2018年中考数学复习《轴对称》专项练习含答案
2018年中考数学真题汇编 轴对称变换(含答案)

中考数学真题汇编:轴对称变换一、选择题1.下列图形中是中心对称图形的是()A. B. C.D.【答案】D2.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D3.下列图形中,既是轴对称又是中心对称图形的是()A. B. C.D.【答案】B4.如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B. C.D.【答案】D5.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条【答案】C6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A. 112°B. 110°C. 108°D. 106°【答案】D7.如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为()A. B. C.D.【答案】D8.如图,∠AOB=60°,点P是∠AOB内的定点且OP= ,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C.6 D. 3【答案】D9.如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C.D.【答案】D10.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C.D.【答案】A二、填空题11.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.【答案】(,)12.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.【答案】13.如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为________.【答案】14.在平面直角坐标系中,点的坐标是.作点关于轴的对称点,得到点,再将点向下平移个单位,得到点,则点的坐标是(________),(________).【答案】;15.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。
【精品】2018版中考数学:6.2-轴对称、平移、旋转(含答案)

§6.2轴对称、平移、旋转A组2018年全国中考题组一、选择题1.(2018·浙江嘉兴,2,4分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()解析第一个和第三个属于中心对称图形,第二个和第四个属于轴对称图形.答案B2.(2018·浙江温州,4,4分)下列选项中的图形,不属于中心对称图形的是() A.等边三角形B.正方形C.正六边形D.圆解析等边三角形是轴对称图形,正方形、正六边形、圆既是轴对称图形又是中心对称图形.答案A3.(2018·福建福州,7,3分)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点解析当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件.答案B4.(2018·河北,3,3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()解析严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.答案C5.(2018·山东泰安,15,3分)如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至△O ′A ′B ′的位置,此时点A ′的横坐标为3,则点B ′的坐标为()A .(4,23)B .(3,33)C .(4,33)D .(3,23)解析作AM ⊥x 轴于点M .根据等边三角形的性质得出OA =OB =2,∠AOB =60°,在直角△OAM 中利用含30°角的直角三角形的性质求出OM =12OA =1,AM =3OM =3,则A (1,3),直线OA 的解析式为y =3x ,将x =3代入,求出y =33,那么A ′(3,33),由一对对应点A 与A ′的坐标求出平移规律,再根据此平移规律即可求出点B ′的坐标.答案A6.(2018·湖南邵阳,10,3分)如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是()A .2015πB .3019.5πC .3018πD .3024π解析转动一次A 的路线长是:90π×4180=2π,。
中考数学专项复习《轴对称变换》练习题及答案

中考数学专项复习《轴对称变换》练习题及答案一、单选题1.如图,在正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB,AC于点E,G.连接GF.下列结论:①∠AGD=112.5°;②tan∠AED=2;③S∠AGD=S∠OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确结论的序号是()A.①②③④⑤B.①②③④C.①③④⑤D.①④⑤2.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.63.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF.若AF=5,BE=3,则EF的长为()A.2√3B.√17C.2√5D.3√54.如图,∠ABC中,∠ACB=90°,沿CD折叠∠CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°5.如图,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若P1P2=6,则∠PMN的周长为()A.4B.5C.6D.76.已知点M(x,y)在第二象限内,且|x|=2,|y|=3,则点M关于原点对称点的坐标是()A.(-2,-3)B.(-2,3)C.(3,-2)D.(2,-3)7.如图,在正方形方格中,阴影部分是涂黑7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.4 种B.3 种C.2 种D.1 种8.已知点A(3,﹣2)和点B关于y轴对称,则点B的坐标是()A.(3,2)B.(﹣3,﹣2)C.(﹣2,﹣3)D.(﹣3,2)9.三角形有3个角,用剪刀剪去一个角,剩下的图形一定不会只有()个角.A.3B.2C.4D.510.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.11.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条12.已知点M(3,a)和N(b,4)关于x轴对称,则(a+b)2015的值为()A.1B.−1C.72015D.−72015二、填空题13.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S∠PAB= 13S矩形ABCD,则点P 到A、B两点的距离之和PA+PB的最小值为.14.如图,在Rt∠ABC中,AB=9,BC=6,∠B=90°,折叠后,点A与BC的中点D恰好重合,折痕为MN,则线段BN的长为.15.一个角的对称轴是它的.16.如图是长为20cm,宽为8cm的矩形纸片,M点为长BC边上的中点,沿过M的直线翻折.若顶点B落在对边AD上,那么折痕长度为cm.17.如图,将矩形ABCD沿对角线AC折叠,使点B翻折到点E处,如果DE∠AC=1∠3,那么AD∠AB=18.如图,在∠ABC 中,∠C=90°,∠A=34°,D ,E 分别为 AB ,AC 上一点,将∠BCD ,∠ADE 沿CD ,DE 翻折,点 A ,B 恰好重合于点 P 处,则∠ACP= .三、综合题19.如图,在矩形ABCD 中,点E 为边CD 上的一点(且ED≤CE ,且E 点不与C 、D 重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,连接BE ,若AD=1.(1)证明:AP=PE ; (2)若DE=34,求PE 的值;(3)延长BE 交直线AN 于点G ,当∠AEB=90°时,记DE=x ,四边形APEG 的面积为S ,求S 与x 的函数关系式.20.如图,在长度为1个单位长度的小正方形组成的正方形中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.21.如图,在矩形ABCD中,E是AD的中点,将∠ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=√3AB,试探索线段DF与FC的数量关系.22.如图,已知△ABC的三个顶点的坐标分别为A(−2,4),B(−4,0),C(1,3).(1)①画出△ABC关于x轴对称的图形△A1B1C1,并写出点A的对称点A1的坐标;②若直线l上的点横坐标都是1,画出△ABC关于l对称的图形△A2B2C2,并直接写出△A2B2C2三个顶点的坐标;(2)若点D(a,b)是坐标平面内的一点,则点D关于直线l对称的点的坐标为(用含a、b的式子表示).23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=k x(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.24.如图.把边长为2 cm的正方形剪成四个完全重合的直角三角形,请用这四个直角三角形拼成符合下列要求的一个图形.(1)是轴对称图形,但不是中心对称图形的四边形;(2)是中心对称图形,但不是轴对称图形的四边形;(3)既是轴对称图形,又是中心对称图形的四边形;(4)既不是轴对称图形,又不是中心对称图形的四边形.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B10.【答案】C11.【答案】C12.【答案】B13.【答案】4 √214.【答案】415.【答案】角平分线所在的直线16.【答案】5 √5或4 √517.【答案】√2∠118.【答案】22°19.【答案】(1)证明:∵四边形ABCE关于直线AE的对称图形为四边形ANME ∴四边形ABCE四边形ANME∠四边形ANME∴∠AEC=∠AEM∵∠PEC=∠DEM∴∠AEC-∠PEC =∠AEM-∠DEM∴∠AEP=∠AED∵四边形ABCD是矩形∴AB∥CD∴∠AED=∠PAE∴∠AEP=∠PAE∴AP=PE(2)解:如图1,过E作EF∠AB于F,则∠AFE=∠EFP=90°∵四边形ABCD 是矩形 ∴∠D=∠FAD=90° ∴四边形AFED 是矩形 ∴EF=AD=1,AF=DE=34设AP=PE=x ,PF=x -34在Rt∠PFE 中,由勾股定理得PE 2=PF 2+EF 2∴x 2=(x −34)2+12解得x =2524∴PE=2524(3)解:∵四边形ABCE 关于直线AE 的对称图形为四边形ANME ∴四边形ABCE 四边形ANME∠四边形ANME ∴∠BAE=∠NAE ,MN=BC=AD=1 ∵延长BE 交直线AN 于点G ,∠AEB=90° ∴∠AEG=∠AEB=90° 在∠AEB 和∠AEG 中{∠BAE =∠NAE AE =AE ∠AEG =∠AEB∴∠AEB∠∠AEG (ASA ) ∴AB=AG ∵AB=AN ∴AG=AN∴点G 与点N 重合,如图2∵∠CEB+∠AED=180°-∠AEB=90° ∠AED+∠DAE=90° ∴∠CEB=∠DAE ∵∠C=∠D=90° ∴∠CEB∠∠DAE ∴CE AD =BC DE ∴CE 1=1x∴CE =1x∴AB=CD=CE+DE =1x +x =x 2+1x∵AP=PE ∴∠PAE=∠PEA∵∠PAE+∠ABE =∠PEA+∠BEP=90° ∴∠ABE =∠BEP ∴BP=AP=PE∴PE=AP=12AB=x 2+12x∵PE ∥AN∴四边形APEG 是梯形∴四边形APEG 的面积S=12×(PE+AN )×MN=12×(x 2+12x +x 2+1x)×1 =3x 2+34x∴S=3x 2+34x20.【答案】(1)解:如图所示:∠AB′C′即为所求;(2)4(3)21.【答案】(1)正方(2)解:①如图2,连接EF在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°∵E是AD的中点∴AE=DE∵∠ABE沿BE折叠后得到∠GBE∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°在Rt∠EGF和Rt∠EDF中∵EG=ED,EF=EF∴Rt∠EGF∠Rt∠EDF∴ DF=FG∴ BF=BG+GF=AB+DF;②不妨假设AB=DC=a,DF=b∴AD=BC=√3a由①得:BF=AB+DF∴BF=a+b,CF=a−b在Rt∠BCF中,由勾股定理得:BF2=BC2+CF2∴(a+b)2=(√3a)2+(a−b)2∴4ab =3a 2∵a ≠0∴a =43b ,即:CD=43DF ∵CF=43DF-DF ∴3CF=DF.22.【答案】(1)如图所示, △A 1B 1C 1 即为所求, A 1 的坐标为 (−2,−4) ; (2)如图所示, △A 2B 2C 2 即为所求, 其中 A 2 的坐标为 (4,4) , B 2 的坐标为 (6,0) , C 2 的坐标为(1,3) ;(2)(2−a ,b)23.【答案】(1)解:把(﹣2,a )代入y=﹣2x 中,得a=﹣2×(﹣2)=4∴a=4;(2)解:∵P 点的坐标是(﹣2,4)∴点P 关于y 轴的对称点P′的坐标是(2,4)(3)解:把P′(2,4)代入函数式y= k x,得 4= k 2∴k=8∴反比例函数的解析式是y= 8x24.【答案】(1)解:根据轴对称的概念:把其中的一个图形沿着某条直线折叠,能够与另一个图形重合.则可以把这四个三角形拼成一个等腰梯形,如图所示(2)解:根据中心对称的概念:把一个图形绕着某个点旋转180°能够和另一个图形重合.则可以把这四个三角形拼成一个平行四边形,如图所示;(3)解:根据轴对称和中心对称的概念,则可以把这四个三角形拼成一个菱形或矩形,如图所示(4)解:可以把这四个三角形拼成一个不规则的四边形,如图所示。
2018版中考数学:6.2-轴对称、平移、旋转(含答案)

§6.2轴对称、平移、旋转一、选择题1.(原创题)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是()解析由轴对称图形的定义可知选项C中图形是轴对称图形,故选C.答案C2.(原创题)如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长解析相邻电路的电线等距排列说明三条电线中水平部分是相等的,若将三条电线的铅直部分的下段都向右,使铅直部分在同一条直线上,可知这三条电线是相等的,故电线的总长相等,选D.答案D3.(改编题△)如图,在ABC中,AB=4,BC=6,∠B=60°,将△A BC沿射线BC的方向平移,得到△A′B′C△′,再将A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别A.4,30°()B.2,60°C.1,30°D.3,60°解析由平移的性质可得A′B′=AB=4,A′B′∥AB,∠A′B′C=∠B=60°.由旋转的性质可得A′C=A′B△′,∴A′B′C是等边三角形,∴B′C=A′B′=4.∴BB′=BC-B′C=2,即平移的距离为△2.∵A′B′C是等边三角形,∴∠B′A′C=60°,即旋转角的度数为60°.故选B.答案B4.(改编题△)如图,在ABC中,∠ACB=90°,∠A=△20°,若将ABC沿CD折叠,使B点落在AC边上的E处,则∠ADE的度数是()A.30°B.40°C.50°D.55°解析由折叠可知∠CED=∠B=90°-∠A=90°-20°=70°.又∵∠CED△是AED的外角,∴∠ADE=∠CED-∠A=70°-20°=50°,选C.答案C5.(原创题)在方格纸中,选择某一个白色小正方形涂黑,与图中阴影部分构成轴对称图形,则不同的涂法有()A.1种C.3种B.2种D.4种解析如图,可以有下面3种不同的涂法,分别涂黑①②③的位置.故选C.答案C6.(改编题)如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,AD=10,则CE等于()A.1B.1.58C.3D.2解析在矩形ABCD中,∠B=90°,AD=BC,AD=10,由勾股定理可得BF=8,∴CF=2.由折叠可知∠AFE=90°,∴∠EFC=AB BF FC·BF2×88∠BAF△.∴ABF∽△FCE,FC=CE.∴CE=AB=6=3.故选C.答案C二、填空题7.(原创题)使平行四边形ABCD是轴对称图形,只需添加一个条件,这个条件可以是________(只要填写一种情况).解析若平行四边形ABCD是矩形、菱形、正方形,就是轴对称图形,故可添加:∠A=90°(或其它角为直角)或AC=BD,使成为矩形;也可添加:AB =BC(或其它邻边相等),AC⊥BD,使成为菱形;因为添加一个条件不能成为正方形,故可添加的条件可以是∠A=90°,AC=BD,AB=BC,AC⊥BD等.答案答案不唯一,如∠A=90°(或AC=BD,AB=BC,AC⊥BD) 8.(改编题)矩形纸片ABCD,按如图所示的方式折叠,点A、点C恰好落在对角AD线BD上,若得到的四边形BEDF是菱形,则A B=________.解析由折叠与菱形的性质可知∠ABF=30°,∴∠ABD=60°.在Rt△ABDAD中,AB=tan60°= 3.答案3三、解答题9.(改编题)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,△3).AOB绕点O逆时针旋转90°后得到△A1OB1.(1)点A关于点O成中心对称的点的坐标为________;(2)点A1的坐标为________;(3)在旋转过程中,求点B经过的路径的长.解(1)(-3,-2);(2)如图,在坐标系中画出将△AOB绕点O逆时针旋转△90°的A1OB1,点A1的坐标为(-2,3)︵︵(3)点B经过的路径为BB1,OB=12+32=10,BB1的长=90×π×1010180=2π.10.(改编题)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等的圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.解答案不唯一,仅供参考:(1)在图3中设计出符合题目要求的图形如下图1.(2)在图4中画出符合题目要求的图形如下图2.。
2018年全国各地中考数学真题汇编:轴对称变换(含答案)-数学备课大师【全免费】

中考数学真题汇编:轴对称变换一、选择题1.下列图形中是中心对称图形的是()A. B. C. D.【答案】D2.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D3.下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.【答案】B4.如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B. C. D.【答案】D5.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条【答案】C6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC 等于()A. 112°B. 110°C. 108°D. 106°【答案】D7.如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为()A. B. C. D.【答案】D8.如图,∠AOB=60°,点P是∠AOB内的定点且OP= ,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A. B. C. 6 D. 3【答案】D9.如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D10.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.【答案】A二、填空题11.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.【答案】(,)12.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.【答案】13.如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为________.【答案】14.在平面直角坐标系中,点的坐标是.作点关于轴的对称点,得到点,再将点向下平移个单位,得到点,则点的坐标是(________),(________).【答案】;15.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。
【中考数学】《轴对称及其应用》专项练习题5套含答案

专题线段的垂直平分线的应用类型1线段的垂直平分线的性质在求线段长中的应用1.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点D,E,垂足分别为F,G,已知△ADE的周长为12 cm,则BC=12_cm.2.如图,AB比AC长3 cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14 cm,求AB和AC的长.解:∵△ACD的周长是14 cm,∴AD+DC+AC=14 cm.又∵DE是BC的垂直平分线,∴BD=DC.∴AD+DC=AD+BD=AB.∴AB+AC=14 cm.∵AB比AC长3 cm,∴AB-AC=3 cm.∴AB=8.5 cm,AC=5.5 cm.3.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.证明:(1)∵AD∥BC,∴∠ADE=∠FCE.∵E是CD的中点,∴DE=CE.又∵∠AED=∠FEC,∴△ADE≌△FCE(ASA).∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线.∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.类型2线段垂直平分线的性质在实际问题中的应用4.如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?解:连接AB,BC,分别作AB,BC的垂直平分线DE,GF,两直线交于点M,则点M就是所要确定的购物中心的位置,如图.类型3线段的垂直平分线的性质在判定两线段位置关系中的应用5.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC,∠OCB的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.解:OI ⊥BC.证明:连接AO ,延长OI 交BC 于点M. ∵OE ,OF 分别为AB ,AC 的中垂线, ∴OA =OB ,OA =OC.∴OB =OC.又∵BI ,CI 分别为∠OBC ,∠OCB 的平分线, ∴点I 必在∠BOC 的平分线上. ∴∠BOI =∠COI. 在△BOM 和△COM 中,⎩⎨⎧OB =OC ,∠BOM =∠COM ,OM =OM ,∴△BOM ≌△COM(SAS ). ∴∠BMO =∠CMO.又∵∠BMO +∠CMO =180°. ∴∠BMO =∠CMO =90°. ∴OI ⊥BC.专题轴对称变换的应用类型1轴对称图形的展开与折叠1.(绥化中考)把一张正方形纸片如图①,图②对折两次后,再如图③挖去一个三角形小孔,则展开后的图形是(C)类型2翻折式的轴对称变换2.(娄底中考)将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为13.3.(潜江中考)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,求∠CDE的度数.解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°.∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,且∠ACB=90°,∴∠BCD=∠ECD=45°,∠CED=∠B=64°.∴∠CDE=180°-∠ECD-∠CED=71°.4.(枣庄中考改编)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C 落在直线AD上的C′处,P为直线AD上的一点,求线段BP的最短长度.解:过点B 作BM ⊥AD 于点M ,由题意可知△ABC ≌△ABC′, ∴S △ABC =S △ABC′=6.∵S △ABC ′=12AC′·BM =6,AC ′=AC =3,∴BM =4.根据垂线段最短可知BM ≤BP ,∴BP ≥4. ∴BP 的最短长度为4.类型3 轴对称变换与坐标5.已知点M(2a -b ,5+a),N(2b -1,-a +b).(1)若点M ,N 关于x 轴对称,求a 、b 的值; (2)若点M ,N 关于y 轴对称,求(4a +b)2 017的值. 解:(1)∵M ,N 关于x 轴对称,∴⎩⎪⎨⎪⎧2a -b =2b -1,5+a -a +b =0. 解得⎩⎪⎨⎪⎧a =-8,b =-5.(2)∵M ,N 关于y 轴对称,∴⎩⎪⎨⎪⎧2a -b +2b -1=0,5+a =-a +b. 解得⎩⎪⎨⎪⎧a =-1,b =3.∴(4a +b)2 017=-1.6.如图所示,在平面直角坐标系xOy 中,A(-1,5),B(-1,0),C(-4,3),直线m 为横坐标都为2的点组成的一条直线.(1)作出△ABC关于直线m对称的△A1B1C1;(2)直接写出A1,B1,C1的坐标;(3)求出△A1B1C1的面积.解:(1)如图所示.(2)A1(5,5),B1(5,0),C1(8,3).(3)△A1B1C1的面积为7.5.专题 与等腰三角形的性质与判定相关的证明类型1 证明线段或角的数量关系1.如图,△ABC 中,AB =AC ,D 是BC 的中点,E ,F 分别是AB ,AC 上的点,且AE =AF ,求证:DE =DF.证明:连接AD.∵AB =AC ,D 是BC 的中点, ∴∠EAD =∠FAD. 在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD(SAS ). ∴DE =DF.2.已知,如图,△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 和BE 交于H ,且BE =AE.求证:AH =2BD.证明:∵AD ⊥BC ,BE ⊥AC , ∴∠BEC =∠ADB =90°. ∴∠EBC =∠EAH. ∵BE =AE , ∴△AHE ≌△BCE. ∴AH =BC.∵AB =AC ,AD ⊥BC , ∴BC =2BD. ∴AH =2BD.3.如图,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 的中点,AE ⊥BD 于F ,交BC 于E ,求证:∠ADB =∠CDE.证明:过点C 作CG ⊥AC 交AE 的延长线于G ,则CG ∥AB ,∴∠BAF =∠G. 又∵AF ⊥BD ,AC ⊥CG ,∴∠BAF +∠ABF =90°,∠CAG +∠G =90°. ∴∠ABF =∠CAG. 在△ABD 和△CAG 中,⎩⎨⎧∠ABF =∠CAG ,AB =AC ,∠BAD =∠ACG =90°,∴△ABD ≌△CAG(ASA ). ∴AD =CG ,∠ADB =∠G. 又∵D 为AC 中点,∴AD =CD. ∴CD =CG.∵AB =AC ,∴∠ABC =∠ACB. 又∵AB ∥CG ,∴∠ABC =∠GCE. ∴∠ACB =∠GCE. ∴△CDE ≌△CGE(SAS ). ∴∠CDE =∠G. ∴∠ADB =∠CDE.4.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求证:AB+BD=AC.证明:延长CB至E,使BE=BA,则∠BAE=∠E.又∵∠ABC=2∠C=2∠E,∴∠E=∠C.∴AE=AC.∵AD平分∠BAC,∴∠BAD=∠DAC.∵∠BAE=∠E,∠E=∠C,∴∠BAE=∠C.又∵∠EAD=∠BAE+∠BAD,∠EDA=∠C+∠DAC,∴∠EAD=∠EDA.∴AE=DE.∴AC=DE=BE+BD=AB+BD.类型2证明线段的位置关系5.如图,点C是线段AB上任意一点(点C与点A,B不重合),分别以AC,BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N,连接MN.求证:(1)△ACM≌△DCN;(2)MN∥AB.证明:(1)∵△ACD和△BCE都是等边三角形,∴AC=DC,BC=EC,∠ACD=∠BCE=60°.∵∠ACD+∠DCE+∠ECB=180°,∴∠DCE =60°.∴∠ACE =∠DCB =120°. 在△ACE 和△DCB 中,⎩⎨⎧AC =DC ,∠ACE =∠DCB ,CE =CB ,∴△ACE ≌△DCB(SAS ). ∴∠EAC =∠BDC. 在△ACM 和△DCN 中,⎩⎨⎧∠MAC =∠NDC ,AC =DC ,∠ACM =∠DCN =60°,∴△ACM ≌△DCN(ASA ). (2)由(1)知△ACM ≌△DCN , ∴CM =CN.又∵∠MCN =60°,∴△CNM 为等边三角形,∠NMC =60°. ∴∠NMC =∠ACM =60°. ∴MN ∥AB.6.如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在边BC ,AB ,AC 上,且BD =CF ,BE =CD ,G 是EF 的中点,求证:DG ⊥EF.证明:连接ED ,FD.∵AB =AC , ∴∠B =∠C.在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,∴△BDE ≌△CFD(SAS ). ∴DE =DF.又∵G 是EF 的中点, ∴DG ⊥EF.类型3 判断三角形的形状7.已知:如图,OA 平分∠BAC ,∠1=∠2.求证:△ABC 是等腰三角形.证明:过点O 作OD ⊥AB 于D ,OE ⊥AC 于E ,则△BOD 和△COE 都是直角三角形. ∵OA 平分∠BAC ,OD ⊥AB ,OE ⊥AC , ∴OD =OE. ∵∠1=∠2, ∴OB =OC.∴Rt △BOD ≌Rt △COE(HL ). ∴∠ABO =∠ACO. ∴∠ABC =∠ACB. ∴AB =AC.∴△ABC 是等腰三角形.8.已知△ABC 中,∠BAC =90°,AB =AC ,D 为BC 的中点.(1)如图1,E ,F 分别是AB ,AC 上的点,且BE =AF ,试判断△DEF 的形状,并说明理由; (2)如图2,若E ,F 分别为AB ,CA 的延长线上的点,仍有BE =AF.请判断△DEF 是否仍具有(1)中的形状,并说明理由.解:(1)△DEF为等腰直角三角形.理由:连接AD,易证△BDE≌△ADF,∴DE=DF,∠BDE=∠ADF.又∵∠BAC=90°,AB=AC,D为BC的中点,∴AD⊥BC.∴∠ADB=90°.∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠ADB=90°. ∴△DEF为等腰直角三角形.(2)是,理由略.专题运用分类讨论求解等腰三角形相关的多解问题类型1针对腰长和底边长进行分类方法归纳:在解答已知等腰三角形边长的问题时,当题目中的条件没有指明已知的这条边是腰长还是底边长时,就要分类讨论,按腰和底边两种情况分类.若涉及边的长度,应运用三角形的三边关系进行辨别取舍.1.(武汉中考)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(A)A.5 B.6 C.7 D.82.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(B)A.7个B.6个C.5个D.4个3.若实数x,y满足|x-5|+y-10=0,则以x,y的值为边长的等腰三角形的周长为25.类型2针对顶角和底角进行分类方法归纳:对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.4.等腰三角形有一个角为52°,它的一条腰上的高与底边的夹角为多少度?解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;②若已知的这个角为底角,则一腰上的高与底边的夹角为38°. 故所求的一腰上的高与底边的夹角为26°或38°.5.如果等腰三角形中的一个角是另一个角度数的一半,求该等腰三角形各内角的度数.解:设∠A ,∠B ,∠C 是该等腰三角形的三个内角,且∠A =12∠B.设∠A =x °,则∠B =2x °.①若∠B 是顶角,则∠A ,∠C 是底角,于是有∠C =∠A =x °. ∵∠A +∠B +∠C =180°,∴x +2x +x =180. 解得x =45,故∠A =∠C =45°,∠B =90°; ②若∠B 是底角,∵∠A ≠∠B , ∴∠A 是顶角,∠C =∠B =2x °.∵∠A +∠B +∠C =180°,∴x +2x +2x =180. 解得x =36,故∠A =36°,∠B =∠C =72°.综上所述,等腰三角形的各内角分别为45°、45°、90°或36°、72°、72°.类型3 针对锐角、直角和钝角三角形进行分类方法归纳:根据等腰三角形顶角的大小可以将其分为锐角、直角或钝角三角形.不同的三角形其高、中线、垂直平分线的交点位置均不同,比如锐角三角形腰上的高的交点在这个三角形的内部;直角三角形腰上的高的交点为两直角边的交点;钝角三角形腰上的高的交点在这个三角形的外部,因此在解答时需要分类讨论.6.已知△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交成50°的角,求底角的度数.解:由题意可判断该三角形不可能是直角三角形,可能是锐角三角形或钝角三角形,故分两种情况讨论:①如图1,垂直平分线DE 与腰AC 相交,且∠AED =50°,则∠A =40°,所以∠B =∠C =70°;②如图2,垂直平分线DE 与腰AC 的反向延长线相交,且∠AED =50°,则∠EAD =40°,∠BAC =140°,所以∠B =∠C =20°.综上可知,等腰三角形的底角为70°或20°.7.一个等腰三角形一边上的高等于另一边的一半,则等腰三角形底角的度数是多少?解:设∠A 为顶角,则∠ABC 、∠ACB 为底角. (1)若∠A 为锐角,如图1,作BD ⊥AC 于点D , 根据题意有BD =12AB ,∠BDA =90°,∴∠A =30°,∠ABC =∠ACB =75°;(2)若∠A 为直角,根据题意“等腰三角形一边上的高等于另一边的一半”,这种情况无解; (3)若∠A 为钝角,有三种情况:①如图2,作AD ⊥BC 于点D , 根据题意有AD =12AB ,∠ADB =90°,∴∠ABC =∠ACB =30°;②如图3,作BD ⊥CA 的延长线于点D , 根据题意有BD =12BC ,∠ADB =90°,∴∠ABC =∠ACB =30°;③如图4,作BD ⊥CA 的延长线于点D , 根据题意有BD =12AB ,∠ADB =90°,∴∠BAD =30°,∠ABC =∠ACB =15°.综上所述,等腰三角形底角的度数是75°、30°或15°.8.AC 为等腰△ABD 的腰BD 上的高,且∠CAB =60°.求这个三角形各内角的度数.解:①如图1,高AC 在△ABD 的内部, 因为∠CAB =60°,∠ACB =90°, 所以∠B =30°.因为BA =BD ,所以∠BAD =∠D =75°; ②如图2,高AC 在△ABD 的外部, 因为∠CAB =60°,∠ACB =90°, 所以∠ABC =30°. 所以∠ABD =150°.因为BA =BD ,所以∠BAD =∠D =15°; ③如图3,高AC 在△ABD 的外部, 因为∠CAB =60°,∠ACB =90°, 所以∠B =30°.因为DA=DB,所以∠BAD=∠B=30°.所以∠ADB=120°.综上所述,这个三角形各内角的度数分别为30°,75°,75°或150°,15°,15°或120°,30°,30°.复习轴对称01基础题知识点1轴对称与轴对称图形1.(赤峰中考)下列图标是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是①②③④(填序号).2.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?解:1和3,是,两条.知识点2线段的垂直平分线3.(遂宁中考)如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cmB.2 cmC.3 cmD.4 cm知识点3画轴对称图形4.请作出图中四边形ABCD关于直线a的轴对称图形,要求:不写作法,但必须保留作图痕迹.解:如图所示:四边形A′B′C′D′即为所求.知识点4等腰三角形5.(荆门中考改编)如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知BD=4,则BC的长为(C)A.5B.6C.8D.106.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有(A)A.5个B.4个C.3个D.2个知识点5等边三角形7.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为(D) A.15°B.30°C.45°D.60°8.(义乌中考)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18 cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是18cm.知识点6含30°角的直角三角形的性质9.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=3.10.如图,△ABC是等边三角形,AD∥BC,CD⊥AD,若AD=2 cm,则△ABC的周长为12cm.知识点7最短路径问题11.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是(B)A.3B.4C.5D.602中档题12.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(A)A.15°B.17.5°C.20°D.22.5°13.(雅安中考)如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC=8.14.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)△A1B1C1的面积为4.5.解:如图所示:△A1B1C1即为所求.15.如图所示,MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.解:(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.∵△APQ的周长为12,∴BC =12.(2)∵AP =BP ,AQ =CQ ,∴∠B =∠BAP ,∠C =∠CAQ.∵∠BAC =105°,∴∠BAP +∠CAQ =∠B +∠C =180°-∠BAC =180°-105°=75°.∴∠PAQ =∠BAC -(∠BAP +∠CAQ)=105°-75°=30°.03 综合题16.如图,在等边△ABC 中,点E 为边AB 上任意一点,点D 在边CB 的延长线上,且ED =EC.(1)当点E 为AB 的中点时(如图1),则有AE =DB(填“>”“<”或“=”);(2)猜想AE 与DB 的数量关系,并证明你的猜想.解:当点E 为AB 上任意一点时,AE 与DB 的大小关系不会改变.理由如下:过E 作EF ∥BC 交AC 于F ,∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°,AB =AC =BC.∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,即∠AEF =∠AFE =∠A =60°.∴△AEF 是等边三角形.∴AE =EF =AF.∵∠ABC =∠ACB =∠AFE =60°,∴∠DBE =∠EFC =120°,∠D +∠BED =∠FCE +∠ECD =60°.∵DE =EC ,∴∠D =∠ECD.∴∠BED =∠ECF.在△DEB 和△ECF 中,⎩⎨⎧∠DEB =∠ECF ,∠DBE =∠EFC ,DE =EC ,∴△DEB ≌△ECF(AAS ).∴BD =EF =AE ,即AE =BD.。
中考数学复习《轴对称》专题训练-带含有参考答案
中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
中考数学复习《轴对称》专项练习题-带含有答案
中考数学复习《轴对称》专项练习题-带含有答案一、单选题1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.若点与关于x轴对称,则点的坐标为()A.B.C.D.3.在中,和的度数如下,能判定是等腰三角形的是()A.B.C.D.4.如图,PD垂直平分AB,PE垂直平分BC,若PA的长为7,则PC的长为()A.5 B.6 C.7 D.85.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.B.BC=2DE C.∠ABE=15°D.DE=2AE7.如图,矩形中,对角线的垂直平分线分别交,于点,若AM=1,BN=2,则的长为()A.B.C.D.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM、MC下列结论:①DF=DN;②ABE≌△MBN;③△CMN 是等腰三角形;④AE=CN;,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题9.如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.10.已知等腰三角形ABC,其中两边,满足,则ABC的周长为.11.在中,点D为斜边上的一点,若为等腰三角形,那么的度数为.12.如图,在中AB=AC,∠A=120°,AB的垂直平分线分别交,于D,E,BE=3,则的长为.13.如图,在中,∠ACB=90°,∠A=30°,将绕点C逆时针旋转得到,点M是的中点,点N是的中点,连接,若,则线段的最大值是.三、解答题14.如图,在正方形网格上的一个△ABC.(其中点A. B. C均在网格上)①作△ABC关于直线MN的轴对称图形△A′B′C′;②以P点为一个顶点作一个与△ABC全等的△EPF(规定点P与点B对应,另两顶点都在图中网格交点处).③在MN上画出点Q,使得QA+QC最小。
中考数学总复习《轴对称》专项测试卷-附有参考答案
中考数学总复习《轴对称》专项测试卷-附有参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.在平面直角坐标系中,点P(−2,3)关于x轴对称的点的坐标为( )A.(−2,−3)B.(2,−3)C.(−3,2)D.(3,−2) 2.下列四个图案中,不是轴对称图案的是( )A.B.C.D.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A.中B.国C.加D.油4.点P(m,−2)与点P1(−4,n)关于x轴对称,则m,n的值分别为( )A.m=4,n=−2B.m=−4,n=2C.m=−4,n=−2D.m=4,n=25.若等腰三角形的周长为30cm,一边为14cm,则腰长为( )A.2cm B.8cmC.8cm或2cm D.14cm或8cm6.如图,在△ABC中,DE是AC的垂直平分线AC=8cm,且△ABD的周长为14cm则△ABC的周长为( )A.15cm B.18cm C.22cm D.25cm7.在Rt△ABC中∠ABC=90∘,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.若等腰三角形的一个内角为80∘,则这个等腰三角形的顶角为( )A.80∘B.50∘C.80∘或50∘D.80∘或20∘二、填空题(共5题,共15分)9.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点Aʹ的坐标为.10.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=度.11.如图,在△ABC中AB=AC=5,BC=6,AD平分∠BAC交BC于点D,分别以点A和点C为圆心,大于1AC的长为半径作弧,两弧相交于点M和点N,作直线MN,2交AD于点E,则DE的长为.12.如图,长方形纸条ABCD中AB∥CD,AD∥BC,∠A=∠B=∠C=∠D=90∘.将长方形纸条沿直线EF折叠,点A落在Aʹ处,点D落在Dʹ处,AʹE交CD于点G.若∠AEF=α,则∠AʹGC=(用含α的式子表示).13.在平面直角坐标系中,点A的坐标是(−1,2).作点A关于y轴的对称点,得到点Aʹ,再将点Aʹ向下平移4个单位长度,得到点Aʺ,则点Aʺ的坐标是(,).三、解答题(共3题,共45分)14.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN过点O交AB于点M,交AC于点N,且MN∥BC,BM=6,CN=7.求MN的长.15.如图,在△ABC中AB=AC,点D,E,F分别在AB,BC,AC边上,且BE= CF,BD=CE.(1) 求证:△DEF为等腰三角形;(2) 当∠A=50∘时,求∠DEF的度数.16.如图,△ABC为等边三角形,D为△ABC内一点,且∠ABD=∠DAC,过点C作AD 的平行线,交BD的延长线于点E,BD=EC连接AE.(1) 求证:△ABD≌△ACE;(2) 求证:△ADE为等边三角形.参考答案1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】D6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】63∘或27∘10. 【答案】3011. 【答案】7812. 【答案】180∘−2α13. 【答案】1;−214. 【答案】∵BO平分∠ABC∴∠ABO=∠CBO∵MN∥BC∴∠CBO=∠BOM∴∠ABO=∠BOM∴BM=OM同理可得:∠ACO=∠CON∴CN=ON∴MN=OM+ON=BM+CN=6+7=13.15. 【答案】(1) ∵AB=AC∴∠B=∠C在△BDE和△CEF中{BD=CE,∠B=∠C, BE=CF,∴△BDE≌△CEF(SAS)∴DE=EF∴△DEF为等腰三角形;(2) ∵△BDE≌△CEF∴∠BDE=∠CEF∴∠BED+∠CEF=∠BED+∠BDE∵∠B+(∠BED+∠BDE)=180∘∠DEF+(∠BED+∠BDE)=180∘∴∠B=∠DEF.∵∠A=50∘AB=AC∴∠B=12(180∘−50∘)=65∘∴∠DEF=65∘.16. 【答案】(1) ∵△ABC是等边三角形∴AB=AC∠BAC=∠ACB=60∘∵AD∥CE∴∠DAC=∠ACE,且∠ABD=∠DAC∴∠ACE=∠ABD,且AB=AC BD=CE∴△ABD≌△ACE(SAS).(2) ∵△ABD≌△ACE∴AD=AE∠BAD=∠CAE∵∠BAD+∠DAC=∠BAC=60∘∴∠CAE+∠DAC=∠DAE=60∘,且AD=AE∴△ADE是等边三角形.。
中考数学复习《轴对称》专项练习-附带有答案
中考数学复习《轴对称》专项练习-附带有答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图,△ABC与△DEF关于直线对称,其中A与D对应,B与E对应,则∠E=()A.120°B.110°C.80°D.100°3.在平面直角坐标系中,点P(5,﹣3)关于y轴的对称点的坐标是()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3)4.如图,在△ACB中,∠C=90°, AB的垂直平分线交AB、AC于点M、N,若AC=8,BC=4,则NC的长度为().A.2 B.3 C.4 D.55.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.已知点A(a,4),B(3,b)关于x轴对称,则a+b=.10.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DEA的度数是度.11.如图,在△ABC中,BD为AC边上的中线,F为AB上一点,连接CF,交BD于点E,若AB=CE=4,5AF=4AB 则EF=.12.如图,点E,F分别为▱ABCD的边AB,BC的中点DE=√5,DF=2√5,∠EDF=60°则AD=.13.如图,在梯形ABCD中AD∥BC,AB=AC且AB⊥AC,BC=BD则∠DBC=.三、解答题14.如图,在平面直角坐标系中,A(3,4),B(1,2),C(5,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习轴对称
下列交通指示标识中,不是轴对称图形的是( )
2.下列图案中,有且只有三条对称轴的是()
3.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合要求的是()
4.下面的图形中,左边的图形与右边的图形成轴对称的是( )
5.下面几何图形中,一定是轴对称图形的有( )
A.1个B.2个C.3个D.4个
6.下面四个手机应用图标中是轴对称图形的是( )
7.下列图形中有且只有一条对称轴的是()
8.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()
9. 经过轴对称变换后所得的图形,与原图形相比( )
A.形状没有改变,大小没有改变B.形状没有改变,大小有改变
C.形状有改变,大小没有改变D.形状有改变,大小有改变
10.下列关于轴对称性质的说法中,不正确的是()
A.对应线段互相平行B.对应线段相等
C.对应角相等D.对应点连线与对称轴垂直
11. 李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,图中各种作法中,符合要求的是( )
12.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有( )
A.3种B.4种C.5种D.6种
13. 如图所示的各组图形中,左边的图形与右边的图形关于某条直线成轴对称的是 (填序号即可).
14.观察下图中各组图形,其中成轴对称的为 (只填序号).
15. 如图,在Rt△ABC中,沿ED折叠,点C落在点B处,已知△ABE的周长是15cm,BD=6cm,求△ABC的周长.
16. 如图所示,∠XOY内有一点P,试在射线OX上找出一点M,在射线OY 上找出一点N,使PM+MN+NP最短.
参考答案:
1---12 CCCAC DBDAA CC
13. ①
14. ①②④
15. 解:27cm
16. 解:分别以直线OX、OY为对称轴,作P点的对应点P1、P2,连接P1、P2,交OX于M,交OY于N,则PM+MN+NP最短,即P1P2.。