大学生方程式赛车的空气动力学套件的建模与流场分析
空气动力学套件的设计要点

空气动力学套件的设计要点在近几年的FASE的比赛中,空气动力学套件在国内车队中得到越来越多的应用,从我个人的观察来看,14年中国赛使用空气动力学套件的车队至少达到70%以上。
那么,空气动力学套件的设计要考虑那几点呢?我就以我两年在HRT车队做空套的经验,简单地和大家交流一下。
空气动力学套件的设计重点应放在三个方面:升阻比、导流、风压中心。
首先从升阻比来讲吧,我把这一部分分为三个方面来讲,如何选择翼型,如何进行翼型的组合,以及整车下压力及阻力的取舍。
第一点,如何选择翼型。
这对一个刚开始做空套的车队来说花较多的时间选择一个好的翼型是非常有必要的。
那么如何才能算是一个好的翼型呢?第一,好的翼型需要一个较大的升阻比;第二,要保证翼型在大攻角下不失速;第三,翼型要有足够的厚度,以保证可加工性及刚度。
我们车队目前所用的翼型是13年选的,我们使用的翼型是NACA四位数字翼型,我们从3系列到9系列中选出大概10几种翼型,分析他们在不同攻角下的下压力、阻力及升阻比。
但如果只关注这些数据就大错特错了,最重要的是找到从3系列到9系列的这几个数据的变化趋势。
通过变化趋势,分析变化趋势的原因,并进而指导下一组更小范围的对比实验。
总之选翼型是个重复再重复的过程,但选出了一个好的翼型之后,会对以后的设计来了极大的方便,也可以一直沿用下去。
第二点,如何进行翼型的组合。
众所周知,主翼加襟翼的组合式翼型可以保证翼型在大攻角下不失速,极大地提高升力系数。
但是,主翼和襟翼的不同相对位置自然也会有不同的升阻比,所以,主翼与襟翼的相对位置的确定又成为了一个繁琐但不得不进行的工作。
翼型组合的确定的最大问题是要找到变量是什么。
如图所示,我们车队使用的是三片式组合翼型,如果从翼型的侧面看的话,三片翼都有极大的活动空间。
因此,三片翼是位置应该怎么调,调的梯度是什么,这一系列的问题都需要考虑。
影响翼型的升阻比的一个重要因素就是总攻角,但同一总攻角下,不同翼型的组合又会带来不同的升阻比,而调节翼型相对位置的时候又很难保证总攻角不变。
揭秘F1赛车科技(三):空气动力学及TC系统

【知识贴】揭秘F1赛车科技(三):空气动力学及TC系统1楼一、空气动力学现代F1赛车就像是一架贴地飞行的战斗机,只不过它的“机翼”产生的力是向下的。
随着技术的完善,空气动力学已经成为车队最后可以竞争的领域之一,这也是为什么各支车队每年要花费几百万到数千万美元在空气动力学套件的研发上,所以空气动力学可谓是赛事制胜的法宝。
简单的空气动力模型虽然空气动力学是非常复杂的工程,但是工程师们考虑的问题其实只有两个:一、增加下压力,让赛车紧抓地面,这样可以以更高的速度过弯;二、减小阻力,通过减小气流扰动产生的阻力以提高赛车在直道的速度。
因为增加下压力的同时会产生风阻,所以两个看似矛盾方向的平衡点,正是制胜的关键。
F1车队开始研究空气动力学始于上世纪60年代末期,但是它的原理早在莱特兄弟的飞机上天之前就已经由伯努利发现了。
当气流以不同的速度通过一个机翼的上下表面,就会产生压强差,为了平衡这种压强差,机翼就会向压强小的一面运动。
我们只要让气流通过的两个翼面的长度不一样,就可以产生速度差,进而产生我们需要的升力,或者对于F1来说的下压力。
F1就像是倒过来的机翼,现代F1赛车可以产生3.5倍于自身重量的下压力,简单的说,就是只要达到一定的速度,这些赛车都可以贴在天花板上开而不掉下来。
理论上说合适的设计可以产生非常高的下压力,但是过高的下压力所带来的高速会让车手的身体无法承受,而导致一些事故的发生,从七十年代开始,定风翼的位置、大小、角度等逐步被限制,从而限制车速的提高。
但是F1车队的工程师很快找到了产生下压力的新方法,那就是七十年代莲花车队曾在Brabham BT46B赛车上使用的地效应底盘,这种底盘就是在车后安装一个巨大的风扇,然后把车底部的空气全部抽走产生几乎真空的环境,让大气压把赛车紧紧压在地面上。
这辆赛车只参加过一站比赛,它的巨大优势让国际汽联马上禁止了这种设计。
地效应底盘的莲花F1赛车现在的F1赛车底盘主要靠车底的侧裙和后部的扩散器来达到相似的效果:底盘周围的侧裙对空气扰流可以产生气坝,气坝阻止了周围的空气进入底盘下部,而扩散器可以加速车底的空气离开,等于抽走了车底的空气而在底盘与地面之间生成了一个超低压区,由此可以产生巨大的下压力。
空气动力学中的流场分析与参数优化

空气动力学中的流场分析与参数优化第一章:引言空气动力学是一门研究空气在运动过程中产生的各种力学效应的学科,应用范围涵盖气体动力学、流体力学、空气动力学等多个学科领域。
空气动力学中,流场分析是一个核心问题,实现精确的流场分析可以为后续空气动力学分析提供基础性支撑,同时也是参数优化的基础。
本文旨在探讨流场分析与参数优化在空气动力学领域的重要性以及实现方式。
第二章:流场分析的方法流场分析的方法可以分为数值模拟和实验模拟两种。
数值模拟包括数值计算方法和计算流体力学方法;实验模拟包括风洞试验和机场试飞。
1. 数值计算方法数值计算方法是先建立流场数学模型,然后采用计算机程序求解模型,得到数据后进行分析的方法。
这种方法操作简便,能快速得到流场数据,还可方便进行参数优化。
但数值计算方法的精度是受限的,因为在模型建立和求解过程中会引入一些误差,其准确度难以完全保证。
2. 计算流体力学方法计算流体力学方法是指通过数值方法,将宏观的流体运动方程以微分方程的形式进行描述,然后在离散化计算区域内设定网格,以及初始和边界条件,应用数值方法进行计算和求解。
计算流体力学方法适用于流场复杂的情况,精度相较于数值计算方法更高。
3. 风洞试验风洞试验是通过在风洞中构建模型,模拟真实流场环境,然后进行流场实验分析的方法。
这种方法所得数据精度高,但是检测仪器成本较高,适用于大型机器的流场分析。
同时,仿真模型与真实物件存在误差,存在一定的局限性。
4. 机场试飞机场试飞是在真实空气流场环境中,结合现代仪器完成的实验分析方法。
这种方法确保了流场数据为真实数据,更具有可靠性。
但机场试飞成本高,无法满足一些流场实验分析的需求。
第三章:流场分析中的参数优化方法在流场分析中,为了使得模型更加可靠,模型参数需要进行优化,传统参数优化方法可能会出现多解问题。
城市字模态分析方法能够避免出现这个问题。
1. 变步长搜索变步长搜索是一种传统的参数优化方法,其通过不断增大或减少参数值,最终找到最优解。
FSC赛车的空气动力学套件的外流场分析

第8期2019年3月No.8March ,2019杨晨1,沈颖杰2,李垚3(1.江苏大学汽车与交通工程学院,江苏镇江212000;2.江苏大学能源与动力工程学院,江苏镇江212000;3.江苏大学材料科学与工程学院,江苏镇江212000)引言影响赛车动力性的因素有很多,汽车之所以能在路面上行驶依靠的是轮胎与地面的摩擦力。
因此,足够的地面附着力是汽车动力性提高的前提。
据统计,赛车大约有80%的附着力是由下压力产生,剩余的20%由轮胎提供[1]。
事实上,仅仅通过轮胎来获得足够的下压力是不现实的,而赛车的下压力不足将影响赛车在高速行驶过程中的稳定性,安全性也将没有保障。
文章分析了赛车空气动力学套件,包括前翼、尾翼和扩散器,尾翼增设格尼襟翼来增加赛车的下压力,提升制动时的稳定性。
该空套可显著提高赛车的下压力,使赛车得到较好的地面附着力,获得优良的动力性并改善赛车的空气动力学性能和操纵稳定性。
1技术路线1.1流场数值模拟气动特性研究的方法主要有风洞试验法和数值模拟法。
由于风洞试验在流场分析过程中存在局限性,而数值模拟又有诸多的优点,因此数值模拟在汽车气动性能分析中很受科研工作者的青睐。
但由于受数值计算方法、计算流体力学以及计算机本身等制约,数值模拟不能完全等同于风洞试验[2]。
数值模拟是利用计算机,通过对流动控制方程的数值求解,达到对汽车流场特性研究的目的。
通过计算周围的气流,将结果可视化,可以看到流场的细节,进而分析流动的分离、表面压力分布、某点受力大小等。
1.2基本控制方程及湍流模式基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。
联立可得Navier-Stokes 方程[3](见式1)。
∂∂t (ρu i )+∂∂x j (ρu i u j )=-∂p ∂x i +∂τij ∂c j+ρg i +F i (1)N-S 方程反映了黏性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。
FSAE赛车车身与空气动力学套件设计及其仿真

FSAE赛车车身与空气动力学套件设计及其仿真Duan Lei;Liu Shaona;Huang Jiongjiong;Yang Yaozu【摘要】为了提高赛车的成绩,FSAE赛车上通常会引入空气动力学套件来提高整车的操纵性.文章通过CFD对定风翼翼型、迎角、翼片布置等因素进行分析,确定了具备良好气动特性的定风翼设计方案;通过调整风压中心的位置影响车辆的实际轴荷分配,进而影响整车的转向特性;对赛车车身及涂装渲染的设计;通过CFD分析,整车升阻比达到2.9,整车具有较好的气动特性.【期刊名称】《汽车实用技术》【年(卷),期】2019(000)013【总页数】3页(P134-136)【关键词】中国大学生方程式赛车;空气动力学;CFD【作者】Duan Lei;Liu Shaona;Huang Jiongjiong;Yang Yaozu【作者单位】【正文语种】中文【中图分类】U463.4空气动力学套件可以增大作用于车轮的垂直载荷可以有效提高车轮的侧偏刚度[1],而通过空气动力学手段可以在不增加赛车附重的情况下增加整车的下压力,特别是在弯道时可以增加了轮胎的抓地力,提高了过弯速度,增强了整车的行驶稳定性。
设计者通常在保证下压力分配平衡的前提下提高负升力系数值,同时控制气动阻力,即空动力学装置在获取下压力的同时必须具备一定的气动效率。
随着汽车的发展,汽车的外形也是多种多样的,但是不难发现,大多数汽车的造型都是采用流线型设计。
流线型汽车首先在外观上面就非常吸引人的目光,其次车子设计呈流线型,能大大的减少汽车行进间的风阻。
不论是汽车还是赛车,流线型造型都是一个不变的根基。
车身设计的灵感更多借鉴于仿生学:我们所知道的最佳流线型——水滴的Cd=0.05,而德国的一份研究报告中指出企鹅的阻力系数为0.03,比水滴还要小,尽管只是细微变化,但要知道对于汽车来说将Cd从0.29减小到0.28相当于给车减重100kg,且速度越快,降低的油耗越明显。
大学生方程式赛车车身外流场SYS分析报告

大学生方程式赛车车身外流场S Y S分析报告Prepared on 22 November 2020大学生方程式赛车车身外流场ANSYS分析报告指导老师:詹振飞小组序号:第五小组小组成员:刘宇航黄志宇谢智龙陈治安重庆大学方程式赛车创新实践班二〇一六年十月摘要大学生方程式赛车起源于国外,近几年才在国内兴起并得以迅速发展,成为各个高校研发实力的侧影,因此得到了各个高校的重视,赛车外形设计更是赛车很重要的一部分,它不仅是赛车的外壳,更可以利用空气动力学来为赛车减少阻力,提高赛车的性能。
因此外形设计时赛车总体设计中很重要的一部分,通过有限元法对赛车外壳进行风洞模拟测试对赛车外形的改进及优化分析有重要的意义。
利用ANSYS中的fluent进行有限元模拟风洞试验试验,能够准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。
ANSYS在此过程中起到极其重要的作用。
对于一辆优秀的赛车而言,它的性能不仅取决于优秀的结构设计和强劲的发动机性能,还在一定程度上取决于它的外形。
赛车的外形不仅能够影响赛车的美观度,更重要的是能够影响车身所受的阻力。
因此,如果赛车有一个好的外观设计,利用好空气动力学的原理,则能够在一定程度上减小车身的阻力,从而提高整车的性能。
本小组利用CATIA等建模软件建立了适当的赛车外观模型。
在此基础上,利用ANSYS中的Fluent进行有限元的模拟风洞试验,并得出了一定的结论,整理成报告。
关键字:CATIA三维设计,车身外流场,ANSYS,风洞模拟,有限元1.利用三维建模软件建立车身模型在2016年发布的大赛规则限定的范围内,本小组利用CATIA等相关的建模软件建立了合适的赛车车身模型,以用于后续分析。
年大赛关于车身的部分规则要求1)赛车的轴距至少为 1525mm(60 英寸)。
轴距是指在车轮指向正前方时同侧两车轮的接地面中心点之间的距离。
2)赛车较小的轮距(前轮或后轮)必须不小于较大轮距的 75%。
大学生方程式赛车的空气动力学套件的建模与流场分析

大学生方程式赛车的空气动力学套件的建模与流场分析作者:马健王玮王凯鹏来源:《科技资讯》 2015年第7期马健王玮王凯鹏(南京农业大学工学院江苏省南京市 210031)摘要:汽车的空气动力学特性被越来越多的人所重视,对汽车的操控性与稳定性都产生影响。
本文利用Catia软件对设计的空气动力学套件进行三维模型的建立,并与赛车装配,利用有限元分析软件ANSYS进行流场分析,得出赛车的流场特性,为其改进设计提供依据。
空气动力学在赛车领域的应用是非常广泛的,我们将此应用于大学生方程式赛车上面,给赛车加装空气动力学套件,使其的操纵性能得以提升。
[关键词]:Catia;ANSYS;流场分析中图分类号: U461.1 文献标识码:A 文章编号:1672-3791(2015)03(a)-0000-001. 赛车空气动力学研究意义在赛车运动中运用负升力原理而改善赛车性能措施被证明是极其有效的,气动负升力在不增加赛车质量的情况下改善了轮胎与路面的附着情况,提高了赛车在平直赛道高速行驶时的动力性及紧急刹车时的制动性能,也改善了赛车的操纵稳定性能[1]。
本文中空气动力学套件由前翼、尾翼、底部扩散器组成,通过对加装空气动力学套件和不加装空气动力学套件的三维模型分别进行流场分析,得出赛车的流场特性。
2. 赛车空气动力学套件的三维建模中国大学生方程式赛车的比赛中,赛车由在校学生按照赛事规则和赛事标准,进行独立设计制造,赛事组委会因考虑赛事安全,在比赛中会在赛道上人为设置一些绕桩区,人为限制赛车在赛道中的最高车速,并且赛道以弯道为主,提升过弯速度与加速性能变得尤为重要。
考虑到这些原因,空气动力学套件设计的目标就是在较低速度下20m/s的情况下获得较大的下压力,并尽可能减少空气阻力。
在赛车的行驶过程中,由前翼、尾翼和底部扩散器产生下压力,其中前翼和尾翼产生下压力的来源是升力翼片,升力翼片的不同结构会影响不同的空气动力学性能,而底部扩散器的负升力来源是利用地面效应。
大学生方程式赛车设计与分析(完成)

上海工程技术大学毕业设计(毕业论文)任务书学院汽车工程学院专业机械设计制造及其自动化(汽车工程)(中美合作)班级学号062110316学生彭涛指导教师李传昌题目方程式赛车发动机进气系统设计与分析任务规定进行日期自2014 年2 月17 日起,至2014 年6 月20 日止目录摘要 (4)关键词 (4)Abstract (5)Key words (5)引言 (5)绪论 (6)1.1 课题研究背景和意义 (6)1.2 汽车发动机进气系统的简介 (7)1.2.1 进气系统定义 (7)1.2.2 基本构成 (7)1.3 汽车发动机进气系统发展趋势 (7)1.4 进气限流情况下提高进气效率技术的研究现状 (8)1.5 研究内容 (8)1.6 进气系统系统概述 (9)1.6.1 进气系统结构参数对充气效率的影响 (9)1.6.2 进气管长度对充气效率的影响 (9)1.6.3 FSAE规则对进气系统限制 (10)1.6.4 赛车进气系统主要构成 (11)2 进气系统方案设计 (11)2.1 进气系统设计流程 (11)2.2 确定进气系统材料与制造工艺 (13)2.3 节气门体类型选择 (14)3 设定进气系统各部件基本参数 (15)3.1 系统参数 (15)3.2 空气滤清器 (15)3.3 限流阀开口 (16)3.4 限流阀 (16)3.5 限流阀扩散器 (17)3.6 稳压腔 (17)3.7 进气道 (18)3.8设计要求 (18)3.8.1 进气方案 (18)3.8.2 进气管形式 (19)4 各部件基本参数设计 (21)4.1 节气门口径 (21)4.2 进气总管长度 (21)4.3 稳压腔体积 (22)4.4 进气歧管长度 (22)5 流场分析 (22)5.1 分析软件介绍 (22)5.2 模型网格划分与边界条件初定义 (23)5.2.1 进气总管分析 (23)5.2.2 稳压腔分析 (25)5.2.3 进气歧管长度分析验证 (29)6 进气系统装配 (29)7 结论与展望 (31)参考文献 (32)大学生方程式赛车进气系统设计与分析车辆工程专业彭涛指导教师李传昌摘要:本设计是针对我院2014年FSAE赛车发动机进气系统的优化设计与仿真研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学生方程式赛车的空气动力学套件的建模与流场分析
摘要:汽车的空气动力学特性被越来越多的人所重视,对汽车的操控性与稳定性都产生影响。
该文利用Catia 软件对设计的空气动力学套件进行三维模型的建立,并与赛车装配,利用有限元分析软件ANSYS进行流场分析,得出赛车的流场特性,为其改进设计提供依据。
空气动力学在赛车领域的应用是非常广泛的,我们将此应用于大学生方程式赛车上面,给赛车加装空气动力学套件,使其的操纵性能得以提升。
关键词:Catia ANSYS 流场分析
中图分类号:U461.1 文献标识码:A 文章编号:1672-3791(2015)03(a)-0025-01
1 赛车空气动力学研究意义
在赛车运动中运用负升力原理而改善赛车性能措施被证明是极其有效的,气动负升力在不增加赛车质量的情况下改善了轮胎与路面的附着情况,提高了赛车在平直赛道高速行驶时的动力性及紧急刹车时的制动性能,也改善了赛车的操纵稳定性能[1]。
该文中空气动力学套件由前翼、尾翼、底部扩散器组成,通过对加装空气动力学套件和不加装空气动力学套件的三维模型分别进行流场分析,得出赛车的流场特
性。
2 赛车空气动力学套件的三维建模
中国大学生方程式赛车的比赛中,赛车由在校学生按照赛事规则和赛事标准,进行独立设计制造,赛事组委会因考虑赛事安全,在比赛中会在赛道上人为设置一些绕桩区,人为限制赛车在赛道中的最高车速,并且赛道以弯道为主,提升过弯速度与加速性能变得尤为重要。
考虑到这些原因,空气动力学套件设计的目标就是在较低速度下20 m/s的情况下获得较大的下压力,并尽可能减少空气阻力。
在赛车的行驶过程中,由前翼、尾翼和底部扩散器产生下压力,其中前翼和尾翼产生下压力的来源是升力翼片,升力翼片的不同结构会影响不同的空气动力学性能,而底部扩散器的负升力来源是利用地面效应。
鉴于负升力翼片结构在航天发展中已经较为成熟,并且NACA翼型库(National Advisory Committee for Aeronautics,美国国家航空咨询委员会)中有较为全面的翼型结构,在建模中从NACA翼型库选取低速翼型,在Catia中建立多组三维模型,并且在Ansys 中进行流场分析,经过对比分析结果选取最终翼片规格。
在前翼设计中,由于前翼是气流首先到达的地方,它的结构影响着气流在赛车其他结构处的流动,并且要求前翼能使气流尽量绕开前轮,减少阻力。
结合以上因素,选取两片半的设计形式,使第三层襟翼对气流进行引导,避免对前轮
的直接冲击,同时保证有更多的气流流过赛车侧箱,提高对发动机的赛热。
在尾翼设计中,由于尾翼的作用只有一个,产生下压力,同时尽可能减少气动阻力,选用三片式的设计形式,并在翼片两端设计端板,防止外侧气流的干扰。
在底部扩散器的设计中,考虑流体速度大小与压强成反比的原理,将赛车底部空气气流在经过梳理后迅速导出,使赛车底部形成一个低压区,从而产生赛车下压力。
同时使赛车底部更为平滑,减少了空气阻力[2]。
在满足以上条件下,运用Catia软件进行三维模型的创建,并利用装配模块完成空气动力学套件与赛车模型的连接如图1所示。
3 基于Ansys的流场分析
3.1 三维模型导入与网格划分
在Catia中将建立的三维模型经过一定的简化处理,转换成IGS文件并将其导入到Ansys Fluent模块中。
在计算域的确定上,在最大限度保证赛车模型周围流场特性的前提下,缩小计算域的范围,以达到减小计算量,提高计算速度。
文中计算域的选取以高度为4倍车高,宽度为7倍车宽,左右间隙3倍车宽,长度为11倍车长,出口距汽车最后端6
倍车长[3]。
网格的划分对分析结果有着重要的影响,网格越细密,分析结果越精确,但耗费的时间和对电脑的配置要求越高,文中在网格划分时选用六面体网格,在模型不太复杂时,可
以保证优良的贴体性,和同等数量的四面体网格相比又可以减少计算时间。
在划分网格过程中在一些比较光顺处选用较大网格,对局部细节处进行网格的细化,在保证计算精度的情况下提高计算的速度。
最终划分网格数目为1 593 756个。
3.2 计算条件和边界条件的设置
确定计算条件时选用k-ε高雷诺数模型,在模型比较简单,网格质量不太高的情况下应用比较广泛[4]。
在边界条件设置上,选取车头前端面为速度入口,考虑到在实际比赛中由于赛道的限制,选取入口速度为20m/s;选取车尾后端面为出口边界相当于无穷远处压力取为0;设置赛车三维模型表面为固定无滑移面;设置地面边界为移动边界,速度为
20m/s。
选择迭代步数为1000步进行求解。
4 数值模拟结果
安装空气动力学套件模型经简化处理后,分析结果为在给定入口条件20m/s时,车身阻力为307.3N,升力为-341.9N,迎风面积1.459?O,阻力系数为0.881。
升力系数。
按照同样方法将空气动力学套件去除后,进行流场分析得出未安装空气动力学套件车身分析结果为在给定20m/s时,车身阻力117.9N,升力160.1N,迎风面积1.267?O,阻力系数为0.525。
5 结语
在空气动力学套件的设计中应在提供一定负升力的基
础上,尽可能的减少由于增加空气动力学套件带来的空气阻
力,进行多次的仿真分析,进而确定最终的方案。
(1)在Ansys中对建立的三维模型进行数值仿真分析,根据分析结果可以对模型的修改与优化提供一定的参考依据,以改善了赛车的空气动力学性能。
(2)分析后得知整车在相对空气速度为20m/s的情况下,不加装空气动力学套件时升力为160.1N,加装空气动力学套件后整车升力为-341.9N。
通过加装空气动力学套件车身会产生502N的负升力,很好的避免了车辆在高速下产生的抓地力不足的问题。
参考文献
[1] 宋涛,胡瑞.空气动力学在F1赛车上的运用[A].天津:天津大学内燃机研究所,2014.
[2] 曾飞云.万得FSC赛车空气动力学特性研究[D].沈阳:辽宁大学,2014.
[3] 吕立坤.扰流板对轿车气动特性改善的数值仿真[D].长春:吉林大学,2005.
[4] 孔斌.基于空气动力学的车身造型设计[D].武汉:武汉理工大学,2008.。