电磁干扰抑制技术

合集下载

电磁兼容性与干扰抑制技术研究

电磁兼容性与干扰抑制技术研究

电磁兼容性与干扰抑制技术研究随着现代电子设备的快速发展和普及,电磁兼容性(Electromagnetic Compatibility,简称EMC)和干扰抑制技术成为了电子工程领域中的一个重要研究方向。

在电子设备密集、高频、高速的工作条件下,电磁兼容性问题越发显著,影响到设备的可靠性和性能。

因此,研究电磁兼容性与干扰抑制技术对于确保电子设备的正常运行具有重要意义。

首先,对于电磁兼容性技术的研究来说,了解电磁辐射和敏感性是至关重要的。

电磁辐射是指电子设备在工作过程中产生的电磁波的传播,它可以通过空气、导线等媒介传递。

而电子设备的敏感性则表示了其容易受到来自外部电磁场中的干扰。

为了提高电磁兼容性,需要通过设计合理的电路和原理,改善设备的辐射特性,同时增加设备对干扰的抵抗能力。

其次,干扰抑制技术的研究涉及到对电磁干扰的分析和抑制。

电磁干扰是指电子设备之间或设备与外部环境之间发生的相互干扰现象。

这种干扰可能导致设备的失效、数据错误或性能下降。

因此,需要通过设计合适的滤波器、隔离器和屏蔽措施等,来抑制干扰的传播和影响。

在电磁兼容性和干扰抑制技术的研究中,有几个关键的方面需要考虑。

首先是电磁兼容性的测试与评估。

通过对设备进行电磁兼容性测试,可以评估设备的性能和耐受能力。

这些测试包括辐射发射、辐射抗扰度、传导发射和传导抗扰度等。

其次是电磁干扰的起源和传播机制的研究。

了解干扰的来源和传播途径,可以采取相应的措施降低电磁干扰的影响。

此外,研究电磁兼容性和干扰抑制技术还需要考虑设备的工作环境和使用条件,以便对相应的问题进行针对性的研究和解决。

在电磁兼容性和干扰抑制技术的研究中,还存在一些挑战和难点。

首先是频率范围的扩展。

随着电子设备工作频率的不断增加,对电磁兼容性的要求也越来越高。

因此,需要研究和开发适用于高频率范围的电磁兼容性和干扰抑制技术。

其次是设备的尺寸和集成度。

现代电子设备趋向于小型化和集成化,但这也增加了电磁兼容性和干扰抑制的挑战。

电磁干扰的抑制方法

电磁干扰的抑制方法

电磁干扰的抑制方法电磁干扰是指无线电频率或电磁场与其他电子设备或传输系统之间发生的干扰现象。

这种干扰可能会导致通信中断、误码率增加,甚至损坏电子设备。

因此,为了保证电子设备和通信系统的正常运行,需要采取措施来抑制电磁干扰。

抑制电磁干扰的方法主要包括以下几个方面:1. 信号过滤和屏蔽信号过滤是通过滤波器将不需要的频率成分从信号中剔除,以减少干扰。

常见的滤波器包括低通滤波器、高通滤波器和带通滤波器。

屏蔽措施主要包括使用金属屏蔽盒、抗干扰屏蔽材料等,将电磁波的辐射范围限制在一个小范围内,减少对周围设备的干扰。

2. 地线与接地地线的正确使用可以有效地抑制电磁干扰。

将设备的金属外壳与地线连接可以使电磁波通过地线排到大地中,减少对周围设备的干扰。

同时,正确接地可以减少设备自身产生的干扰,并提高系统的抗干扰能力。

3. 选择合适的工作频率对于无线通信系统来说,选择合适的工作频率可以有效地避免与其他设备产生冲突,减少干扰。

此外,合理规划频谱资源,避免频率重叠也是减少互相干扰的重要手段。

4. 电磁屏蔽技术电磁屏蔽技术是指通过使用电磁屏蔽材料或结构来减少电磁干扰的传导和辐射。

常见的电磁屏蔽材料包括铁氧体、磁性材料、导电材料等。

通过在设备周围建立电磁屏蔽结构,可以将电磁干扰源与受干扰设备隔离,从而减少干扰。

5. 路由规划与隔离对于有线通信系统来说,良好的路由规划和隔离设计可以减少电磁干扰的传播。

通过合理规划线缆的布置,避免线缆之间的交叉和平行,减少互相的电磁干扰。

此外,还可以采用互锁技术,将干扰源和受干扰设备分开进行布置,减少干扰的传播。

6. 信号调制技术对于无线通信系统来说,采用合适的信号调制技术可以提高系统对干扰的抗性。

常见的调制技术包括频率调制、相位调制、频分复用、码分复用等。

通过调制技术的应用,可以使信号在传输过程中发生一定程度的扩散,减少对干扰信号的敏感度,提高系统的抗干扰能力。

7. 合理的系统设计在电子设备的设计过程中,需要充分考虑抗干扰的要求。

电磁干扰抑制技术试卷

电磁干扰抑制技术试卷
4. ×
5. ×
6. ×
7. √
8. ×
9. ×
10. ×
第四部分主观题(参考)
1.电磁干扰主要由电子设备中的高频信号产生,可能造成信号失真、设备故障、数据传输错误等问题。
2.电磁干扰抑制技术在现代通信系统中至关重要,如移动通信基站使用屏蔽和滤波技术,保证信号清晰,避免干扰民航导航系统。
1.电磁干扰只会影响电子设备的正常工作,不会对设备造成物理损害。()
2.电磁兼容性设计是在产品开发完成后进行的,不需要在初期设计阶段考虑。()
3.电磁干扰可以通过合理的接地措施来有效抑制。()
4.在所有情况下,增加信号发射功率都可以提高通信的抗干扰能力。()
5.金属网只能阻挡电磁波的传播,不能吸收电磁波。()
12.电磁干扰抑制技术中,接地的主要目的是什么?()
A.提高信号传输效率
B.消除信号中的噪声
C.防止设备过载
D.防止电磁泄漏
13.以下哪个因素会影响电磁干扰的传播?()
A.气温
B.湿度
C.信号频率
D.设备体积
14.电磁干扰抑制技术中,差分信号传输方式的主要优点是?()
A.提高信号传输速度
B.减小信号噪声
第四部分主观题(本题共2小题,每题10分,共20分)
1.请简述电磁干扰产生的原因及其对电子设备可能造成的影响。(10分)
2.请结合实际案例分析,说明电磁干扰抑制技术在现代通信系统中的应用和重要性。(10分)
标准答案
第一部分单选题
1. B
2. C
3. C
4. C
5. A
6. B
7. A
8. C
9. A
14.以下哪些措施以减少共模干扰的影响?()

电磁兼容解决方案

电磁兼容解决方案

电磁兼容解决方案电磁兼容(Electromagnetic Compatibility,简称EMC)是指各种电子设备在相互连接和共存的情况下,能够在无干扰和无辐射的条件下正常工作的能力。

在现代社会中,电子设备的广泛应用使得电磁兼容问题日益突出。

为了解决这一问题,人们提出了各种电磁兼容解决方案。

本文将从五个方面详细介绍这些解决方案。

一、电磁屏蔽技术1.1 金属屏蔽:利用金属材料对电磁波进行屏蔽,如使用金属外壳、金属屏蔽罩等。

1.2 电磁屏蔽涂料:在电子设备表面涂覆电磁屏蔽涂料,以提高设备的屏蔽性能。

1.3 电磁隔离设计:通过合理的电路布局和屏蔽结构设计,减少电磁辐射和电磁感应。

二、电磁干扰抑制技术2.1 滤波器设计:在电子设备的电源线路、信号线路等关键位置添加滤波器,以阻止电磁干扰信号的传播。

2.2 接地设计:合理的接地设计能够有效地抑制电磁干扰,如采用单点接地、分层接地等方法。

2.3 电磁屏蔽设计:在电子设备内部采用屏蔽隔离措施,减少电磁干扰的传播。

三、电磁辐射控制技术3.1 电磁辐射测试:通过对电子设备进行电磁辐射测试,了解辐射源和辐射路径,从而采取相应的控制措施。

3.2 电磁辐射限制:根据不同的电子设备,制定相应的辐射限制标准,确保设备的辐射水平在合理范围内。

3.3 电磁辐射抑制:采用电磁屏蔽、滤波器等措施,减少电磁辐射的产生和传播。

四、电磁感应抑制技术4.1 电磁感应测试:通过对电子设备进行电磁感应测试,了解感应源和感应路径,从而采取相应的控制措施。

4.2 电磁感应限制:根据不同的电子设备,制定相应的感应限制标准,确保设备的感应水平在合理范围内。

4.3 电磁感应抑制:采用电磁屏蔽、隔离设计等措施,减少电磁感应的产生和传播。

五、电磁兼容测试技术5.1 电磁兼容测试方法:制定合理的测试方法,对电子设备进行电磁兼容测试,评估设备的兼容性能。

5.2 电磁兼容测试标准:根据不同的应用领域和设备类型,制定相应的兼容性测试标准,确保设备的兼容性能达到要求。

强电磁干扰抑制技术在铁路信号中的应用

强电磁干扰抑制技术在铁路信号中的应用

强电磁干扰抑制技术在铁路信号中的应用强电磁干扰抑制技术是指通过采取一系列措施来降低电磁干扰对铁路信号系统正常运行的影响。

在铁路信号系统中,电磁干扰可能来自于列车本身、通信系统、电力系统或周围环境等因素,如果不加以抑制措施,就会对信号系统的传输质量和运行安全产生严重影响。

强电磁干扰抑制技术主要分为三个方面:1. 电磁隔离技术:通过合理设计信号系统的布局和隔离装置,减少电磁干扰的传播路径,避免干扰源对信号设备的直接影响。

还可以采取金属屏蔽、建筑物遮挡等措施,进一步隔离电磁波的传播路径。

2. 电磁屏蔽技术:对信号系统设备进行合理的金属屏蔽,阻挡电磁干扰的入侵。

屏蔽可以采用金属罩或金属壳体等形式,在设计和制造过程中要充分考虑信号系统设备的电磁兼容性,避免金属屏蔽对信号传输的影响。

3. 电磁补偿技术:通过引入电磁补偿装置,对信号系统设备进行电磁干扰的主动抑制或补偿。

补偿技术主要包括电磁干扰预测与分析、电磁干扰源定位和信号设备干扰调整等环节。

对铁路信号系统来说,强电磁干扰的抑制尤为重要,它关系到列车运行的安全和信号传输的可靠性。

具体应用包括以下几个方面:1. 信号设备的布局和隔离:合理设计信号设备的布局和隔离装置,降低电磁干扰的传播路径。

在信号机箱和线路接口处安装隔离变压器,以隔离信号设备与电力系统之间的电磁干扰。

4. 电磁干扰监测与预警系统:建立电磁干扰监测与预警系统,实时监测信号系统的电磁干扰情况,及时处理干扰事件,保障信号设备的正常运行。

5. 信号设备的兼容性设计:在信号设备的设计和制造过程中,充分考虑电磁兼容性,减少信号设备对电磁干扰的敏感性,提高信号传输的可靠性。

强电磁干扰抑制技术在铁路信号中的应用是非常重要的,它可以提高信号系统的可靠性和运行安全。

随着铁路信号系统的发展和技术的进步,我们应不断探索和应用新的抑制技术,为铁路运输提供更加安全和高效的保障。

消除电磁干扰的三种方法

消除电磁干扰的三种方法

消除电磁干扰的三种方法
一、引入“降噪屏蔽电缆”
首先要明确的是,降噪屏蔽电缆是最有效的防止电磁干扰的方法,主要是利用外层的
金属屏蔽层来屏蔽敏感电气设备内部收发的电磁波。

它的屏蔽功能有两种,一是用金属箔、胶带或绝缘材料将设备与外界电磁环境隔绝开来;二是外部信号直接接入金属箔,使其不
能向设备内部渗透,对外部干扰具有极强的抑制作用。

二、利用信号分离技术
其次,电磁干扰也可以通过利用信号分离技术实现消除,主要原理是在受损的频带电
磁环境中,以及在潮湿的绝缘环境中,形成一种能抑制受损信号的电磁屏障,以保持信号
的稳定性。

信号分离技术可以合理布置电磁屏障,既可以获得较高的信号增益,又可以有
效抑制室内电磁干扰。

三、采用硬件或软件方法
硬件方面,可以采用射频滤波器,噪声材料等技术来减少电磁干扰。

其中,射频滤波
器可以有效降低无线射频电磁波的强度,从而减少噪声对设备的影响。

噪声材料可以用于
屏蔽噪声信号,其中噪声板和复合噪声材料是最常用的一种材料,用于有效滤除收发站内
部的电子系统和有线系统的高频电波。

软件方面,可以采用数字滤波器、模拟滤波器、低通滤波器等技术,相比硬件方法,
软件方法更加灵活、简单、节约成本,可以有效的抑制电磁干扰的影响。

而且软件还有一
个优点,即可以通过计算机程序检测出探测站和室内环境中有害电磁信号的出现,从而实
现自动抑制和维护设备的功能。

电磁干扰抑制技术的研究与应用

电磁干扰抑制技术的研究与应用

电磁干扰抑制技术的研究与应用随着现代科学技术的不断发展,电子设备的使用也越来越普及,各种电子产品贯穿着我们的日常生活。

然而,在电子设备使用的同时,我们也必须面对电磁干扰带来的问题,电磁干扰对电子设备的正常运行产生了严重影响。

因此,研究电磁干扰抑制技术具有重要意义。

电磁干扰抑制技术的定义电磁干扰抑制技术是指在电磁环境中通过各种技术手段减轻电磁干扰的研究与应用。

电磁干扰抑制技术的研究不仅涉及到电磁环境的分析和评估,还包括设计和开发电磁兼容性良好的电子设备、优化电路板和系统布局等一系列问题。

电磁干扰抑制技术的研究及应用电磁干扰抑制技术主要是为了解决电子设备在电磁环境中遇到的干扰问题,能够有效减少干扰电压、提高系统抗干扰能力,从而保障电子设备在电磁环境中的正常工作。

电磁干扰抑制技术的研究涉及到耦合路线和电源线抑制、屏蔽技术、排除技术、转导技术、抗干扰电路设计等多个领域。

其中,耦合路线和电源线抑制技术是电磁干扰抑制技术中非常重要的一种。

耦合路线和电源线抑制技术能够通过控制信号和电源的传输特性,达到减少信号耦合及电源噪声的目的。

屏蔽技术则是通过屏蔽材料对电磁波进行隔离,将设备内部信号隔离开来,从而达到减少电磁干扰的目的。

排除技术是通过排除外部的电磁波,即远离外部电磁源,来减少电磁干扰。

转导技术则是将干扰信号引入一个合适的接收电路中吸收,从而避免了干扰信号进入被保护系统的问题。

抗干扰电路设计则是针对特定的干扰源,设计出能够有效抑制干扰的电路。

总的来说,电磁干扰抑制技术涉及到多个领域,各种技术手段都纷纷应用于抗电磁干扰领域。

电磁干扰抑制技术的发展,保障了电子设备在电磁环境中的正常使用,对于现代社会来说,是非常重要的。

电磁干扰抑制技术在实际应用中的挑战尽管电磁干扰抑制技术得到了广泛的应用,但是在实际应用过程中,这种技术还面临着许多挑战。

首先,电磁干扰是一种复杂的物理现象,因此电磁干扰抑制技术需要广泛而深入的研究。

抑制电磁干扰的六种常用方法

抑制电磁干扰的六种常用方法

《抑制电磁干扰的六种常用方法》
电磁干扰是一种对计算机系统及其他电子设备造成的不可控的电磁脉冲,可以影响系统的性能,甚至导致系统故障。

因此,抑制电磁干扰是确保系统安全运行的重要措施。

下面介绍一下抑制电磁干扰的六种常用方法。

一、采用屏蔽技术。

屏蔽技术是将电磁干扰源和敏感设备之间的电磁波隔离开来,从而抑制电磁干扰的传播。

屏蔽技术可以用金属箔或金属铠装箔来实现,也可以采用特殊的电磁屏蔽材料,如铁钢箔和铝箔。

二、采用电磁屏蔽材料。

电磁屏蔽材料可以有效地吸收可能传播到被保护设备的电磁波,从而抑制电磁干扰的传播。

常用的电磁屏蔽材料包括铁钢箔、铜箔、铝箔和特殊电磁屏蔽材料等。

三、采用绝缘材料。

绝缘材料可以有效地阻止电磁波的传播,从而有效地抑制电磁干扰。

常用的绝缘材料包括橡胶、塑料、纸等,这些材料可以用于屏蔽线缆、电缆、连接器和电子元件等。

四、采用磁护屏。

磁护屏可以有效地抑制电磁脉冲,防止其影响被保护设备的性能。

磁护屏是一种带有磁吸铁片的箔,可以有效地吸收外界的电磁波,从而起到抑制电磁干扰的作用。

五、采用多层护屏。

多层护屏可以有效地增加电磁波吸收的隔离效果,从而抑制电磁干扰的传播。

多层护屏通常由金属箔、铝箔和电磁屏蔽材料组成,以确保电磁波的隔离效果。

六、采用电磁屏蔽结构。

电磁屏蔽结构是一种用于抑制电磁干扰的特殊结构,其特点是结构内部由金属箔、铝箔和电磁屏蔽材料组成,可以有效地抑制电磁波的传播。

以上就是抑制电磁干扰的六种常用方法,这些方法可以有效地抑制电磁干扰的传播,从而确保系统的安全运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁干扰抑制技术
[摘要]介绍了电磁干扰(EMI)的基本概念,围绕电磁干扰三要素,介绍了各种不同的电磁干扰抑制技术以及电磁兼容设计思路,强调了电子产品在设计初即进行EMC研究的重要性。

[关键词] 电磁干扰(EMI) 电磁兼容性(EMC) 抑制技术
一、电磁干扰(ElectromagneticInterference, EMI)基本概念
电磁干扰是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。

[1]一个系统或系统内某一线路受电磁干扰程度可以表示为如下关系式:
N=G×C/I,
G:噪声源强度;
C:噪声通过某种途径传到受干扰处的耦合因素;
I:受干扰电路的敏感程度。

G、C、I这三者构成电磁干扰三要素。

电磁干扰抑制技术就是围绕这三要素所采取的各种措施,归纳起来就是三条:一是抑制电磁干扰源;二是切断电磁干扰耦合途径;三是降低电磁敏感装置的敏感性。

二、电磁干扰抑制技术概述
1.抗EMI系统设计技术。

抗EMI系统设计技术是提高电子整机电磁兼容性(EMC)性能的关键所在。

因此该技术又称为EMC设计技术。

EMC设计的目的是使电子、电气产品在一定的电磁环境中能正常工作,既满足标准规定的抗干扰极限值要求,在受到一定的电磁干扰时,无性能降级或故障;又满足标准规定的电磁
辐射极限值要求,对电磁环境不构成污染源。

因此,EMC是产品的重要性能之一,也是实现产品效能的重要保证。

EMC设计要从分析产品预期的电磁环境、干扰源、耦合途径和敏感部件入手,采用相应的技术措施,抑制干扰源、切断或削弱耦合途径,增强敏感部件的抗干扰能力等。

并进行计算机仿真和测试验证。

EMC设计技术包括系统设计、结构设计、材料和元器件的选取以及抗EMI元器件的使用等。

其中有源器件的选用十分关键。

EMC设计技术在产品设计的初级阶段就应十分重视,尽可能把80%~90%以上的问题解决在初级阶段。

一旦产品批量生产了,发现EMC问题再去解决,就会事倍功半。

2.EMI抑制材料技术。

(1)屏蔽材料。

屏蔽就是利用材料的反射和/或吸收作用,以减少EMI辐射。

屏蔽材料的有效填置可减少或清除不必要的缝隙,抑制电磁耦合辐射,降低电磁泄漏和干扰。

具有较高导电、导磁性能的材料可作为电磁屏蔽材料,一般要求屏蔽性能达40~60dB。

目前常用的屏蔽材料有金属材料和高分子材料两大类。

金属材料按用途又可分为衬垫屏蔽材料和透气性屏蔽材料两种。

任何实用的机箱都会有缝隙,由于缝隙的导电不连续性,在该处即产生电磁泄漏。

解决的办法是在非永久性搭接处加电磁密封衬垫。

如金属丝网衬垫、导电橡胶衬垫、铍铜指形簧片、螺旋管衬垫及橡胶芯衬垫+金属丝网等。

任何机箱为了散热透气往往开有小孔,因此引发电磁泄漏,用金属丝网难以达到完全屏蔽效果,需采用波导窗、多层截止波导通风板和泡沫金属等以改善屏蔽效果。

由铜或镍及连通的空洞组成、空心金属骨架互连的三维网状结构金属泡沫作屏蔽材料,在10~100MHz范围内,屏蔽性能达90dB,且重量轻、体积小,是很有前途的屏蔽材料。

高分子材料主要包括导电塑料、导电涂料和表面导电材料,此外还有导电玻璃和导电膜片;与金属材料相比,它们具有重量轻、易成型、电阻率可调等特点。

导电塑料是将导电物质如碳黑、金属粉或金属纤维掺杂于树脂中制成,屏蔽性能可达30~80dB;导电涂料通常由Ag、Ni、Cu或C导电物质作填料,与合成树脂、溶剂和添加剂一起,涂覆于塑料表面形成固化膜,产生导电屏蔽效果,性能为20~60dB不等;表面导电屏蔽材料一般采用金属熔射、塑料电镀、真空蒸发、贴金属箔等手段,使绝缘材料表面形成导电层,镀层最薄为2~5μm,屏蔽性能可达45~120dB,甚至更高。

(2)吸波材料
吸波材料的主要功能是将干扰源所产生的电磁辐射能量转化为其它能量(主要是热能)而耗散掉。

根据损耗机理不同,可分为电阻型、电介质型和磁介质型三大类[2]。

电阻型吸波材料主要有碳精粉、石墨和SiC等,吸波能力主要取决于材料电阻率,由于这种材料吸收层厚度t与电磁波长λ成正比,通常t=0.6λ,故适合于高频段,若在100MHz 时应用,材料厚度需达1.8m。

电介质型吸波材料有BaTiO2、铁电陶瓷等高介电材料,能量衰减主要来自介电损耗,而介电损耗与频率依赖关系较强,故吸收频带窄,且成本高,应用受到一定限制。

磁介质型吸波材料主要为铁氧体,利用铁氧体独特的复数磁导率产生的磁损耗机理,吸收电磁波,成本低廉,所以目前应用最为广泛。

3.EMI抑制元器件技术。

(1)有源器件的开发与应用。

开发和应用有源器件,要重点关注其电磁干扰发射和电磁敏感度这两项技术指标。

有源模拟器件的敏感度取决于灵敏度和带宽,而灵敏度以器件的固有噪声为基础;逻辑器件的灵敏度取决于直流噪声容限和噪声抗扰度。

有源器件有两种电磁发射源:传导干扰和辐射干扰。


导干扰通过电源线、接地线和互连线进行传输,并随频率增高而增大;辐射干扰通过器件本身或连线向外发射,并随频率的平方而增大。

瞬态地电流是上述两种干扰的初始源,良好接地和各种去耦方式是减小地电流的主要手段。

逻辑器件的翻转速度快,所占频谱越宽,因此,在保证功能的前提下,不可过分追求响应速度。

数字电路的干扰频谱很宽,是电子和电气设备中的重要干扰源,其电磁辐射可分为共模和差模两种形式。

工作频率越高,辐射能量就越大;信号电平越高,辐射干扰就越强。

为了控制差模辐射,必须将印制电路板上信号线、电源线和它们的回线紧靠在一起,以减少回路面积;为了控制共模辐射,可使用栅网地线或平面接地等良好接地方式,也可采用共模扼流圈。

(2)抗器件EMI的开发与应用。

具有良好屏蔽和接地措施的电子、电气产品,也仍然会有电磁干扰,此时应当合理选用抗EMI元器件。

抗EMI器件的种类很多,滤波是压缩干扰频谱的基本手段,抗EMI滤波器是EMC技术的基础元器件之一,功能独特、门类繁多,在此仅举几例。

①信号线滤波器。

这是一类用于信号线的低通滤波器,用来滤除高频干扰成分。

主要有线路板滤波器、屏蔽壳体馈通滤波器和连接器滤波器、滤波器阵列板等,通常由EMI磁芯和电容器组成π型或L 型滤波网络。

②EMI抑制器。

抗EMI铁氧体的重要参数为磁导率μ和饱和磁通密度Bs。

μ可表示为复数,实数部分表征电感,虚数部分构成磁损耗。

其等效电路由电感L和电阻R组成,L、R均为频率的函数。

低频时R很小,L起主要作用,电磁干扰被反射而受到抑制;高频时R增大,电磁干扰被吸收并转换成热能。

这类EMI抑制器实际上也是一种低通滤波器,目前已被广泛用于印制
板、电源线和信号线上,不但抑制高频干扰和尖峰干扰,也具有吸收静电放电脉冲的能力。

③电源线滤波器。

电源线是电磁干扰出入电子、电气设备的主要通道,电源线滤波器只允许电源频率通过,高于电源频率的干扰信号将受到衰减和抑制。

由于火线、零线回路中的干扰为差模干扰,而火线、零线与地线回路中的干扰为共模干扰,电源线滤波器对这两种干扰信号的滤波器效果是不同的,所以往往需要区别对待。

参考文献:
[1]吴良斌.电磁兼容性设计[M].北京:国防工业出版社,2004,7.
[2]阳开新.磁性材料及器件[J].1996,27(3):19.
感谢您的阅读!。

相关文档
最新文档