三角形易错题集锦(带答案解析)
人教版初中数学三角形易错题汇编及答案解析

人教版初中数学三角形易错题汇编及答案解析一、选择题1.如图,在ABC V 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC 中,∠C =90°,∠CAB =60°,∴∠CBA =30°,∴∠EAB =∠CAE =30°, ∴CE =12AE =4, ∴AE =8.故选D .【点睛】 此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB =∠CAE =30°是解题关键.2.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A.13B.5C.22D.4【答案】A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.3.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .4.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( )A .4B .5C .6D .9 【答案】C【解析】【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x <9,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.5.如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠OAC 等于( )A .65°B .95°C .45°D .85°【答案】B【解析】【分析】 根据OA =OB ,OC =OD 证明△ODB ≌△OCA ,得到∠OAC=∠OBD ,再根据∠O =50°,∠D =35°即可得答案.【详解】解:OA =OB ,OC =OD ,在△ODB 和△OCA 中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩∴△ODB ≌△OCA (SAS ),∠OAC=∠OBD=180°-50°-35°=95°,故B 为答案.【点睛】本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.6.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =3OD = ∴2221OA AD OD += ∴21OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.7.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A.50°B.55°C.65°D.70°【答案】B【解析】【分析】如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.∆中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,8.如图,在ABC∠=o,则BAC20DAE∠的度数为( )A.70o B.80o C.90o D.100o【答案】D【解析】【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,在由等边对等角,根据三角形内角和定理求解.【详解】如图所示:∵DM 是线段AB 的垂直平分线,∴DA=DB,B DAB ∠=∠ ,同理可得:C EAC ∠=∠ ,∵ 20DAE ∠=o ,180B DAB C EAC DAE ︒∠+∠+∠+∠+∠=,∴80DAB EAC ︒∠+∠=∴100BAC ︒∠=故选:D【点睛】本题考查了线段的垂直平分线和三角形的内角和定理,解题的关键是掌握线段垂直平分线上的点到线段两端的距离相等.9.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A .3B .4C .5D .6【答案】C【解析】【分析】 先根据菱形的性质求出其边长,再作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,再根据菱形的性质求出E′F 的长度即可.【详解】解:如图∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB=2234=5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选C.10.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【答案】A【解析】【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=12∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∠ACE =∠A +∠ABC ,即∠1+∠2=∠3+∠4+∠A ,∴2∠1=2∠3+∠A ,∵∠1=∠3+∠D ,∴∠D =12∠A =12×30°=15°. 故选A .【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C【解析】【分析】连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.13.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A .BC = EFB .AC//DFC .∠C = ∠FD .∠BAC = ∠EDF【答案】C【解析】【分析】 根据全等三角形的判定方法逐项判断即可.【详解】∵BE =CF ,∴BE +EC =EC +CF ,即BC =EF ,且AC = DF ,∴当BC = EF 时,满足SSS ,可以判定△ABC ≌△DEF ;当AC//DF 时,∠A=∠EDF ,满足SAS ,可以判定△ABC ≌△DEF ;当∠C = ∠F 时,为SSA ,不能判定△ABC ≌△DEF ;当∠BAC = ∠EDF 时,满足SAS ,可以判定△ABC ≌△DEF ,故选C.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .14.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B【解析】【分析】 根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.15.在直角三角形中,自锐角顶点引的两条中线为10和35,则这个直角三角形的斜边长是( )A .3B .23C .25D .6【答案】D【解析】【分析】根据题意画出图形,利用勾股定理解答即可.【详解】设AC =b ,BC =a ,分别在直角△ACE 与直角△BCD 中,根据勾股定理得到:2222 10235,2a b b a ⎧⎛⎫+=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩两式相加得:2236a b +=,根据勾股定理得到斜边36 6.==故选:D.【点睛】考查勾股定理,画出图形,根据勾股定理列出方程是解题的关键.16.如图,AD ∥BC ,∠C =30°, ∠ADB:∠BDC= 1:2,则∠DBC 的度数是( )A.30°B.36°C.45°D.50°【答案】D【解析】【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【详解】∵AD∥BC,∠C=30°∴∠ADC=150°,∠ADB=∠DBC∵∠ADB:∠DBC=1:2∴∠ADB=13×150°=50°,故选D.【点睛】熟练掌握平行线的性质是本题解题的关键.17.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】试题分析:∵AC为切线∴∠OAC=90°∵∠C=40°∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.考点:圆的基本性质.18.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A .0根B .1根C .2根D .3根【答案】B【解析】 三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B19.如图,在ABC V 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .已知CDE △的面积比CDB △的面积小4,则ADE V 的面积为( )A .4B .3C .2D .1【答案】A【解析】【分析】 由作图步骤可知直线MN 为线段AB 的垂直平分线,根据三角形中线的性质可得S △CDA =S △CDB ,根据△CDE 的面积比△CDB 的面积小4即可得答案.【详解】由作图步骤可知直线MN 为线段AB 的垂直平分线,∴CD 为AB 边中线,∴S △CDA =S △CDB ,∵△CDE 的面积比△CDB 的面积小4,∴S △ADE =S △CDA -S △CDE =S △CDB -S △CDE =4.故选:A .【点睛】本题考查尺规作图——垂直平分线的画法及三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;熟练掌握三角形中线的性质是解题关键.20.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A.33︒B.56︒C.65︒D.66︒【答案】D【解析】【分析】由折叠的性质得到∠D=∠B,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D.【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.。
初中数学三角形易错题汇编含答案解析

初中数学三角形易错题汇编含答案解析一、选择题1.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【答案】B【解析】【分析】 根据正方形的性质得到∠DAC =∠ACD =45°,由四边形EFGH 是正方形,推出△AEF 与△DFH 是等腰直角三角形,于是得到DE =22EH =22EF ,EF =22AE ,即可得到结论. 【详解】解:∵在正方形ABCD 中,∠D =90°,AD =CD =AB ,∴∠DAC =∠DCA =45°,∵四边形EFGH 为正方形,∴EH =EF ,∠AFE =∠FEH =90°,∴∠AEF =∠DEH =45°,∴AF =EF ,DE =DH ,∵在Rt △AEF 中,AF 2+EF 2=AE 2,∴AF =EF 2AE , 同理可得:DH =DE =22EH 又∵EH =EF ,∴DE =22EF =22×22AE =12AE , ∵AD =AB =6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.2.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.2【答案】B【解析】【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3. 故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.4.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°,∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.5.下列长度的三条线段能组成三角形的是( )A .2, 2,5B .1,3,3C .3,4,8D .4,5,6【答案】D【解析】【分析】三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.【详解】根据三角形三边关系可知,三角形两边之和大于第三边.A 、2+2=4<5,此选项错误;B 、1+3<3,此选项错误;C 、3+4<8,此选项错误;D 、4+5=9>6,能组成三角形,此选项正确.故选:D .【点睛】此题考查三角形三边关系,解题关键在于掌握三角形两边之和大于第三边.即:两条较短的边的和小于最长的边,只要满足这一条就是满足三边关系.6.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100ABC ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 根据题意,连接OA ,OB ,OC ,进而求得BOC MOC ∆≅∆,AOB AON ∆≅∆,即∠CBO =∠CMO ,∠OBA =∠ONA ,根据三角形内角和定理即可得到∠MON 的度数.【详解】如图,连接OA ,OB ,OC ,∵点O 是ABC ∆的内心,∴BCO MCO ∠=∠,∵CM =CB ,OC =OC ,∴()BOC MOC SAS ∆≅∆,∴CBO CMO ∠=∠,同理可得:AOB AON ∆≅∆,∴ABO ANO ∠=∠,∵100CBA CBO ABO ∠=∠+∠=︒,∴100CMO ANO ∠+∠=︒,∴180()80MON CMO ANO ∠=︒-∠+∠=︒,故选:C.【点睛】本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.7.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.8.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C 作CD ⊥直线a ,∴∠ADC =90°.∵∠1=45°,∠BAC =105°,∴∠DAC =30°.∵CD =3,∴AC =2CD =6.故选D .【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.9.如图,在菱形ABCD 中,对角线AC =8,BD =6,点E ,F 分别是边AB ,BC 的中点,点P 在AC 上运动,在运动过程中,存在PE +PF 的最小值,则这个最小值是( )A .3B .4C .5D .6【答案】C【解析】【分析】 先根据菱形的性质求出其边长,再作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,再根据菱形的性质求出E′F 的长度即可.【详解】解:如图∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴2234+,作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,∵AC 是∠DAB 的平分线,E 是AB 的中点,∴E ′在AD 上,且E′是AD 的中点,∵AD=AB ,∴AE=AE ′,∵F 是BC 的中点,∴E ′F=AB=5.故选C .10.如图,在ABC V 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A,B为圆心,以大于12AB的长为半径画弧,两弧分别相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若4CE ,则AE的值为()A.46B.42C.43D.8【答案】D【解析】【分析】根据垂直平分线的作法得出PQ是AB的垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE的长.【详解】由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴AE=8.故选D.【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.11.如图,△ABC≌△A E D,∠C=40°,∠E AC=30°,∠B=30°,则∠E AD=();A.30°B.70°C.40°D.110°【答案】D【解析】【详解】∵△ABC ≌△AED ,∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D -∠E =110°,故选D.12.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.13.下列条件中,不能判断一个三角形是直角三角形的是( )A .三条边的比为2∶3∶4B .三条边满足关系a 2=b 2﹣c 2C .三条边的比为1∶1D .三个角满足关系∠B +∠C =∠A【答案】A【解析】【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】A 、三条边的比为2:3:4,22+32≠42,故不能判断一个三角形是直角三角形;B 、三条边满足关系a 2=b 2-c 2,即a 2+c 2=b 2,故能判断一个三角形是直角三角形;C 、三条边的比为1:1,12+12=)2,故能判断一个三角形是直角三角形;D 、三个角满足关系∠B+∠C=∠A ,则∠A 为90°,故能判断一个三角形是直角三角形. 故选:A .【点睛】此题考查勾股定理的逆定理的应用.解题关键在于掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.14.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠= 【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形; B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.15.如图,在ABC ∆,90C =o ∠,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N,为圆心,大于12MN 长为半径画弧,两弧交于点O ,作弧线AO ,交BC 于点E .已知3CE =,5BE =,则AC 的长为( )A .8B .7C .6D .5【答案】C【解析】【分析】直接利用基本作图方法得出AE 是∠CAB 的平分线,进而结合全等三角形的判定与性质得出AC=AD ,再利用勾股定理得出AC 的长.【详解】过点E 作ED ⊥AB 于点D ,由作图方法可得出AE 是∠CAB 的平分线,∵EC ⊥AC ,ED ⊥AB ,∴EC=ED=3,在Rt △ACE 和Rt △ADE 中,AE AE EC ED ⎧⎨⎩==, ∴Rt △ACE ≌Rt △ADE (HL ),∴AC=AD ,∵在Rt △EDB 中,DE=3,BE=5,∴BD=4,设AC=x ,则AB=4+x ,故在Rt △ACB 中,AC 2+BC 2=AB 2,即x 2+82=(x+4)2,解得:x=6,即AC 的长为:6.故答案为:C .【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD 的长是解题关键.16.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】 利用垂直的定义得到90DAB EAC ∠=∠=︒,则ADC BAE ∠=∠,于是可对①进行判断;利用“SAS ”可证明DAC BAE ∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE ∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB ∠=∠=︒,于是可对③进行判断.【详解】解:AD AB ⊥Q ,AE AC ⊥,90DAB ∴∠=︒,90EAC ∠=︒,DAB BAC EAC BAC ∴∠+=∠+∠,即ADC BAE ∠=∠,所以①正确;在DAC ∆和BAE ∆中,DA AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,所以②正确;ADC ABE ∴∠=∠,∵∠AFD=∠MFB ,90DMB DAB ∴∠=∠=︒,DC BE ∴⊥,所以③正确.故选:D .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.17.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.18.如图,已知AE=AD,AB=AC,EC=DB,下列结论:①∠C=∠B;②∠D=∠E;③∠EAD=∠BAC;④∠B=∠E;其中错误的是()A.①②B.②③C.③④D.只有④【答案】D【解析】【分析】【详解】解:因为AE=AD,AB=AC,EC=DB;所以△ABD≌△ACE(SSS);所以∠C=∠B,∠D=∠E,∠EAC=∠DAB;所以∠EAC-∠DAC=∠DAB-∠DAC;得∠EAD=∠CAB.所以错误的结论是④,故选D.【点睛】此题考查了全等三角形的判定方法,根据已知条件利用SSS证明两个三角形全等,还考查了全等三角形的性质:全等三角形的对应角相等,全等三角形的对应边相等.19.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.20.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22+BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.。
(易错题精选)初中数学三角形经典测试题含解析

∵AE是△ABC中线,
∴BE=CE,
∴EF为△CBG的中位线,
∴EF= BG= ,
故选:D.
【点睛】
此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.
9.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
∴∠CBA=30°,
∴∠EAB=∠CAE=30°,
∴CE= AE=4,
∴AE=8.
故选D.
【点睛】
此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.
8.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()
A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形
C.DA=DED.CE=CD
【答案】D
【解析】
【分析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.
【详解】
11.满足下列条件的两个三角形不一定全等的是()
A.有一边相等的两个等边三角形
B.有一腰和底边对应相等的两个等腰三角形
C.周长相等的两个三角形
D.斜边和一条直角边对应相等的两个等腰直角三角形
【答案】C
初中数学三角形易错题汇编含答案

D.∵AB=AE,∠BAC=∠EAD,AC=AD,∴△ABC≌△AED(SAS),故D不符合题意.
故选C.
12.如图,在菱形 中,点 在 轴上,点 的坐标轴为 ,点 的坐标为 ,则菱形 的周长等于()
A. B. C. D.
【答案】C
【解析】
【分析】
如下图,先求得点A的坐标,然后根据点A、D的坐标刻碟AD的长,进而得出菱形ABCD的周长.
3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是( )
A.4B.3C.6D.2
【答案】B
【解析】
【分析】
首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.
【详解】
解:AD是△ABC中∠BAC的平分线,
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
D、72+202≠252,242+152≠252,故D不正确,
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.
四年级下册数学 《5 三角形》易错题综合练习 人教版 含答案

人教新版四年级下学期《5 三角形》高频易错题集一.选择题(共10小题)1.下面三组线段中,能围成一个三角形的是()A.5厘米、5厘米、7厘米B.4厘米、6厘米、13厘米C.5厘米、5厘米、10厘米2.一个三角形的两条边分别是40厘米、50厘米,第三条边的长度只能选()A.80厘米B.90厘米C.110厘米3.在一个三角形中,如果两个锐角的和大于90°,那么这个三角形一定是()三角形.A.锐角B.直角C.钝角4.一个三角形的两个内角和是100°,这是一个()三角形.A.锐角B.直角C.钝角D.以上都有可能5.一个三角形,经过它的一个顶点画一条线段把它分成两个三角形,其中一个三角形的内角和是()A.180°B.90°C.不确定6.等腰三角形的一个底角和顶角度数的比是3:4,那么这个三角形是()三角形.A.锐角B.直角C.钝角D.无法确定7.下面几种图形,()具有稳定性.A.长方形B.三角形C.平行四边形D.梯形8.下面图形中,()具有稳定性.A.平行四边形B.三角形C.长方形9.下面的小棒中,不能组成三角形的是()A.6厘米、6厘米、6厘米B.6厘米、7厘米、8厘米C.2厘米、7厘米、9厘米D.4厘米、7厘米、1分米10.下面各组线段中,不能组成三角形的是()A.3厘米,4厘米,5厘米B.2厘米,3厘米,5厘米C.3厘米,3厘米,3厘米二.填空题(共5小题)11.自行车的车架做成三角形,这是应用了三角形的性.12.三角形的两个内角之和是85°,这个三角形是.13.用两块完全一样的三角尺拼成一个大三角形,这个三角形的内角和是.14.自行车的大梁做成三角形的形状,是因为三角形具有稳定性.(判断对错)15.长度分别为12cm、6cm和6cm的三条线段能组成一个等腰三角形..三.解答题(共5小题)16.一个三角形的两边长分别是6厘米和9厘米,第三条边的长度一定大于厘米,同时小于厘米.17.在任意三角形中如果有两个内角的和小于90°,那么这个三角形是钝角三角形..18.看图算一算,填一填.19.在不改变下面平行四边形形状的同时,使它变得稳定起来.20.一个三角形两条边的长度分别是6厘米和9厘米,那么第三条边的长度可能是多少?(在可能的数据下面画“√”)3厘米5厘米6厘米12厘米15厘米16厘米人教新版四年级下学期《5 三角形》高频易错题集参考答案与试题解析一.选择题(共10小题)1.【解答】解:A.5+5>7,5﹣5<7,则A符合要求;B.4+6<13,则B不符要求;C.5+5=10,则C不符合要求。
解直角三角形易错题型(带答案)

解直角三角形易错题【基础题型】一、选择题1. 在△ABC 中,∠C=90°,下列等式不正确的是( )A. sin 2A+cos 2=1B. sin 2(90°- A )+ cos 2(90°- A )=1C. C.sin (60°- A )=cos (30°+ A )D. tanA · cotA=12. 已知α为锐角,且cos (α-10°)=23,则α等于( ) A.20° B.40° C.60° D.80°3. 如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AC=3,AB=5,则tan ∠BCD 等于( )A. 43B.34C.53D.544. 在△ABC 中,∠C=90°,斜边AB=m ,∠B=40°,则直角边BC 的长是( )A. msin40°B.msin50°C.mtan40°D.tan40m5. Rt △ABC 中,∠C=90°,两直角边长分别为6,8,现将△ABC 按如图所示方式折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A. 724B.37C.247D.316. 如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的的仰角为60°,则物体AB 的高度为( )A.103米B.10米C.20米D.203米7. 如图,已知楼房AB 高为50米,铁塔塔基距楼房的水平距离BD 为100米,塔高CD 为31503100 m ,则下面结论正确的是( )A. 由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°B. 由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30°8. 以下对坡度的描述正确的是( )A. 坡度是指斜坡与水平线夹角的度数B. 坡度是指斜坡的铅直高度与水平宽度的比C. 坡度是指斜坡的水平宽度与铅直高度的比D. 坡度是指倾斜的角度二、填空题1. 在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,如果CD=4,BD=3,则∠A 的正弦值是 .2. 如图,在Rt △ABC 中,∠CAB=90°,AD 是∠CAB 的平分线,tanB=21,则CD:DB= .3. 在坡度为1:1.5的山坡上植树,要求相邻两树之间的水平距离为6m ,则斜坡上相邻两树的坡面距离为 .4. 如图,在高2m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要 m.三、解答题1.甲,乙两名同学在计算锐角A 的正弦值时,甲的答案为sinA=107,乙的答案为sinA=1013.请你不看解答过程,迅速判断哪名同学的答案一定是错误的,并说明理由。
初中数学八年级数学《全等三角形》易错题精选附答案

全等三角形易错题精选,附答案第1节 全等三角形1.易错点:对应边不确定,需要分类讨论1、已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 为( ) A .37B .4C .3D .3或37参考答案 1、C2.易错点:忽略隐藏的8字形(一)1、如图,△ABC△△AEF ,AB=AE ,△B=△E ,则下列结论:△AC=AF ;△△FAC=△EAB ;△EF=BC ;△△EAB=△EFB ,其中正确的是_________.2、【变式1】如图,△ABC△△AEF ,AB=AE ,△B=△E ,则下列结论中不一定成立的是( )A .AC=AFB .△EAB=△EFBC .△FAB=△EABD .△EAB=△FAC3、【变式2】如图,在△ABC 与△AEF 中,AB=AE ,BC=EF ,△B=△E ,AB 交EF 于D .给出下列结论:△△AFC=△C ;△DE=CF ;△△EAD=△BFD ;△△BFD=△CAF .其中正确的结论是( ) A .△△ B .△△ C .△△ D .△△△4、【变式3】如图,△ABC△△ADE ,△DAC=60°,△BAE=100°,BC 、DE 相交于点F ,则△DFB 的度数是_______.参考答案1、△△△△2、B3、D4、20°3.易错点:忽略隐藏的8字形(二)1、如图,△ABC△△ADE ,BC 的延长线交DA 于F ,交DE 于G ,△ACB=△AED=105°,△CAD=10°,△B=△D=25°,求△DFB 、△DGB 的度数.2、【变式1】如图所示,△ABC△△ADE ,延长BC 分别交AD ,DE 于F ,G ,△CAD=10°,△B=△D=25°,△EAB=120°.求△DFB 和△DGB 的度数.3、【变式2】如图,△ABC△△ADE ,BC 的延长线过点E ,△ACB=△AED=105°,△CAD=10°,△B=50°,则△DEF 的度数为________.参考答案1、△DFB=85°;△DGB=60°.2、△DFB=90°;△DGB=65°3、35°第2节 全等三角形的判定一、用SSS 边边边判定三角形全等二、用SAS 边角边判定三角形全等 4.易错点:误用SSA 判定三角形全等 1、如图,AB=AC ,AE=AD ,要使△ACD△△ABE ,需要补充的一个条件是( )A .△B=△CB .△D=△EC .△BAC=△EAD D .△B=△E参考答案 1、C5.易错点:乱用中点的各种结论1、如图所示,AB=AC,D,E分别是AB,AC的中点.求证:△ABE△△ACD.证明:∵D、E分别是AB、AC的中点∴AD=BD,AE=CE∵AB=AC∴AE=AD在△ABE和△ACD中AE=AD△A=△AAB=AC∴△ABE△△ACD以上证明过程是否有误?若有,请将错误的地方改正.参考答案1、有错,AD=BD,AE=CE应改为AD=1/2AB,AE=1/2AC6.易错点:对应边的关系不确定1、如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=________时,△ABC和△PQA全等.2、【变式1】如图(1),AB=5cm,AC⊥AB,BD⊥AB,AC=BD=4cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B 向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1,△ACP与△BPQ是否全等,请说明理由,并推导出此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=a°”,其他条件不变.设点Q 的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案1、5或10.2、提示:(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.解:(1)(1)当t=1时,AP=BQ=1,BD=AC=4,∵AB=5,∴BP=5-1=4=AC,又∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,在△ACP和△BPQ中,AP=BQ,∠A=∠B,AC=BP,∴△ACP≌△BPQ(SAS),∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∴∠CPQ=90°,即线段PC与线段PQ垂直;(2)△若△ACP△△BPQ,则AC=BP,AP=BQ,△4=5-t,t=xt,解得t=1,x=1,△存在x=1,t=1,使得△ACP与△BPQ全等;△若△ACP△△BQP,则AC=BQ,AP=BP,△t=5-t,4=xt,解得t=2.5,x=1.6,△存在t=2.5,x=1.6,使得△ACP与△BPQ全等;综上所述,存在x=1,t=1或t=2.5,x=1.6,使得△ACP 与△BPQ全等.三、用ASA角边角或AAS角角边判定三角形全等7.易错点:误以为AAS就是两个角和一条边相等1、下列说法正确的是()A.有三个角对应相等的两个三角形全等B.有两边对和其中一边的对角对应相等的两个三角形全等C.有两个角和其中一个角的对边对应相等的两个三角形全等D.有两个角对应相等,还有一条边也相等的两个三角形全等2、【变式1】下列条件不能判断两个直角三角形全等的是()A.有两条直角边对应相等B.有两个锐角对应相等C.斜边和一条直角边对应相等D.斜边和一个锐角对应相等参考答案1、C2、B四、用HL斜边直角边判定三角形全等8.易错点:判定直角三角形全等时将HL与SSA混淆1、如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:△BDF≌△ADC.证明:∵AD⊥BC∴∠BDF=∠ADC=90°在Rt△BDF和Rt△ADC中BF=AC,FD=CD,∠BDF=∠ADC,∴Rt△BDF≌Rt△ADC以上证明是否有错?如果有错,请将错误改正.2、【变式1】如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,则∠ABC=_____.3、【变式2】如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE ⊥AC.参考答案1、有错,证明三角形全等应该用HL,不是SSA需要把∠BDF=∠ADC删掉.2、45°3、证明:△AD△BC,△△BDF=△ADC=90°在Rt△BDF和Rt△ADC中,BF=AC,FD=CD,△Rt△BDF△Rt△ADC(HL),△△C=△BFD,△△DBF+△BFD=90°,,△△C+△DBF=90°,△△C+△DBF+△BEC=180°,△△BEC=90°,△BE△AC.9.易错点:全等三角形的判定定理混淆1、如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF 参考答案1、D第3节角平分线的性质10.易错点:不理解点到直线的距离1、如图,PD△AB,PE△AC,垂足分别为D、E,且PA 平分△BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA2、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°;②AC=BD;③OM平分∠AOD;④MO平分∠AMD.其中正确的有______________.参考答案1、B2、①②④。
(易错题精选)初中数学三角形基础测试题及解析(1)

(易错题精选)初中数学三角形基础测试题及解析(1)一、选择题1.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22+BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A.32B.5 C.4 D.31【答案】B【解析】【分析】【详解】由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=6,则AC=BC=32.同理可求得:AO=OC=3.在Rt△AOD1中,OA=3,OD1=CD1-OC=4,由勾股定理得:AD1=5.故选B.3.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.2【答案】B【解析】【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【详解】解:AD是△ABC中∠BAC的平分线,∠EAD=∠FADDE⊥AB于点E,DF⊥AC交AC于点F ,∴DF=DE,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.4.如图,在△ABC 中,AC =BC ,D 、E 分别是AB 、AC 上一点,且AD =AE ,连接DE 并延长交BC 的延长线于点F ,若DF =BD ,则∠A 的度数为( )A .30B .36C .45D .72【答案】B【解析】【分析】 由CA=CB ,可以设∠A=∠B=x .想办法构建方程即可解决问题;【详解】解:∵CA=CB ,∴∠A=∠B ,设∠A=∠B=x .∵DF=DB ,∴∠B=∠F=x ,∵AD=AE ,∴∠ADE=∠AED=∠B+∠F=2x ,∴x+2x+2x=180°,∴x=36°,故选B .【点睛】本题考查等腰三角形的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A .12B .10C .8D .6【答案】C【解析】【分析】 由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.6.如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S V V D .CD=12BD【答案】C【解析】【分析】A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选:C .【点睛】此题考查含30°角的直角三角形的性质,尺规作图(作角平分线),解题关键在于利用三角形内角和进行计算.7.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等,即2114(42)22x x ?-,解得:121,4x x ==,∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.8.图中的三角形被木板遮住了一部分,这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能【答案】D【解析】 从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D .9.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13. 故选A.考点: 1.旋转;2.勾股定理.10.如图,在四边形ABCD 中,,90,5,10AD BC ABC AB BC ∠=︒==P ,连接,AC BD ,以BD 为直径的圆交AC 于点E .若3DE =,则AD 的长为( )A .55B .45C .35D .25【答案】D【解析】【分析】先判断出△ABC 与△DBE 相似,求出BD ,最后用勾股定理即可得出结论.【详解】如图1,在Rt △ABC 中,AB=5,BC=10,∴AC=55,连接BE ,∵BD 是圆的直径,∴∠BED=90°=∠CBA ,∵∠BAC=∠EDB ,∴△ABC ∽△DEB ,∴AB AC DE DB= , ∴5355DB= , ∴DB=35在Rt △ABD 中,AD=2225BD AB -= ,故选:D .【点睛】此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.11.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°【答案】C【解析】∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下: ①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C① ②点睛:本题主要考查三角形内角和定理:三角形内角和为180°.12.如图,在ABC V 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ是AB的垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE的长.【详解】由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=12AE=4,∴AE=8.故选D.【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.13.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若8ab ,大正方形的边长为5,则小正方形的边长为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】由题意可知:中间小正方形的边长为a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴根据4×12ab+(a﹣b)2=52=25,得4×4+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3(舍负),故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.14.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE ,,正确. 故选B .【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.15.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-=∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.16.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A.3B.6C.12D.16【答案】B【解析】【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB的垂直平分线交AB于点D,∴AE=BE,∵△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,∴AB=△ABC的周长-△ACE的周长=19-13=6,故答案为:B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.18.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )A.132B.312C.192D.7【答案】B【解析】如图,作点A关于OB的对称点点D,连接CD交OB于点P,此时PA+PC最小,作DN⊥x 轴交于点N,∵B (3,3),∴OA =3,AB =3,∴OB =23,∴∠BOA =30°,∵在Rt △AMO 中,∠MOA =30°,AO =3,∴AM =1.5,∠OAM =60°,∴∠ADN =30°, ∵在Rt △AND 中,∠ADN =30°,AD =2AM =3,∴AN =1.5,DN =332, ∴CN =3-12-1.5=1, ∴CD 2=CN 2+DN 2=12+(332)2=314,∴CD =31. 故选B. 点睛:本题关键在于先借助轴对称的性质确定出P 点的位置,然后结合特殊角30°以及勾股定理计算.19.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( ).A .0根B .1根C .2根D .3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B20.如图,直线a b ∥,点A 、B 分别在直线a 、b 上,145∠︒=,若点C 在直线b 上,105BAC ∠︒=,且直线a 和b 的距离为3,则线段AC 的长度为( )A .32B .33C .3D .6【答案】D【解析】【分析】 过C 作CD ⊥直线a ,根据30°角所对直角边等于斜边的一半即可得到结论.【详解】过C作CD⊥直线a,∴∠ADC=90°.∵∠1=45°,∠BAC=105°,∴∠DAC=30°.∵CD=3,∴AC=2CD=6.故选D.【点睛】本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形易错题
一、填空题(共10小题)(除非特别说明,请填准确值)
1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为
_________ .
2.等腰三角形ABC的周长是8cm,AB=3cm,则BC= _________ cm.
3.等腰三角形的周长为20cm,若腰不大于底边,则腰长x的取值范围是_________ .
4.如图:a∥b,BC=4,若三角形ABC的面积为6,则a与b的距离是_________ .
5.小亮家离学校1千米,小明家离学校3千米,如果小亮家与小明家相距x千米,那么x的取值范围是_________ .
6.已知△ABC两边长a,b满足,则△ABC周长l的取值范围是_________ .7.若等腰△ABC(AB=AC),能用一刀剪成两个等腰三角形,则∠A=_________ .
8.图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)
(1)图2有_________ 个三角形;图3中有_________ 个三角形
(2)按上面方法继续下去,第20个图有_________ 个三角形;第n个图中有_________ 个三角形.(用n的代数式表示结论)
9.一个三角形两边长为5和7,且有两边长相等,这个三角形的周长是_________ .
10.两边分别长4cm和10cm的等腰三角形的周长是_________ cm.
参考答案与试题解析
一、填空题(共10小题)(除非特别说明,请填准确值)
1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为8 .考点:多边形内角与外角.
专题:计算题.
分析:根据内角和公式,设该多边形为n边形,内角和公式为180°•(n﹣2),因为最小角为100°,又依次增加的度数为10°,则它的最大内角为(10n+90)°,根据等差数列和的公式列出方程,求解即可.
解答:解:设该多边形的边数为n.
则为=180•(n﹣2),
解得n1=8,n2=9,
n=8时,10n+90=10×80+90=170,
n=9时,10n+90=9×10+90=180,(不符合题意)
故这个多边形为八边形.
故答案为:8.
点评:本题结合等差数列考查了凸n边形内角和公式.方程思想是解此类多边形有关问题常要用到的思想方法,注意凸n边形的内角的范围为大于0°小于180°.
2.等腰三角形ABC的周长是8cm,AB=3cm,则BC= 2或3或2.5 cm.
考点:等腰三角形的性质;三角形三边关系.
专题:计算题.
分析:按照AB为底边和腰,分类求解.当AB为底边时,BC为腰;当AB腰时,BC为腰或底边.解答:解:(1)当AB=3cm为底边时,BC为腰,
由等腰三角形的性质,得BC=(8﹣AB)=2.5cm;
(2)当AB=3cm为腰时,
①若BC为腰,则BC=AB=3cm,
②若BC为底,则BC=8﹣2AB=2cm.
故本题答案为:2或3或2.5cm.
点评:本题考查了等腰三角形的性质,分类讨论思想.关键是明确等腰三角形的三边关系.3.等腰三角形的周长为20cm,若腰不大于底边,则腰长x的取值范围是5<x≤.
考点:等腰三角形的性质;三角形三边关系.
分析:根据题意以及三角形任意两边之和大于第三边列出不等式组求解即可.
解答:解:等腰三角形的底边为20﹣2x,
根据题意得,,
由①得,x≤,
由②得,x>5,
所以,腰长x的取值范围是5<x≤.
故答案为:5<x≤.
点评:本题考查了等腰三角形两腰相等的性质,三角形的三边关系,列出不等式组是解题的关键.4.如图:a∥b,BC=4,若三角形ABC的面积为6,则a与b的距离是 3 .
考点:平行线之间的距离;三角形的面积.
分析:过A作AD⊥BC于D,则AD的长就是a b之间的距离,根据三角形的面积公式求出AD即可.
解答:
解:
过A作AD⊥BC于D,
∵三角形ABC的面积为6,BC=4,
∴×BC×AD=6,
×4×AD=6,
AD=3,
∵a∥b,
∴a与b的距离是3,
故答案为:3.
点评:本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出AD的长.
5.小亮家离学校1千米,小明家离学校3千米,如果小亮家与小明家相距x千米,那么x的取值范围是2≤x≤4.
考点:三角形三边关系.
分析:小明、小亮家的地理位置有两种情况:
(1)小明、小亮家都在学校同侧;
(2)小明、小亮家在学校两侧.
联立上述两种情况进行求解.
解答:解:(1)小明、小亮家都在学校同侧时,x≥2;
(2)小明、小亮家在学校两侧时,x≤4.
因此x的取值为2≤x≤4.
点评:本题注意考虑两种不同的情况,能够分析出每一种情况的范围,再进一步综合两种情况的结论.6.已知△ABC两边长a,b满足,则△ABC周长l的取值范围是6<l<10 .考点:非负数的性质:算术平方根;非负数的性质:偶次方;三角形三边关系.
分析:由,可得+(b﹣3)2=0,则a=2,b=3,可得第三边c的取值范围是1<c<5,从而求得周长l的取值范围.
解答:解:∵,
∴+(b﹣3)2=0,
∴a=2,b=3,
∴第三边c的取值范围是1<c<5,
∴△ABC周长l的取值范围是6<l<10.
故答案为:6<l<10.
点评:此题主要考查了非负数的性质,其中首先灵活应用了非负数的性质,然后利用三角形三边之间的关系,难度中等.
7.若等腰△ABC(AB=AC),能用一刀剪成两个等腰三角形,则∠A=36°或90°或108°.
考点:等腰三角形的性质;三角形内角和定理.
分析:题中只说是等腰三角形,没有指明该等腰三角形的形状,故应该分三种情况进行分析.
解答:解:(1)当顶角为锐角时,
①∵剪后AB=AC,AD=BD=BC,∠C=∠ABC=∠BDC=2∠A.
∴∠A+∠C+∠ABC=5∠A=180°
∴∠A=36°
②当AB=AC,AD=BD,BC=CD时
可求出∠A=;
(2)当顶角为钝角时,
∵剪后AB=AC,AC=CD,BD=AD,∠C=∠B=∠BAD=∠ADC=∠DAC
∴∠B+∠C+∠BAD+∠DAC=5∠C=180°
∴∠C=36°
∴∠BAC=108°
(3)当顶角为直角时,
∵剪后AB=AC,CD=AD=BD,∠B=∠C=∠CAD=∠BAD=45°
∴∠CAB=90°
所以填∠A为36°、或90°或108°.
点评:本题考查了等腰三角形的性质及三角形内角和定理;分情况讨论的正确应用时解答本题的关键.
8.图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)
(1)图2有 5 个三角形;图3中有9 个三角形
(2)按上面方法继续下去,第20个图有77 个三角形;第n个图中有(4n﹣3)个三角形.(用n的代数式表示结论)
考点:三角形.
专题:规律型.
分析:正确数一下(2)(3)中,三角形的个数,可以得到(3)比(2)增加了4个三角形,同理(4)比(3)增加了4个三角形,依此类推即可求解.
解答:解:(1)图2有5个三角形;图3中有9个三角形;
(2)按上面方法继续下去,可以得到(4)比(3)增加了4个三角形,
依此类推,第20个图有1+(20﹣1)×4=77个三角形;第n个图中有4(n﹣1)+1=4n﹣3个三角形.
点评:正确观察图形得到规律是解决本题的关键,解决这类题的方法是根据题目的叙述,求出几个图形中三角形的个数,从而求出规律.
9.一个三角形两边长为5和7,且有两边长相等,这个三角形的周长是17或19 .
考点:三角形三边关系.
分析:腰长为5时,得到三条线段;腰长为7时,得到三条线段.若较短的两边条线段之和大于最长的一条线段,那么能组成三角形,让三边相加即可.
解答:解:当腰长为5时,三角形的三边分别为5,5,7,5+5=10>7,能组成三角形,此三角形的周长为5+5+7=17;
当腰长为7时,三角形的三边分别为7,7,5,5+7>7,能组成三角形,∴此三角形的周长为7+7+5=19.
∴这个三角形的周长是17或19.
点评:用到的知识点为:等腰三角形的周长由2腰和一底边长构成,两腰相等;3条线段组成三角形的条件为:较短的两条边线段之和大于最长的一条线段.
10.两边分别长4cm和10cm的等腰三角形的周长是24 cm.
考点:等腰三角形的性质;三角形三边关系.
专题:分类讨论.
分析:题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.
解答:解:当4cm是腰时,4+4<10cm,不符合三角形三边关系,故舍去;
当10cm是腰时,周长=10+10+4=24cm
故该三角形的周长为24cm
故填24.
点评:此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.。