天然沸石的重金属污染污染整治进展
《2024年水体重金属污染研究现状及治理技术》范文

《水体重金属污染研究现状及治理技术》篇一一、引言随着工业化的快速发展和城市化进程的加速推进,水体重金属污染问题日益严重,对生态环境和人类健康构成了严重威胁。
重金属如铅、汞、镉等,由于其难以降解、生物累积性强和长距离迁移的特性,一旦进入水体,往往会造成长期且难以逆转的污染。
本文将就水体重金属污染的研究现状及治理技术进行探讨。
二、水体重金属污染的研究现状1. 污染来源水体重金属污染主要来源于工业排放、农业活动、城市污水和固体废弃物等。
其中,工业排放是主要的污染源,包括冶炼、电镀、化工等行业的废水排放。
此外,农药、化肥的使用以及城市污水的排放也是水体重金属污染的重要来源。
2. 污染现状目前,我国的水体重金属污染问题十分严重。
许多河流、湖泊和近海海域都存在不同程度的重金属污染。
这些重金属不仅会影响水生生物的生存,还会通过食物链进入人体,对人类健康构成潜在威胁。
3. 研究进展针对水体重金属污染问题,国内外学者进行了大量研究。
这些研究主要集中在污染来源解析、污染程度评估、污染物迁移转化等方面。
通过这些研究,人们逐渐认识到水体重金属污染的严重性和复杂性,为后续的治理工作提供了科学依据。
三、水体重金属污染治理技术1. 物理法物理法是一种常用的水体重金属污染治理技术,包括沉淀法、吸附法、膜分离法等。
这些方法主要是通过物理作用将重金属从水中去除或分离出来。
例如,沉淀法可以通过添加沉淀剂使重金属形成沉淀物,从而从水中去除。
2. 化学法化学法是利用化学反应将重金属从水中去除的方法。
常用的化学法包括氧化还原法、络合沉淀法等。
这些方法主要是通过改变重金属的化学形态或价态,使其从水中分离出来或转化为无害物质。
3. 生物法生物法是利用微生物、植物等生物体或其代谢产物对重金属进行吸附、转化和去除的方法。
生物法具有成本低、环保等优点,是目前研究的热点之一。
例如,某些植物可以通过根部吸收和转运重金属,将其从水中去除;微生物也可以通过生物吸附、生物富集等作用降低水中的重金属含量。
天然沸石对动物福利的改善效应研究进展

食与饮水空间的大小 ; 休息 空 间的质量 与大小 ; 舍 内气 ② ③ 候的质 量与通风 ; ④地面质 量 ; ⑤躲避场所 的多少 ; 行走路 ⑥ 径的安全性 ; 运动的 自由度 与限制 量 ; 噪音高低 ; 有无 ⑦ ⑧ ⑨ 排泄 场所 ; 是否 有隔 离间 ; 是 否设 有倾 斜 的运 输通 道。 ⑩ ⑩ 由此 可见 , 养殖 环境 条件是动物福利 的重要 组成部分 … 。在 舒适 区范 围内, 动物不会 有难 受和不 舒服 的感 觉 , 而且 生长 发育 良好 。而在高温 高湿或 畜舍 内有害气 体含量 过高 等环 境下 , 容易引起 动物代谢紊乱 , 使动物机体抵抗 力下降 , 发病 率增加 。同时高湿条件 有利 于病源微 生物 和寄生虫 的生 长 繁殖 , 还会 引起饲料 、 垫料发霉变 质 , 动物被 感染及生病 的概 率大大增加 , 动物健康受到威胁 。
动物福利是对应动物康乐而言 的, 深层 次 的内涵在 于改 善动物环境 。 使动物充分地表达行为 , 实现动物康乐 , 而提 从 高畜产品的质 与量 , 现食 品安 全 和环境 安全 的社会 学 目 实 标 。动物康乐是 指动物 自身 的感受状态 , 也就 是身体健康 和 “ 心理愉快” 包括 动物 不受饥饿 、 , 生活舒适 、 无恐惧 、 无疾病 、 无损伤 、 无异常行 为 、 痛苦 、 无 无压抑 , 并有 自我表达 天性 的 自由等。动物福利是保证动物康乐 的外 部条件 , 确保动物无 不愉快 的感受 。一切 给动物压 力和使动物 感受 到痛 苦的应 激 因素均可影响家畜 的康 乐与畜产 品 的质量 。某种 意义 上动物福利是指动物 的“ 境福 利” “ 环 和 饲养 福利 ” 环 境 。“ 福利 ” 是指畜舍 环境 , 主要针对 不同生理 阶段 的动物 , 给予不 同的温度 、 湿度 、 风量和风速等小范围的气候条件 , 即畜舍 亦 环境条件 ; 饲养福利” “ 主要指动物在饲 养管理与生产 过程 中 的设施条件及人为的管理条件等。
沸石净化实验报告总结(3篇)

第1篇一、实验概述本报告总结了我在生化实验课程中,经过半年的学习所取得的收获与不足。
在实验过程中,我参与了多种生化实验,包括folin-酚法测蛋白、稀碱法提取酵母RNA、醋酸纤维薄膜电泳、RNA定量测定-UV吸收法、纤维素酶活力的测定、最适pH选择、菲林试剂热滴定定糖法、肌糖元的酵解作用、N-末端氨基酸残基的测定--DNS-CL 法、柱层析分离色素、凯式定氮法等实验。
二、实验收获1. 理论知识与实践操作相结合:通过实验,我深刻理解了生化实验的基本原理,掌握了各种实验操作技能。
2. 实验技能的提升:在实验过程中,我学会了如何正确操作实验仪器,处理实验数据,提高了实验技能。
3. 团队协作能力的培养:在实验过程中,我与同组成员密切合作,共同解决问题,提高了团队协作能力。
4. 理论联系实际:通过实验,我认识到理论知识与实践操作相结合的重要性,使我对生化实验有了更深入的了解。
三、实验不足1. 实验操作不够熟练:在实验过程中,我发现自己在某些实验操作上不够熟练,需要进一步加强练习。
2. 实验态度不够严谨:在实验过程中,我曾犯过一些低级错误,如忘记加入新的沸石,导致溶液差点暴沸。
这说明我在实验态度上还需更加严谨。
3. 对实验仪器的熟悉程度不够:在实验过程中,我们损坏了改良式凯式蒸馏仪,并赔偿了相应的费用。
这反映出我在实验过程中对仪器的熟悉程度不够,操作不够认真。
四、改进措施1. 加强实验技能训练:为了提高实验操作熟练度,我将在课后继续进行实验技能训练,熟练掌握各种实验操作。
2. 严谨实验态度:在实验过程中,我将始终保持严谨的态度,避免犯类似低级错误。
3. 提高对实验仪器的熟悉程度:在实验前,我将认真学习实验仪器的使用方法,确保实验过程中能够正确操作。
总之,通过本次生化实验课程的学习,我收获颇丰。
在今后的学习和工作中,我将取长补短,不断提高自己的实验技能和综合素质。
第2篇一、实验背景沸石是一种具有多孔结构的天然矿物质,因其优异的吸附性能而被广泛应用于空气净化、水处理、催化剂载体等领域。
Zeolite_A沸石分子筛去除水体中重金属污染物

理化检验-化学分册P TCA(PA R T B:CH EM.ANAL.)2008年 第44卷 ①工作简报Zeolite2A沸石分子筛去除水体中重金属污染物湛 毅1,徐 芳1,徐 实2,蔡伟民1(1.上海交通大学环境科学与工程学院,上海200240; 2.上海交通大学分析测试中心,上海200030)摘 要:合成了一种成本低,制备工艺简单的沸石分子筛Zeolite2A,并对其吸附重金属离子的性能以及吸附的最佳条件(包括溶液的p H值,金属离子的浓度以及吸附过程的时间等)作了系统研究。
除了具有天然沸石的优越吸附性能之外,根据扫描电镜图可见合成的Zeolite2A沸石分子筛还具有洁净的晶体表面,均匀的粒度,规则的形状且不存在胶体或无定形物质的优点。
根据试验, Zeolite2A沸石分子筛的吸附效率随金属水合离子的半径的增加而减小。
在所试验的金属离子[Fe(Ⅱ、Ⅲ),Cr(Ⅲ),Pb2+,Mn2+,Cu2+,Mg2+,Zn2+,Ni2+及Cd2+]中,Pb2+的水合离子半径最小,故其吸附效率最高,且随溶液p H的升高和吸附过程时间的增加,Pb2+的吸附效率也随之增加。
试验中,所用金属离子的浓度为2×103mg・L-1。
在此条件下,Pb2+的吸附率达99.6%,合成的Zeo2 lite2A沸石分子筛可用于清除水体中重金属离子的污染。
用过的Zeolite2A沸石分子筛置于0.1mol・L-1HCl中浸泡可使重金属离子从沸石上解吸。
关键词:吸附剂;合成Zeolite2A沸石分子筛;重金属离子;水体中图分类号:O657 文献标识码:A 文章编号:100124020(2008)0120055203R emoval of H eavy Metal Pollutants from W aters by Adsorptionon Molecular Sieve Zeolite2AZHAN Yi1,XU F ang1,XU Shi2,CAI Wei2min1(1.School of Envi ronmental Science and Engineering,S hanghai J i aotong Universit y,S hanghai200240,China;2.Cent re of Testing and A nal ysis,S hanghai J iaotong Universit y,S hanghai200030,China)Abstract:An adsorbent of low production cost and simple synthesis technology,named Zeolite2A,was synthesized and its adsorption behavior towards heavy metals,and optimum conditions of the adsorption reaction (including p H of solution,concentration of the metal ions,time of adsorption process and etc.)were studied systematically.Besides possessing the prominent adsorptivity of natural Zeolite,the synthetic Zeolite2A was proved to have clean surface of its crystals,homogeneous grainity,regular shape and without the presence of any colloidal or amorphous substances,as shown by its scanning electron micrograph.It was found that efficiency of adsorption by Zeolite2A was dependent on the magnitude of radii of hydrated ions of heavy metals.Among the metal ions studied[Fe(Ⅱ、Ⅲ),Cr(Ⅲ),Pb2+,Mn2+,Cu2+,Mg2+,Zn2+,Ni2+and Cd2+],Pb2+ion showed the best adsorptivity;and the efficiency of adsorption of Pb2+ion was increased with the raise of p H of solution and with the increase of time of adsorption process.The experiments were done in a solution having the concentration of metal ions of2×103mg・L-1,and the adsorptivity of Pb2+ion achieved to a value of99.6%.It was proposed that the synthetic Zeolite2A is suitable to be used in the removal of heavy metals from waters.Desorption of metal ions from Zeolite2A could be effectively done by soaking in a0.1mol・L-1HCl solution.K eyw ords:Adsorbent;Synthetic Zeolite2A molecular sieve;Heavy metals;Waters收稿日期:2006209211基金项目:国家自然科学基金(20405010)作者简介:湛毅(1972-),男,山西省运城人,硕士,研究方向 为分子筛的合成与功能化。
天然沸石作为有效吸附剂在水和废水处理中的应用

天然沸石作为有效吸附剂在水和废水处理中的应用摘要:天然沸石是含量丰富且低成本的资源,是一种结晶水合硅铝酸盐,其骨架之外的孔隙中,含有含有水,碱和碱土金属阳离子。
由于其阳离子交换能力和分子筛性质,过去几十年内天然沸石已被广泛用作分离和纯化过程中的吸附剂。
在本文中,我们回顾了天然沸石作为吸附剂在水和废水处理中的最新发展,讨论了天然沸石的性质和改性。
世界各地的各种天然沸石对于阳离子如铵和重金属离子具有不同的离子交换能力。
一些沸石还能从水溶液中吸附阴离子和有机物。
天然沸石的改性可以通过几种方法进行,例如酸处理,离子交换和表面活性剂官能化,使改性沸石获得较高的有机物和阴离子吸附能力。
关键词:天然沸石、吸附作用、无机离子、有机物、水处理1.引言如今,由于缺乏干净的饮用水,世界正面临水危机。
随着各行业的快速发展,工业生产已经产生了大量的废水,排放到土壤和水体系中。
废水通常含有许多污染物,如阳离子和阴离子,油和有机物,对生态系统产生了强烈的毒性作用。
去除这些污染物需要低成本、效率高的技术,并且在处理废水处理方面,在过去几十年中已经开发了各种技术。
目前,吸附被认为是用于水和废水处理中相对简单和有效的技术,并且该技术的成功在很大程度上取决于有效吸附剂的发展。
活性炭[1],粘土矿物[2,3],生物材料[4],沸石[5,6]和一些工业固体废物[7,8]已经被广泛用作废水处理中吸附离子和有机物的吸附剂。
自从最初在火山沉积岩中发现沸石矿物以来,世界许多地区都发现了沸石凝灰岩。
在过去几十年中,天然沸石已经在吸附,催化,建筑工业,农业,土壤整治和能源[9,10]等方面得到了应用。
据估计,世界天然沸石消费量为308万吨,2010年将达到550万吨[11]。
天然沸石是具有多孔结构的水合硅铝酸盐矿物,具有一系列宝贵的物理化学性质例如阳离子交换,分子筛,催化和吸附。
由于这些性质和世界范围内的广泛存在性,天然沸石在环境应用中的应用正在引起新的研究兴趣。
天然沸石在水处理中的应用研究

黧盟甄、天然沸石在水处理中的应用研究姚文华秦云(保山学院生化系,云南保山678000)f}商要】沸石是一种具有优异的吸附、离子交换雎能的硅铝酸盐矿物,在环境治理中有广泛的应用前景。
本文对天然沸石的结构,近几年采国内外应用天然沸石女隰环境废水的应用进行了论述。
l关键闭天然沸石;硅铝酸盐;废水处鲤;应用沸石是1756年由瑞典矿物学家根据某些硅酸盐矿物在硼砂熔珠试验中的行为引入的名称(寓意“沸腾的石头”)。
1997年,国际矿物学协会新矿物及矿物命名委员会沸石专业委员会将沸石矿物定义为一类结晶物质,其结构以四面体连接形成的格架为特征,四面体由4个氧原子围绕—个阳离子组成,这种格架含有以通道和空笼形式存在的空腔,空腔中通常由水fFT-删的格架外阳离子占据,通道的尺寸足够大到可允许客体分确甬过。
水污染的治理历来受到人们的关注,过去工业废水的§b理一般用活性炭作吸附剂,但由于活性炭造价高,再生复杂且费用昂贵,使污染处理在经济上难以承受。
寻找和开发f$粥氏廉的环保技术一直是人们研究和开发的重点。
由于天然沸石具有孔隙度高、比表面积大,离子交换性、吸附性、催化性、耐酸性、耐热性、耐辐射性等优点,因此其在水污染的治理中发挥了很大的作用并取得了许多新的研究成果。
1天然沸石的一般结构和特性沸石的化学组成十分复杂,因种类不同有很大差异。
一般化学式为:A m Bq02cl nH20,结构式为舢阳盼IO咖幅i O矧nH20,其中A为Ca、K、N a等阳离子;B为A I和S i;q为阳离子电价;m为阳离子数;13为水分子数:x为A|原子数;Y为Si原子数:y/x通常在1—5之间;仅+”是单位晶胞中四面体的个数。
沸石晶体结构的基本单位是硅.(铝)氧四面体,硅氡四面体通过桥氧连接,在平面上显示为多种封闭环状结构,有四元环、五元环、六元环、八元环、十二环、十八环等,在三维空间上可形成多种形状的规则多面体,构成沸石的孔穴或笼。
重金属污染的特点及治理措施
重金属污染的特点及治理措施摘要: 重金属污染治理问题是我国环境工作者当前和今后一个时期内所面临的头等大事,以成为了国家环境保护防治的一项重要工作。
本文通过详细介绍重金属污染的来源、特点及危害,针对重金属污染对城镇环境的影响进行分析,并提出一些治理措施和农业重金属污染的修复措施。
供业界人士参考与借鉴。
关键词:重金属污染;来源;特点及危害;修复;治理措施随着我国社会经济建设步伐的加快,重金属行业进入了高速发展时期。
但重金属行业在开采和加工过程中,一些铅、汞、镉、钴、砷等重金属通过废水、废气和固体废物来污染环境,且具有污染范围广、持续时间长、污染隐蔽性高、难以被降解等特点,导致部分地区的生态环境呈现恶化的趋势,并严重阻碍了我国农业的发展。
因此,必须建立比较完善的重金属污染防治体系、事故应急体系和环境与健康风险评估体系,寻找合理有效的重金属污染治理措施和修复措施来解决污染所带来的危害,从而保证重金属行业的健康发展。
1 重金属污染的来源通过对现状的调查分析表明,各相关行业重金属危险废物产生量最大的为有色金属冶炼行业,占总产生量的60.3%,其次为基础化学原料制造行业,占总产生量的28.4%。
铅、镉、铬、汞、砷作为重金属污染的主要元素,其重点防控行业有:①有色金属冶炼和含铅蓄电池制造业是主要的涉铅行业。
其中有色金属冶炼铅尘产生量占铅尘产生总量的36.6%,电池制造铅尘产生量占总产生量的63.4%;②废气中的镉主要由常用有色金属冶炼行业产生;③皮革鞣制加工行业是废水中总铬产生及排放的主要行业,金属表面处理业是废水中六价铬产生及排放的主要行业。
金属表面处理行业铬产生量占67.9%,有色金属冶炼行业铬产生量占32.1%;④基础化学原料制造是废水中汞和砷产生及排放的主要行业。
2 重金属污染的特点及危害重金属污染是通过废水、废气和固体废物来污染环境的,其主要特点为污染范围广、持续时间长、污染隐蔽性高、难以被降解。
随着农业集约化生产的发展以及城市化进程的推进,重金属通过污水灌溉、大气烟尘沉降、垃圾填埋处理等途径进入土壤和水体。
持久性有机污染物的吸附研究进展
持久性有机污染物的吸附研究进展乔澍;谢昆;付川;林俊杰【摘要】文章综述了活性炭、沸石、各种黏土矿和碳纳米管等多孔物质作为吸附剂处理水体中持久性有机污染物的研究进展,并对将来吸附材料的发展趋势做出预测.【期刊名称】《重庆三峡学院学报》【年(卷),期】2011(027)003【总页数】4页(P81-84)【关键词】持久性有机污染物(POPs);吸附;进展【作者】乔澍;谢昆;付川;林俊杰【作者单位】重庆三峡学院,重庆万州,404100;重庆三峡学院,重庆万州,404100;重庆三峡学院,重庆万州,404100;重庆三峡学院,重庆万州,404100【正文语种】中文【中图分类】O647.31持久性有机污染物(POPs)因其在环境中具有长期残留性、生物累积性、半挥发性和高毒性,引起了环境科学家的普遍关注.[1]POPs在水环境中长期暴露并在生物体脂肪内富集,对生态系统和人体健康具有巨大的危害.但是由于POPs在水体中浓度极低(每升水ng~pg级),通过常规水处理方式很难去除.吸附法是目前被广泛采纳的一种处理方法,所用吸附材料包括活性炭、沸石、黏土矿物和最新出现的碳纳米管等多孔物质.作者下面将就这几种常用材料的应用情况分别进行介绍.1 活性炭由于具有发达的孔隙结构和巨大的比表面积,活性炭作为吸附剂被广泛应用于饮用水及污水处理过程中[2].但活性炭对水中有机物的吸附缺乏选择性,容易饱和,需要不断再生,[3]对于目前人们最为关心的低浓度、亲脂性POPs的吸附效果并不理想.曲久辉等[4]研制了三油酸甘油酯活性碳复合吸附剂,对七氯和环氧七氯两种POPs的吸附性能进行考察,并使用颗粒活性炭进行对照实验.实验结果表明,类脂复合吸附剂对亲脂性更强的七氯有更好的吸附选择性,并且对这两种POPs的吸附效果均优于传统活性炭.解立平等[5]利用木类、纸张、塑料等固体有机废弃物热解物为原料,制备中孔活性炭,对二噁英和甲苯有良好的吸附性能.徐浩东等[6]利用三甲基氯硅烷(TMCS)对活性炭进行表面改性,研究了改性活性炭对水中苯胺、硝基苯及苯甲酸等典型有机污染物的吸附性能及特性,通过BET对吸附剂进行表征.结果表明,硅烷化改性后活性炭对水中的苯胺、硝基苯、苯甲酸的吸附容量有明显提高.2 沸石天然沸石是自然界广泛存在的一种硅铝酸盐矿物质,由硅氧(SiO4)四面体和铝氧(AlO4)四面体通过处于顶点的氧原子互相联结而成.这种特殊结构使沸石表面带负电荷,此负电荷被金属阳离子(K+、Na+、Ca+等)平衡.沸石中的这些阳离子可与其他阳离子发生交换,并保持骨架结构不发生变化.另外,沸石特殊的硅(铝)氧四面体结构使其孔隙率高达 50%,比表面积大(400~800m2/g),[7]具有较强的吸附能力,沸石的这些特性为其广泛应用创造了良好的前提条件.但是由于天然沸石表面硅氧结构亲水性强,使得沸石表面通常存在一层水膜,因而不能有效地吸附疏水性的有机污染物,需对其进行改性后才能用于有机物的吸附.改性方法分为外部改性和内部改性两种,内部改性的目的是通过改变内部结构、孔径,使污染物进入孔道内部从而得到去除,此方法多用于小分子污染物的去除.对于有机物的吸附,多采用外部改性的方法完成.目前多采用阳离子表面活性剂(如十六烷基三甲基溴化铵,HDTMA)对沸石的无机阳离子进行置换,从而得到有机沸石.由于有机阳离子的水合作用明显小于无机阳离子,可大大减少沸石表面的水分子量,因而对有机污染物的吸附能力比天然沸石强几十甚至几百倍.目前文献中报道的改性方法和适用吸附的有机污染物类型在表 1中列出.表1 改性有机沸石和适用有机污染物类型Tab. 1 The modification of organic zeolite and removal of different organic pollutants改性所用表面活性剂可吸附的有机污染物文献出处十六烷基三甲基溴化铵、四甲基铵脱氢松香酸 [8]十六烷基三甲基溴化铵苯、苯酚、苯胺、全氯乙烯 [9,10]十六烷基三甲基溴化铵、溴化十六烷基吡啶翁苯、甲苯、苯酚 [11]十六烷基三甲基溴化铵苯胺、硝基苯 [12]二甲苯甲基氯化十八烷酰胺莠去津、林丹、二嗪农 [13]十六烷基三甲基氯化铵、二甲基苄基硬脂酸铵、二甲基二硬脂酸铵杀虫剂 [14]十六烷基三甲基溴化铵、DOWFAX-8390、STEOL-CS330、Aerosol-OT苯、甲苯、乙苯、二氯苯、萘、菲 [15]3 黏土矿物由于黏土矿物如蒙脱石、膨润土等来源广泛、价格低廉,并且聚金属阳离子、季铵盐等阳离子可以通过离子交换的方法进入黏土矿物层之间,层间膨胀后形成各种有机或者无机的复合材料,在常温、常压下,改性黏土矿物在环境保护中得到了广泛的应用[16-20].孙洪良[21]制备了]螯合剂柱撑有机膨润土,用于吸附水中有机物对硝基苯酚( PNP)和重金属离子Cu2+,实验结果表明:螯合剂柱撑有机膨润土对有机污染物的吸附主要表现为有机物在长碳链疏水介质中的分配,其吸附能力和膨润土内有机碳、氮含量一致;对水中重金属离子的吸附机理是 Cu2+和进入膨润土层间的有机螫合剂Am形成了配合物,其吸附能力和所形成配合物的稳定性一致.吴平宵等[22]分别用无机-有机改性柱撑蒙脱石对模拟废水中的苯酚进行吸附试验,结果表明,用表面活性剂改性的柱撑蒙脱石,能较大幅度地提高对苯酚的吸附能力.经500℃灼烧后柱撑蒙脱石可再生使用,是一种潜在的吸附环境污染物的物质.顾曼华等[23]采用氯化十六烷基吡啶(CPC)、溴化十六烷基吡啶(CPB)和溴化十六烷基三甲铵(CTMAB)改性蒙脱石,处理水中硝基苯,25℃时吸附容量质量分别为117. 0mg·g- 1和87. 6mg·g- 1,去除率为50%~60%.朱利中等[24]用阳离子表面活性剂改性蒙脱石,制得一系列有机蒙脱石,研究其吸附处理水芳香有机污染物的性能、机理及影响因素,结果表明有机蒙脱石去除水中有机物的能力远高于原土;有机蒙脱石对水中有机物的去除率及饱和吸附容量与改性时所用季铵盐阳离子表面活性剂的种类、碳链长度及浓度有关,还与有机物本身的性质(极性、辛醇- 水分配系数等)及其与有机蒙脱石之间的作用方式有关.4 碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,每个管状层由碳六边形构成,与石墨内结构相似,其中碳原子以 sp2杂化为主,混合有部分sp3杂化.按其石墨层数分为单壁碳纳米管和多壁碳纳米管,根据不同的卷曲方式单壁碳纳米管分为扶手椅管、锯齿管和手性管.多壁碳纳米管的层数可以在两层到几十层之间.碳纳米管具有较大的表面积和分子尺寸孔洞,自 1991年[25]被研制并能批量生产后就用作吸附剂在环境保护方面有着广泛的应用,在水体污染物吸附方面的研究已有相关综述报道.[26]梁华定等[27]研究多壁碳纳米管对水中 2-硝基苯酚和2, 4-二氯苯酚的吸附规律.测定不同温度下两物质的吸附等温线,研究吸附的热力学特性和吸附机理.结果表明,碳纳米管对2-硝基苯酚和2, 4-二氯苯酚具有良好的吸附效果,饱和吸附量分别达到24.54 mg/ g 和30.53 mg/ g.用Freundlich 等温方程拟合碳纳米管对两种化合物的吸附,其线性相关系数均大于0195 ;用Clapeyron-Clausius 方程拟合吸附过程,两种物质的线性相关系数都达0.99.-由于对酚分子π-π共轭作用的强弱不同,碳纳米管对2, 4-二氯苯酚的吸附能力大于2-硝基苯酚.李文军等[28]研究了碳纳米管作为一种新型吸附剂去除水中亚甲基蓝.考察了溶液pH 值、振荡时间、温度等对亚甲基蓝吸附的影响.溶液pH 对亚甲基蓝吸附影响较大,动力学数据显示吸附在8h达到平衡.通过对吸附数据拟合,发现在温度为298~338K 和浓度为2.5~12.5 mg/mol 的范围内,碳纳米管对亚甲基蓝的吸附等温线均符合Feundlich-L angmuir吸附等温式.张伟等[29]采用 3种不同直径的多壁碳纳米管(MWNTs)对 1, 2, 3-三氯苯( TCB) 进行吸附实验.结果表明,随MWNTs 直径减小,1, 2, 3-三氯苯吸附量增加.研究结果表明,MWNTs 与1, 2, 3-三氯苯之间的强吸附作用可能是因MWNTs 表面与1, 2, 3-三氯苯中苯环之间形成π电子对而实现的.5 小结水体中持久性有机污染物的吸附材料除了上述材料外,还有纤维素材料[30]、壳聚糖[31]、竹炭[32]、吸附树脂[33]等,在各自的领域中取得了很多突破.但普遍存在的问题是无法自由改变其中孔径大小,从而对多种有机污染物进行选择性吸附,且因为孔中多为极性键,经改性后有少量烷基或其他非极性基团,对有机污染物的吸附作用不强,易饱和,不利于少量POPs的富集.在未来的研究中,将金属有机配位化合物与碳纳米管配合使用,[34]可解决上述问题,可能是未来这类吸附材料的发展趋势.参考文献:[1]Jones K C, Voogt P D. Persistent organic pollutants ( POPs) : state of the science[J]. Environ Pollut, 1999, 100 (123), 209-211.[2]Faria P C C, Ōrafo J J M, PereiraM F R. Adsorp tion of anionic andCationic dyes on activated carbons with different surface chemistries[J]. Water Res, 2004, 38, 2043-2052.[3]王占生,刘文军.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999:62.[4]茹加,刘会娟,曲久辉,等.类脂复合吸附剂去除水中微量七氯和环氧七氯的研究[J].环境科学学报,2006,26(11),1757-1762.[5]a)解立平,林伟刚,杨学民.城市固体有机废弃物制备中孔活性炭[J].过程工程学报,2002,2(5):465-469. b)解立平,林伟刚,杨学民.废弃物基活性炭吸附挥发性有机污染物特性的研究[J].环境工程学报,2007,1(3):119-122.[6]徐浩东,田森林,张友波,等.硅烷化活性炭对水中有机污染物的吸附作用[J].武汉理工大学学报,2008,30(1):40-43.[7]张铨昌.天然沸石离子交换性能及其应用[M].北京:科学出版社,1996:21-26.[8]Sylvie C, Bouffard J. Sheldon B. Uptake of dehydroabietic acid using organically-tailored zeolites[J].Water Research, 2000, 34(9), 2469-2476. [9]Zhaohui Li, Todd Burt, Robert S. Sorption of benzene, phenol, and aniline by surfactant-modified zeolite[C].1998 Joint Conference on the Environment, 1998, Mar 31-Apr 1,1998, Albuquerque, NM. 277-281. [10]Zhaohui Li, Robert S, Bowman. Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading[J].Environ. Sci. Technol. , 1998, 32(15), 2278-2282.[11]Ghiaci M, Abbaspur A, Kia R, et al. Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41[J].Separation and Purification Technology, 2004, 40, 217-229.[12]Ersoy B, Celik M S. Uptake of aniline and nitrobenzene from aqueous solution by organo-zeolite[J].Environ- mental Technology, 2004, 25, 341-348.[13]Jovan Lemic, Divna Kovacevic, Magdalena Tomasevic-Canovic, et al. Removal of atrazine, lindane and diazinone from water by organo-zeolites [J].Water Research, 2006, 40(5), 1079-1085.[14]Jovanovic V, Dondur V, Damjanovic Lj, et al. Improved materials for environmental application: surfactant-modified zeolites[J]. Materials Science Forum, 2006, 518, 223-228.[15]Hrissi K, Karapanagioti, David A, et al. Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactantmodified sorbents[J].Water Research, 2005, 39, 699-709.[16]David Christian Rodrguez - Sarmiento, Jorge Alejo Pinzon-Bello. Adsorption of sodium dodecylbenzene sulfonate on organophilic bentonites[J],Applied Clay Science, 2001,18: 173-181.[17]刘转年,周安宁,金奇庭.粘土吸附剂在废水处理中的应用[J].环境污染治理技术与设备,2003,4(2):54-58.[18]刘莺,刘学良,王俊德,等.粘土改性条件的研究I-膨润土的改性[J].环境化学,2002,21(2):167-171.[19]曾秀琼,刘维屏.无机—有机柱撑膨润土的制备及其在水处理中的应用进展[J].环境污染治理技术与设备,2001(2):9-13.[20]晁吉福,吴耀国,陈培榕.柱撑黏土吸附剂在芳香类有机污染物处理中的应用[J].现代化工,2010,30(4):31-36.[21]孙洪良.有机膨润土吸附水中重金属和有机污染物的性能及机理研究[J].化学研究与应用,2007,19(7):745-751.[22]吴平霄.粘土矿物材料与环境修复[M].北京:化学工业出版社,2004:170-171.[23]Ma, J F, Zhu, L Z, Simultaneous sorption of phosphate and phenanthrene to inorgano - organo -bentonite from water [J].Journal of HazardousMaterials, 2006,136(3):982-988.[24]Chen, B L; Zhu, L Z; Zhu, J X, Configurations of the bentonite - sorbed myristylpyridinium cation and their influences on the up take of organic compounds[J].Environmental Science Technology, 2005,39:6093-6100.[25]Iijima S. Microtubes of Graphitic Carbon[J].Nature,1991,354:56-58.[26]曹德峰,刘宝春,葛海峰,等.碳纳米管吸附水体污染物的研究进展[J].广东化工,2008,35(6):54-57.[27]朱仙弟,梁华定,赵松林等,碳纳米管对 2-硝基苯酚和 2,4-二氯苯酚的吸附特性研究[J].安全与环境学报,2008,8(2):40-43.[28]王环颖,李文军,庄媛,等.碳纳米管吸附去除工业废水中亚甲基蓝的研究[J].光谱实验室,2009,26(6):1664-1668.[29]张伟,施周,徐舜开等.多壁碳纳米管吸附去除水中1, 2, 3-三氯苯[J].湖南大学学报(自然科学版),2009,36(12):69-73.[30]姚士芹,施文健,陈肖云,等.季铵型纤维素红外光谱及对持久性有机污染物的吸附特征[J].光谱学与光谱分析,2009,29(9):2370-2374.[31]宋伟,施文健,钟晓永等,壳聚糖对持久性有机污染物吸附研究[J].功能材料,2007,38(7):1197-1201.[32]孙新元,吴光前,张齐生.竹炭对微污染水中有机污染物的吸附[J].环境科技,2010,23(1):15-18.[33]费正皓、邢蓉,刘富强,等.吸附树脂对微污染水中有机污染物的吸附研究[J].离子交换与吸附,2010,26(1):24-32.[34]Xiang, ZH; Hu, Z; Cao, DP, et al., Metal-Organic Frameworks with Incorporated Carbon Nanotubes: Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping, Angewandte Chemie-International Edition,2011,50(2):491-494.。
重金属污染土壤化学钝化剂应用研究进展
严重之势 , 对生态环境 和人体健康影 响最大 的重金属 主要有 № 、
C d 、 P b 和A s 等 。土壤环境 中的重金属主要来源于矿业 活动的排
骨粉 主要成分是磷酸三钙 , 可有效 降低 酸性重 金属 污染 土壤
的酸度 , 提高 p H, 增强 土壤 的吸附性能 , 促使土壤 重金属有 效态
重金属 污染土壤 化学钝化剂应用研究进展
韦树燕 黄宇妃 宋波 ( 桂林理工大学环境科学与工程学院 广西桂林 5 4 1 0 0 6 )
能有效 地促进 了土壤水溶态和交换吸附态 c d含量的降低㈣。 天然沸石是一种优 良的铅污染土壤修复材料 , 通过调节土壤
p H值和阳离子交换量抑制重金属铅的生物活性 _ l 1 ] 。同时 , 由于沸 石 比表面积大 , 并带 阴离子 , 能促使 铅的形态从 非残渣态 向残渣
c u 、 P h 、 A s 和 z n有效 态含量分别为对 照的 1 5 . 7 %、 3 8 . 6 %、 1 9 . 2 %、
0引 言
土壤是人类赖 以生存 的重要 自然资源 。随着工矿业 的发展 , 人类活动对土壤环 境的介入程度越来越高 , 重金属污 3 %E 。 而赤泥和富含巯基的有机物秸秆复合使用是一 种 高效钝化 剂 , 对环境友好 , 二次污染风险很小 , 能大幅降低作物
构, 改善 土壤理化性质 。有机物料有助于恢复土壤微生态环境 系
统, 降低土壤 中有 毒重金 属的生物可 给性 , 从而减 少对作物 的毒 害[ 2 1 ] 。常见的有机固化 物包 括禽畜粪便 、 无 害化后 的作物秸秆 、 豆
科绿肥和污泥等阎。 陈丹艳等研究发现有机肥 、 钢渣及泥炭不同用
态转化 , 从而降低 土壤 中重金属 的有效性_ 1 2 3 1 。研究表 明沸石降低
天然沸石成分
天然沸石成分
天然沸石是一种常见的矿物,其主要成分是硅酸盐。
它具有多孔的结构,可以吸附和释放气体、液体和溶质,因此在许多领域都有广泛的应用。
本文将介绍天然沸石的成分、性质和应用。
一、成分
天然沸石主要由硅酸盐组成,其中硅氧四面体和铝氧六面体交替排列形成多孔的结构。
此外,天然沸石还含有钠、钙、镁等金属离子,这些离子可以影响其吸附性能和化学反应。
二、性质
1.多孔性:天然沸石具有多孔的结构,具有较大的比表面积,能够吸附大量气体、液体和溶质。
2.离子交换性:天然沸石表面带有负电荷,可以与带正电荷的离子进行离子交换,具有一定的选择性。
3.吸附性:天然沸石具有良好的吸附性能,可以吸附有机物、重金属离子等污染物,净化水和空气。
4.稳定性:天然沸石在一定条件下具有较好的化学稳定性,不易分解和溶解。
三、应用
1.环境保护:天然沸石可以用于净化水和空气,去除污染物和异味,保护环境和人类健康。
2.工业生产:天然沸石可以用作催化剂、吸附剂、分离剂等,在化工、石油、医药等行业有广泛的应用。
3.土壤改良:天然沸石可以改善土壤结构,提高土壤肥力和保水能力,促进植物生长。
4.畜牧养殖:天然沸石可以用作添加剂,改善畜禽饲料的质量,促进动物生长和健康。
天然沸石是一种重要的矿物资源,具有多种优良性能和广泛的应用前景。
通过深入研究和开发利用,可以更好地发挥其作用,促进环境保护和可持续发展。
希望本文能够增加对天然沸石的了解,推动其在各领域的应用和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Hazardous Materials 170(2009)1–6Contents lists available at ScienceDirectJournal of HazardousMaterialsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j h a z m atReviewProgress in the remediation of hazardous heavy metal-polluted soils by natural zeoliteWei-yu Shi a ,e ,1,Hong-bo Shao a ,b ,c ,∗,1,Hua Li d ,Ming-an Shao a ,Sheng Du aaState Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences,Northwest A&F University,Yangling 712100,China bShandong Key Laboratory of Eco-environmental Sciences for Yellow River Delta,Binzhou University,Binzhou 256603,China cInstitute for Life Sciences,Qingdao University of Science &Technology,Qingdao 266042,China dCollege of Environment and Resources,Shanxi University,Taiyuan 030006,China eGraduate University of the Chinese Academy of Sciences,Beijing 100049,Chinaa r t i c l e i n f o Article history:Received 9April 2009Received in revised form 22April 2009Accepted 22April 2009Available online 3May 2009Keywords:Natural zeolite RemediationHazardous heavy metal SoilEnvironment Recyclinga b s t r a c tHazardous heavy metal pollution of soils is an increasingly urgent problem all over the world.The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling.But its theory and application dose are not fully clear.This paper reviews the related aspects of theory and application progress for the remediation of hazardous heavy metal-polluted soils by natural zeolite,with special emphasis on single/co-remediation.Based on the comments on haz-ardous heavy metal behavior characteristics in leaching and rhizosphere and remediation with zeolite for heavy metal-polluted soils,it indicated that the research of rhizosphere should be strengthened.Theory of remediation with natural zeolite could make breakthroughs due to the investigation on synthetic zeo-lite.Co-remediation with natural zeolite may be applied and studied with more prospect and sustainable recycling.©2009Elsevier B.V.All rights reserved.Contents 1.Introduction............................................................................................................................................12.Theory of remediation by natural zeolite..............................................................................................................23.Applications............................................................................................................................................23.1.Single-remediation .............................................................................................................................23.1.1.Leaching ...............................................................................................................................33.1.2.Rhizosphere...........................................................................................................................33.2.Co-remediation.................................................................................................................................44.Conclusions and perspectives..........................................................................................................................4Acknowledgements....................................................................................................................................4References .............................................................................................................................................51.IntroductionHuman activities have introduced numerous potential haz-ardous trace elements into the environment since the industrial∗Corresponding author at:Institute for Life Sciences,Qingdao University of Sci-ence &Technology,Zhengzhou Road 53,Qingdao 266042,China.Tel.:+8653284023984.E-mail addresses:shaohongbo@ ,shaohongbochu@ (H.-b.Shao).1These authors contributed to this paper equally.growth.The intensive use of waste water irrigation,sewage sludge,pesticide and emissions from vehicle exhausts,mining,smelt-ing and the rapid development of industries without effective control has resulted in a large accumulation of heavy metals in soils [1–3,72–76].Heavy metal pollution of soils is an increas-ingly urgent problem all over the world.Heavy metals,unlike organic contaminants,are generally immutable,not degradable and persistent in soils [4,72–77].Although soils have a natural capac-ity to attenuate the bioavailability and the movement of metals through them by means of different mechanisms (precipitation,adsorption process and redox reactions),when the concentra-0304-3894/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.jhazmat.2009.04.0972W.-y.Shi et al./Journal of Hazardous Materials170(2009)1–6tions of heavy metals become too high to allow the soil to limit their potential effects,contaminants can be mobilized,result-ing in serious contamination of agricultural products or ground water.It is necessary to take action to remediate polluted soils [5–13,72–77].Generally,soil remediation are based on two approaches: removal/extraction of the heavy metals from the matrix by elec-trokinetic and/or“washing”processes which are characterized by high costs and laborious management[14,15,72–77]or reduction of metal mobility with“in situ”techniques such as phytoremedi-ation.Currently,in situ soil remediation techniques are focused in reducing heavy metals risk in soils,extremely.It was classified into six types[7,16],including:(1)chemical stabilization method to reduce the solubility of heavymetals by adding to some non-toxic materials into the soils [17,18,72];(2)removal of polluted surface soils and replacement with cleansoils[19,77];(3)covering the original polluted soil surface with clean soils[19,20,73,74];(4)on-site chemical leaching with agents[14–16,72];(5)dilution method,mixing polluted soils with surface and sub-surface clean soils to reduce the concentration of heavy metals[16];(6)phytoremediation[5,21,22,77].Methods(2)–(5)are not tendency-developed techniques, because they are not only highly costly but also result in secondary pollution to larger extent.Although phytoremediation should be recommended,the methodology should be more improved.Appar-ently,the method(1)is more mature and extensive than the above other techniques[23,24].In this case different additives(lime,zeolite,clay minerals,com-post,peat,flying ashes,phosphate amendments,etc.)have been investigated[5,12,16–18,25–30,72–76].It has been demonstrated that zeolite may be more suitable for remediation of heavy metal-contaminated soils than other amendments,because it adjusts soil pH value modestly and does not import new pollution[1,31]. Contrarily,phosphate amendment is a potential source of the eutrophication of surface.Alkaline compounds(e.g.lime)cause solonetzization of soils[1]and compost contains many hazardous materials[32].Natural zeolite as a potential vast resource wasfirst found in 1756and mined in various deposits throughout the world[33–36]. Currently,it can also be produced synthetically to tailor the prop-erties for specific applications[25,37–39].So,generally speaking, zeolite is a class of alkaline porous alumio-silicates[40]with a negative charge[41],having a three-dimensional framework,neu-tralized by introducing exchanged cations in the structure sites of it [42,43].The exchanging efficiency depends on the micro-porosity and exchanging capacity of the particular zeolite[44].These char-acteristics vary widely depending on the origin of the material[45].Although zeolite has been extensively used for the remediation of hazardous heavy metal-polluted soils,the related informa-tion,especially specific reviews and general comments is very much limited.The main purpose of this paper is to provide a review on theory and application of single/co-remediation of heavy metal-polluted soils with zeolite.Simultaneously,process of remediation also will be discussed from leaching and rhizo-sphere aspects,depending on the literatures and practical working experiences.Only based on these,the theory and technology can be improved for natural zeolite’s extensive application with recycling.2.Theory of remediation by natural zeoliteThe technique of remediation with zeolite has been used for a long time,but the theory has not been made an agreement [31,37,46–49].Scientists summarized that zeolite can basically lead to the immobilization of metals in three ways[49].Firstly,zeolites dissolve supplying alkalinity to the acid polluted soils,causing the precipitation of insoluble phases.These neoformed phases con-tain metals as major constituents[18]or as minor components co-precipitated in hydroxides[6,50,51].Secondly,the increase in alkalinity promotes the metal sorption via surface complexation processes.Mineral surfaces have a positive charge at low pH values due to the sorption of protons,and they acquire a negative charge as pH increases owing to the deprotonation of the surface unsat-urated bonds[37,47,52,72–77].PH value makes cations increase through stable complexex with the negative radicals on the sur-faces.Especially,natural zeolite plays a significant role in surface complexation because of their higher specific surface[34,44,52]. Thirdly,metal retention may also take place regardless of pH value due to the cation exchange in zeolite[31,53].Zeolite is crystalline aluminum-silicates,with group I or II elements as counter ions.Its structure is made up of a framework of[SiO4]4−and[AlO4]5−tetra-hedra linked to each other at the corners by sharing their oxygen. The substitution of Si(IV)by Al(III)in the tetrahedra accounts for a negative charge of the structure,which may give rise to a high cation exchange capacity(CEC)(up to5mequiv./g)when the open spaces allow the access of cations[41].Practically,the three ways can be modally generalized into two factors:pH value and cation exchange.Researchers further indi-cated that pH value is a major factor through the smart leaching design(batch tests and column test)[49].Other scientists argued that the remediation of soils was mainly affected by the CEC rather than the pH value[31]and investigated the changes of zeolite struc-ture caused by the exchange with cations of different heavy metals by X-ray powder diffraction(XRD)[46].We may demonstrate the pH value is a more important factor comparing with CEC in pot experiment(Shi et al.,unpublished report).Apparently,the theory achieves improvement,but the agreement has not been made in fact.Therefore,it should be studied deeply and effectively[47]. 3.Applications3.1.Single-remediationThe single-remediation with zeolite is a wide topic.Generally, single-remediation implies two means:(1)zeolite as soil amelio-rant was used in farm for improving soil quality,and co-remediation method was not considered at early stage.(2)Other remediation methods cannot be applied under specific situation due to geogra-phy,economy,technology and so on.For instance,the farm soil pollution with heavy metals is seri-ous for more than50years in Copsa Mica area,Romania.Classical methods cannot be applied because of high cost.Another possi-bility would be the phytoremediation,especially phytoextraction of these metals[54,55],but this requires a very long time and the range of hyperaccumulators existing in Romania is very narrow.In this respect,there are many researches onfinding affordable mate-rials with low price,which are able to immobilize great amounts of heavy metals.At last,the zeolite is employed for remediation of polluted soils.Up to now,some studies have demonstrated advantages of zeo-lite for the remediation of heavy metal-polluted soils.Two rural soils contaminated by cadmium(Cd)and lead(Pb)were used to evaluate the effect of different chemical treatments on changes in speciation and extractability of Cd and Pb,and in phytoavailabilityW.-y.Shi et al./Journal of Hazardous Materials170(2009)1–63to wheat.The result indicated zeolite can significantly reduce the uptake of Cd and Pb in wheat shoots and lead available form of Cd and Pb to transform unavailable forms[18].The effects of chemical amendments(zeolite,compost and calcium hydroxide)on the solu-bility of Pb,Cd and Zn in a contaminated soil were determined.The calcium hydroxide and the zeolite were the most effective for reduc-ing Pb and Cd solubility,respectively[31].Reduction of availability of heavy metals(lead,copper and zinc)in urban soils by using four inorganic materials[acid zeolite(AZ),sodium zeolite(SZ),slovakite (SL)and apatite(AP)]has been determined and the efficiency of remediation is followed below:AZ>SZ>AP>SL[55].Shi et al.sug-gested that the zeolite was a kind of high-effective amendments for heavy metal-polluted garden soils[56].When the efficiency of zeolite is highlighted,both of relatively important processes should also be introduced,i.e.leaching and rhizosphere[57,58,77].3.1.1.LeachingMetals may be present in soils from a variety of sources and can represent a potential hazard to humans and the environment. The potential risk of heavy metals in soils,with respect to their mobility and ecotoxicological significance,is determined by their solid–solution partitioning rather than the total heavy metal con-tent,if they are readily released into soil solution or are otherwise available to biological processes[57–59].The release of heavy metal cations to the water phase(“leaching”)and so the susceptibility for transport processes depends on their solution speciation and their affinity to bind to reactive surfaces in the soil matrix[60].How-ever,if such metals are bound up in relatively inert and insoluble compounds,the danger they represent is reduced substantially.In some studies,zeolite additive has been used to reduce the leaching of mixture of Zn,Ni,Pb,Cu,Sb,Co,Tl and Cd from con-taminated soil samples through leaching experiment(almost,soil column and batch test).In the leaching process,metal ions moved from the soil particles to the zeolite additive particles where their movement was terminated and were stabilized[34,49,61,62].Some reports used a natural zeolite additive to reduce the leach-ing of Pb2+,Cd2+and Ni2+from a soil contaminated with mixtures of the three metals.The results from the repeated leaching column experiments confirmed the selectivity of the additive and a satis-factory leaching reduction was achieved for Cd and Pb[34].This research was carried out to investigate the effects of natural zeo-lite on stabilizing Cd-contaminated soil treated with0.01M CaCl2 leaching solution.The results from the batch experiment showed that application of zeolite to soil reduced Cd leaching in all the con-taminated soils.When more zeolite was added to soil,lower Cd concentrations were detected in the leaching solution[61].We also found similar phenomenon for Pb-contaminated garden soil with soil column test.The more natural zeolite was added to the soil,the lower Pb concentrations were detected in the leaching solution(Shi et al.,unpublished results).Likely,the application of synthesized zeolite also is effective for decreasing leaching of heavy metals as same as natural zeo-lite.There is one report that selected the most effective zeolite in cadmium and zinc by binding out of six synthetic zeolites and one natural zeolite.The results showed that the free ionic concentration of Cd and Zn in leachate strongly decreased after the application of zeolite[62].The use of zeolitic material synthesized from coalfly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley(SW Spain).The results showed that the zeolitic material considerably decreased the leaching of Cd,Co,Cu,Ni,and Zn[49,72,75,77].3.1.2.RhizosphereRhizosphere as a hot spot is always studied since itsfirst defi-nition.It is now considered not only as the interface between the root surface and bacteria but also as the whole interface between the roots and the soil[63].The production of protons,exudates and metabolites is released by plant roots in the rhizosphere soil[64]Table1Effect of different additions of natural zeolite doses and humic acids between NHA and HA on available fractions of lead in different Pb-treated garden soil(mg kg−1)a(adopted from Shi et al.[56]).Fraction Treatment(mg kg−1)Zeolite dose(g kg−1)051020Water-solubleNHA b00.051±0.003a0.041±0.002b0.019±0.001c0.005±0.001d 1250.989±0.057a0.849±0.049b0.775±0.045b0.401±0.023c500 2.049±0.066a 1.828±0.079b 1.297±0.106c 1.147±0.118d1000 2.173±0.088a 1.922±0.103a 1.314±0.114a 1.249±0.134b2000 2.829±0.104a 2.518±0.116a 2.249±0.121b 1.772±0.140bHA00.053±0.001a ns0.047±0.002b ns0.025±0.001c*0.006±0.001d ns125 1.200±0.127a ns0.842±0.019b ns0.770±0.013b ns0.390±0.012c ns500 2.015±0.108a ns 1.783±0.002b ns 1.560±0.110b ns 1.448±0.192b ns1000 2.443±0.004a ns 2.093±0.020b* 1.893±0.111c ns 1.778±0.003c*2000 3.228±0.292a ns 3.113±0.003a** 2.448±0.186b ns 2.108±0.002b**ExchangeableNHA b00.368±0.031a0.354±0.062a0.340±0.071a0.285±0.095b 125 3.86±0.10a 3.35±0.31a 3.18±0.08a 2.85±0.29b500 6.31±0.13a 5.17±0.23b 4.43±0.17c 4.23±0.16c100011.37±0.09a11.36±0.36a11.26±0.14a9.71±0.25b200034.43±0.51a33.69±1.43a27.79±1.72b26.68±1.16cHA00.365±0.041a ns0.330±0.063b ns0.286±0.109b ns0.256±0.061c ns125 3.77±0.08a ns 3.28±0.04a ns 2.97±0.23b ns 2.74±0.21c ns500 5.63±0.18a* 4.75±0.11b ns 3.93±0.29c ns 3.37±0.11c**100011.69±0.67a*10.55±0.31a ns9.74±0.41b*8.17±0.32c*200030.47±0.75a*27.78±2.58a ns24.07±2.18b ns16.42±0.54c***a The difference among treatments tested by one-way AVONA,the number of which on the same row followed by different letters was significantly different at p<0.05 (Duncan method);mean values between NHA and HA denoted by ns(p≥0.05),*p<0.05,**p<0.01,***p<0.001differ significantly,according to independent-samples T test.b NHA:samples were not treated by humic acids and just treated by zeolite in pot experiment I;HA:samples were treated by humic acids and zeolite in pot experiment II.4W.-y.Shi et al./Journal of Hazardous Materials170(2009)1–6and they influence heavy metal solubility and uptake directly by acidification,chelation,precipitation and redox reactions indirectly through their effects on microbial activity,physical and chemical properties of the rhizosphere[65,66].There are significant differ-ences between rhizosphere and non-rhizosphere in soil properties.Although many studies have been done on rhizosphere,little information is available on material behavior characteristics in rhi-zosphere under amendment-regulated condition.In this review,it is emphasized on the distribution/transform of heavy metals in rhizosphere during zeolite application.We investigated bioavail-ability of Pb in rhizosphere comparing with different layers of non-rhizosphere using self-made rhizobox after zeolite was applied into the Pb-polluted garden soil.The result indicated the reduced degree of bioavailable Pb in rhizosphere is higher than non-rhizosphere with increase of zeolite dose(Shi et al.,unpublished results).However,the relative literature has not been found except the unpublished paper.3.2.Co-remediationAlthough the concept of co-remediation of heavy metal-polluted soils with zeolite has not been established,few studies have been done.Some reports studied the role of clinoptilolite in organo-zeolitic-soil systems for phytoremediation.It was found that the zeolite component of the soil system supports biofilm formation and this behavior is thought to account for the additional plant growth in clean and metal-polluted soils.So they suggested that organo-zeolitic-soil systems could be applied for re-vegetating land made barren by metal pollution[48].Other reports demon-strated that zeolite-amended composts are more effective than un-amended for remediation of heavy metal-polluted soils through leaching experiment[32].We reported the co-remediation effect on the lead-polluted garden soil by zeolite and humic acids,which was from comparing with the remediation of single zeolite in terms of the lead fraction of sequential extraction in the soil and the dis-tribution of lead in different parts of rape.The study indicated the mode of co-remediation not only restrained availability of lead in the contaminated garden soil but also enhanced validity of phy-toremediation[56,77].Strictly speaking,all of the above studies may not belong to the category of co-remediation with zeolite,but they have opened a better way for the research of co-remediation of heavy metal-polluted soils and extensive application in environmental remediation with natural zeolite[56,59–69].The obvious results from zeolite application for the remediation of heavy metal-polluted garden soils can be seen in Table1.4.Conclusions and perspectivesHazardous heavy metal pollution of soils is one of the most important environmental problems throughout the world[70–77]. In fact,heavy metals have a significant toxicity for humans,animals, microorganisms and plants.Among the most widespread remedi-ation technologies of metal soil pollution,zeolite remediation is an in situ low-cost and low-impacting technology that has received increasing attention,owing to its environmentally friendly nature and easy large-scale applicability.The zeolite has recently become recognized as an effective amendment for remediation of heavy metal-polluted soils,but the theory and application of remediation are not fully clear.Current researches have provided an alternative to the theory of remediation at least.Maybe,the next work is just a transient choice,because both of the two factors(pH value and CEC)are most likely concomitant and their effects are different on the remediation of heavy metal-polluted soils.Apparently,the scientific transient choice should be needed for the definition of the theory.Natu-Fig.1.The paradigm of study for the single-remediation of heavy metal-polluted soil with natural zeolite.ral zeolite has been studied extensively for remediation of heavy metal-polluted soils due to their wide availability and low cost. Studies on synthetic zeolite tend to focus on determining thermo-dynamic parameters and it has generally not been considered for environmental applications.If synthetic zeolite obtains modeled structure and is applied to the study of remediation of heavy metal-polluted soils,the breakthrough of theory could be achieved by methodology of physical chemistry or quantum chemistry[67–77].The process of leaching and rhizosphere plays important roles in single-remediation of heavy metal-polluted soils.The study of leaching is well developed relatively,but no work has been done on rhizosphere.That is a key and significant work for the remediation of heavy metal-polluted soils by natural zeolite.According to this review,Fig.1shows the paradigm of study for the single-remediation of hazardous heavy metal-polluted soils with zeolite.As we known,the essence of single-remediation of heavy metal-polluted soils with zeolite is the immobilization of heavy metals in soils.The conception does notfit in co-remediation with zeolite,because this mode of remediation with zeolite could promote the mobilization of heavy metals in soils to some extent. Nevertheless,just due to the special function,co-remediation with natural zeolite may hold prospective promise as the mainstream method on heavy metal-polluted soils for the developing countries specially.AcknowledgementsThis research was supported by Natural Science Foundation of Shanxi Province(No.20051034),Key Laboratory of Polluted Environment Remediation and Ecological Health,Ministry of Edu-cation,College of Natural Resources and Environmental Science, Zhejiang University,China(No.050203),The Science&Technol-ogy Key Program of Shanxi Province(20090311072)(to Li Hua), the Major Project of National Natural Science Foundation of China (90502006),Shao M-A’s Innovation Team Project of Education Ministry of China and Northwest A&F University,InternationalW.-y.Shi et al./Journal of Hazardous Materials170(2009)1–65Cooperative Partner Plan of Chinese Academy of Sciences,One-Hundred-talent Plan of Chinese Academy of Sciences(to Shao Ming-An),the Cooperative&Instructive Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (10501-HZ)and the Award Foundation State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau(to Shao Hong-Bo).Authors also extended sincere thanks for three reviewers and Dr.Merv Fingas,Editor for Journal of Hazardous Materials for their critical comments and conductive suggestions,respectively. References[1]J.Kumpiene,gerkvist,C.Maurice,Stabilization of As,Cr,Cu,Pb and Zn insoil using amendments—a review,Waste Manage.28(2008)215–225.[2]A.Battaglia,N.Calace,E.Nardi,B.M.Petronio,M.Pietroletti,Reduction of Pband Zn bioavailable forms in metal polluted soils due to paper mill sludge addition—effects on Pb and Zn transferability to barley,Biores.Technol.98 (2007)2993–2999.[3]G.Garau,P.Castaldi,L.Santona,P.Deiana,P.Melis,Influence of red mud,zeoliteand lime on heavy metal immobilization,culturable heterotrophic microbial populations and enzyme activities in a contaminated soil,Geoderma142(2007) 47–57.[4]D.C.Adriano,W.W.Wenzel,J.Vangronsveld,N.S.Bolan,Role of assisted naturalremediation in environmental cleanup,Geoderma122(2004)121–142.[5]H.M.Chen, C.R.Zheng, C.Tu,Z.G.Shen,Chemical methods and phytore-mediation of soil contaminated with heavy metals,Chemosphere41(2000) 229–234.[6]A.Chlopecka,D.C.Adriano,Mimicked in-situ stabilization of metals in a croppedsoil:bioavailability and chemical form of zinc,Environ.Sci.Technol.30(1996) 3294–3303.[7]E.M.Fawzy,Soil remediation using in situ immobilisation techniques,Chem.Ecol.24(2008)147–156.[8]N.F.Andres,M.S.Francisco,Effects of sewage sludge application on heavymetal leaching from mine tailings impoundments,Biores.Technol.99(2008) 7521–7530.[9]J.F.Peng,Y.E.Song,P.Yuan,X.Y.Cui,G.L.Qiu,The remediation of heavy metalscontaminated sediment,J.Hazard.Mater.161(2009)633–640.[10]H.J.Cotter,S.Caporn,Remediation of contaminated land by formation of heavymetal phosphates,Appl.Geochem.11(1996)335–342.[11]D.M.Hamby,Site remediation techniques supporting environmental restora-tion activities—a review,Sci.Total Environ.191(1997)203–224.[12]A.Garcia-Sanchez,A.Alastuey,X.Querol,Heavy metal adsorption by differentminerals:application to the remediation of polluted soils,Sci.Total Environ.242(1999)179–188.[13]S.Raicevic,T.Kaludjerovic-Radoicic,A.I.Zouboulis,In situ stabilization of toxicmetals in polluted soils using phosphates:theoretical prediction and experi-mental verification,J.Hazard.Mater.117(2005)41–53.[14]J.Virkutyte,M.Sillanpaa,tostenmaa,Electrokinetic soil remediation-critical overview,Sci.Total Environ.289(2002)97–121.[15]D.M.Zheng,C.E.Dong,C.Long,Electrokinetic remediation of a Cu contami-nated red soil by conditioning catholyte pH with different enhancing chemical reagents,Chemosphere56(2004)265–273.[16]Z.S.Chen,D.Y.Lee,Evaluation of remediation techniques on two cadmium pol-luted soils in Taiwan,in:A.Iskandar,D.C.Adriano(Eds.),Remediation of Soils Contaminated with Metals:Book Chapter of Special Volume of Second Inter-national Conference on the Biogeochemistry of Trace Elements,Taipei,Taiwan, Sci.Rev.(London)(1997)209–223.[17]S.B.Chen,Y.G.Zhu,Y.B.Ma,G.McKay,Effect of bone char application on Pbbioavailability in a Pb-contaminated soil,Environ.Pollut.139(2006)433–439.[18]Z.S.Chen,G.J.Lee,J.C.Liu,The effects of chemical remediation treatments onthe extractability and speciation of cadmium and lead in contaminated soils, Chemosphere41(2000)235–242.[19]M.H.Wong,Ecological restoration of mine degraded soils,with emphasis onmetal contaminated soils,Chemosphere50(2003)775–780.[20]Y.M.Wang,T.C.Chen,K.J.Yeh,M.F.Shu,Stabilization of an elevated heavy metalcontaminated site,J.Hazard.Mater.88(2001)63–74.[21]P.Alvarenga,A.P.Goncalves,R.M.Fernandes,A.de Varennes,G.Vallini,E.Duarte,et al.,Evaluation of composts and liming materials in the phytostabilization ofa mine soil using perennial ryegrass,Sci.Total Environ.406(2008)43–56.[22]C.L.Luo,Z.G.Shen,S.D.Li,A.J.M.Baker,Enhanced phytoextraction of Pb andother metals from artificially contaminated soils through the combined appli-cation of EDTA and EDDS,Chemosphere63(2006)1773–1784.[23]P.Alvarenga,P.Palma,A.P.Goncalves,N.Baiao,R.M.Fernandes,A.de Varennes,et al.,Assessment of chemical,biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin,Chemo-sphere72(2008)1774–1781.[24]V.P.Gadepalle,S.K.Ouki,R.Van Herwijnen,T.Hutchings,Immobilization ofheavy metals in soil using natural and waste materials for vegetation establish-ment on contaminated sites,Soil Sed.Contam.16(2007)233–251.[25]A.Badora,G.Furrer,A.Grunwald,R.Schulin,Immobilizationof zinc and cad-mium in polluted soils by polynuclear Al-13and almontmorillonite,J.Soil Contam.7(1998)573–588.[26]Y.M.Li,R.L.Chaney,G.Siebielec,B.A.Kerschner,Response of four turfgrasscultivars to limestone and biosolids-compost amendment of a zinc and cad-mium contaminated soil at Palmerton,Pennsylvania,J.Environ.Qual.29(2000) 1440–1447.[27]L.M.Schuman,S.Dudka,K.Das,Cadmium forms and plant availability incompost-amended soil,Commun.Soil Sci.Plant Anal.33(2002)737–748. [28]P.Schwab,D.Zhu,M.K.Banks,Heavy metal leaching from mine tailings asaffected by organic amendments,Biores.Technol.98(2007)2935–2941. [29]A.Bilge,A.Y.Mehmet,Remediation of lead contaminated soil by stabiliza-tion/solidification,Water Air Soil Pollut.133(2002)253–263.[30]E.Alvarez-Ayuso,A.Garcia-Sanchez,Sepiolite as a feasible soil additive for theimmobilization of cadmium and zinc,Sci.Total Environ.305(2003)1–12. [31]P.Castaldi,L.Santona,P.Melis,Heavy metal immobilization by chemical amend-ments in a polluted soil and influence on white lupin growth,Chemosphere60 (2005)365–371.[32]R.van Herwijnen,T.R.Hutchings,A.Ai-Tabbaa,A.J.Moffat,M.L.Johns,S.K.Ouki,Remediation of metal contaminated soil with mineral-amended composts,Env-iron.Pollut.150(2007)347–354.[33]U.Ulusoy,S.Simsek,Lead removal by polyacrylamide–bentonite and zeolitecomposites:effect of phytic acid immobilization,J.Hazard.Mater.127(2005) 163–171.[34]A.Shanableh,A.Kharabsheh,Stabilization of Cd,Ni and Pb in soil using naturalzeolite,J.Hazard.Mater.45(1996)207–217.[35]S.K.Pitcher,R.C.T.Slade,N.J.Ward,Heavy metal removal from motorwaystormwater using zeolites,Sci.Total Environ.334(2004)161–166.[36]R.M.Barrer,Zeolites and Clay Minerals as Sorbents and Molecular Sieves,Aca-demic Press,FRS London,1978.[37]G.Nardin,L.Randaccio,E.Zangrando,Lead clustering in a zeolite-X,Zeolites15(1995)684–688.[38]C.Muniz-Lopez,J.Duconge,R.Roque-Malherbe,Paranitrophenol liquid-phaseadsorption in dealuminated Y zeolite,J.Colloid Interface Sci.329(2009)11–16.[39]I.C.Ostroski,M.A.S.D.Barros,E.A.Silva,J.H.Dantas,P.A.Arroyo,O.C.M.Lima,Acomparative study for the ion exchange of Fe(III)and Zn(II)on zeolite NaY,J.Hazard.Mater.161(2009)1404–1412.[40]U.D.Joshi,P.N.Joshi,S.S.Tamhankar,V.P.Joshi,B.B.Idage,V.V.Joshi,V.P.Shiraljar,Influence of the size of extra framework monovalent cations in X-types zeolite on their thermal behavior,Thermochim.Acta387(2002)121–130.[41]M.M.Mohamed,Heat capacities,phase transitions and structural properties ofcation-exchanged H-mordenite zeolites,Thermochim.Acta372(2001)75–83.[42]D.W.Breck,Zeolite Molecular Sieves:Structure,Chemistry and Use,John Wileyand Sons Press,New York,1974.[43]K.D.Mondales,R.M.Carland,F.F.Aplan,The comparative ion exchange capac-ities of natural sedimentary and synthetic zeolites,Miner.Eng.8(1995) 535–548.[44]J.E.Sponer,Z.Sobalik,J.Leszczynski,B.Wicthterlova,Effect of metal coor-dination on the charge distribution over the cation binding sites of zeolites.A combined experimental and theoretical study,J.Phys.Chem.B105(2001)8285–8290.[45]W.Mozgawa,The influence of some heavy metals cations on the FTIR spectraof zeolites,J.Mol.Struct.555(2004)299–304.[46]P.Castaldi,L.Santona,S.Enzo,P.Melis,Sorption processes and XRD analysis ofa natural zeolite exchanged with Pb2+,Cd2+and Zn2+cations,J.Hazard.Mater.156(2008)428–434.[47]E.I.Basaldella,P.G.Vazquez,F.Iucolano,D.Caputo,Chromium removal fromwater using LTA zeolites:effect of Ph,J.Colloid Interface Sci.313(2007)574–578.[48]P.J.Leggo,B.Ledesert,G.Christie,The role of clinoptilolite in organo-zeolitic-soilsystems used for phytoremediation,Sci.Total Environ.363(2006)1–10. [49]X.Querol,A.Alastuey,N.Moreno,E.Alvarez-Ayuso,A.Garcia-Sanchez,J.Cama,et al.,Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coalfly ash,Chemosphere171(2006)171–180. [50]A.Chlopecka,D.C.Adriano,Influence of zeolite,apatite and Fe-oxide on Cd andPb uptake by crops,Sci.Total Environ.207(1997)195–206.[51]J.Boisson,M.Mench,J.Vangronsveld,A.Ruttens,P.Kopponen,T.Koe,Immo-bilization of trace metals and arsenic by different soil additives:evaluation by means of chemical extractions,Commun.Soil Sci.Plant Anal.30(1999) 365–387.[52]M.Trgo,J.Peric,N.V.Medvidovic,A comparative study of ion exchange kinet-ics in zinc/lead-modified zeolite–clinoptilolite systems,J.Hazard.Mater.136 (2006)938–945.[53]L.R.Nissen,N.W.Lepp,R.Edwards,Synthetic zeolites as amendments forsewage sludge-based compost,Chemosphere41(2000)265–269.[54]C.H.Barbu,R.Grovu,Phytoremediation of the soils contaminated with heavymetals in Copsa Mica area—Romania,in Kostecki,CRC Press,Amherst,2001. [55]F.Madrid,A.S.Romero,L.Madrid,C.Maqueda,Reduction of availability of tracemetals in urban soils using inorganic amendment,Environ.Geochem.Health 28(2006)365–373.[56]W.Y.Shi,H.B.Shao,H.Li,M.A.Shao,S.Du,Co-remediation of the lead-pollutedgarden soil by exogenous natural zeolite and humic acids,J.Hazard.Mater.(2008),doi:10.1016/j.jhazmat.2008.12.092.[57]M.B.McBride,S.Sauve,W.Henderschot,Solubility control of Cu,Zn,Cd and Pbin contaminated soils,Eur.J.Soil Sci.48(1997)337–346.[58]S.Sauvé,W.Henderschot,H.E.Allen,Speciation and complexation of cadmiumin extracted soil solutions,Environ.Sci.Technol.34(2000)1125–1131.[59]A.Tessie,P.G.C.Campbel,M.Bisson,Sequential extraction procedure for thespeciation of particulate trace metals,Anal.Chem.51(1979)844–851.。