM⊥EF
的延长线于点M,
由(1)得AC=25,
在Rt△BCG中,BG=2,CG=2,根据勾股定理得BC=22,
∴△ABC的三边长为AB=2,BC=22,AC=25。

在Rt△EMD中,EM=4,MD=2,根据勾股定理得ED=25,
在Rt△FDM中,FM=2,MD=2,根据勾股定理得:FD=22,
∴△ABC的三边长为EF=2,FD =22,ED=25。

在△ABC和△EFD中,∵AB=EF=2,BC= FD=22,AC=ED=25,∴△ABC≌△EFD(SSS)。

1。

相关文档
最新文档