分布式人工智能PPT课件
分布式人工智能

作用交互性 环境协调性 面向目标性 存在社会性
能够与环境交互作用,能够感知其所处环 境,并借助自己的行为结果,对环境做出适当反应。 真体存在于一定的环境中,感知环境的状 态、事件和特征,并通过其动作和行为影响环境,与环境 保持协调。环境和真体互相依存,互相作用。 真体能够表现出某种目标指导下的行为, 为实现其内在目标而采取主动行为。
ISIC C
15
8.3 真体的结构
基于效果的真体
真体 效 果 真 体 影响世 界信息 世界发 展 真 体信息 原有 内部 状态
行为 决策
满意 程度
行为影响世界 环境
世界现状 传感器
执行器
Fig 8. 7 基于效果的真体结构
Central South University Artificial Intelligence
ISIC C
16
8.3 真体的结构
复合式真体
真体 建 模
一般情况
反 射 决策生成
紧急和简单情况 动作
通 信
建 模
建 模 环境
执行器 其它Agent
Fig 8. 8 复合式真体的结构
Central South University Artificial Intelligence
ISIC C
17
8.4 Agent Communication 真体的通信
Intelligent Systems: Principles & Applications
Ch.8 Agent(真体)
Director: Cai Zixing Central South University 2009
Central South University Artificial Intelligence
AIA7-分布式人工智能

《人工智能及其应用》教学讲义第七章分布式人工智能§ 7.1分布式人工智能系统一、什么是分布式人工智能分布式人工智能(Distributed Artificial Intelligenee),简称DAI,它是人工智能和分布式计算相结合的产物。
DAI 的提出,适应了设计并建立大型复杂智能系统以及计算机支持协同工作( CSCW)的需要。
其目的主要研究在逻辑或物理上实现分散的智能群体Age nt的行为与方法,研究协调、操作它们的知识、技能和规划,用以完成多任务系统和求解各种具有明确目标的问题。
目前,DAI的研究大约可划分为两个基本范畴:一是分布式问题求解 (Distributed Problem Solving ,DPS);另一个是关于多智能体系统( Multi Age nt System,MAS )实现技术的研究。
所谓分布式问题求解,往往针对待解决的总问题,将其分解为若干子任务,并为每个子任务设计一个问题求解的子系统。
这里,首先需要智能地确定一个分配的策略:如何把总工作任务在一群模块(Module )或者节点(Node)之间进行子任务分配;其次需要智能地确定一个工作任务协同的策略:要在基于分散、松耦合知识源的基础上,实现对问题的合作求解。
这里所谓“分散”的概念是指任务的控制操作和可利用的信息都是分布的,没有全局控制和全局数据;知识源分布在不同的处理节点上,数据、信息、知识和问题的答案可以按照某种规则予以共享。
多智能体系统又常称为多Age nt系统或简称为MAS,主要研究不同的智能体之间的行为协调和进行工作任务协同。
即在一群自治的Age nt之间,通过协调它们的知识、目标、技能和系统规划,以确定采取必要的策略与操作,达到求解多任务系统及解决各种复杂问题的目标。
MAS是单个的Age nt技术和分布式系统相结合的发展产物,也是分布式人工智能研究的一个前沿领域。
目前,MAS的研究重点是:如何协调多个Age nt的行为,从而协同地完成大型复杂的工作任务。
人工智能简介-课件(PPT演示)

形成期(1956--1970年)
早期研究 心理学小组:1957年,纽厄尔、肖(J.Shaw)和西蒙等人的心理学小组研制 了称为逻辑理论机(简称LT)的数学定理证明程序。 1960年研制了通用问题求解程序。该程序当时可解决11种类型的问题,如 不定积分、三角函数、代数方程、猴子摘香蕉、河内梵塔、人—羊过河等。 IBM工程小组:1956年,塞缪尔在IBM704计算机上研制成功了具有自学习 、自组织和自适应能力的西洋跳棋程序。这个程序可以从棋谱中学习,也可 以在下棋过程中积累经验、提高棋艺。通过不断学习,该程序1959年击败了 塞缪尔本人,1962年又击败了一个州的冠军。 MIT小组:1958年,麦卡西建立了行动规划咨询系统。 1960年,麦卡锡又研制了人工智能语言LISP。 1961年,明斯基发表了“走向人工智能的步骤”的论文,推动了人工智能 的发展。 其他方面:1965年,鲁宾逊(J.A.Robinson)提出了归结(消解)原理。 1965年,费根鲍姆开始研究化学专家系统DENDRAL。
2
物质、能量、信息、知识和智能
构成宇宙的三大要素: 三大要素:物质、能量与信息 信息:是物质和能量的表现形式,是以物质和能量为载体的客观存在 三大要素与智能 人类的智能:物质(碳)+能量(生物电)→(生物)信息 人造的智能:物质(硅)+能量(物理电)→(电子)信息 信息、知识和智能 信息:是由数据表达的客观事实 知识:是由智力对信息进行加工后所形成的对客观世界规律性的认识 智能:是指人类在认识客观世界中,由思维过程和脑力活动所表现出的综合能力 三者之间的关系 信息:是形成知识的原料,是智能的加工对象 知识:是信息的关联,是由智能加工后的产品 智能:是信息到知识的一个加工器 产业革命和信息革命及其意义 产业革命:是物质与能量领域的革命,放大了人的体能 信息革命:是信息与智能领域的革命,需要放大人的智能
分布式人工智能和Agent技术

分布式人工智能和Agent技术7.1 分布式人工智能分布式人工智能(Distributed Artificial Intelligence,DAI)的研究始于20世纪70年代末,主要研究在逻辑上或物理上分散的智能系统如何并行地、相互协作地实现问题求解。
其特点是:(1)系统中的数据、知识以及控制,不但在逻辑上而且在物理上分布的,既没有全局控制,也没有全局的数据存储。
(2)各个求解机构由计算机网络互连,在问题求解过程中,通信代价要比求解问题的代价低得多。
(3)系统中诸机构能够相互协作,来求解单个机构难以解决,甚至不能解决的任务。
分布式人工智能的实现克服了原有专家系统、学习系统等弱点,极大提高知识系统的性能,可提高问题求解能力和效率,扩大应用范围、降低软件复杂性。
其目的是在某种程度上解决计算效率问题。
它的缺点在于假设系统都具有自己的知识和目标,因而不能保证它们相互之间不发生冲突。
近年来,基于Agent的分布式智能系统已成功地应用于众多领域。
7.2 Agent系统Agent提出始于20世纪60年代,又称为智能体、主体、代理等。
受当时的硬件水平与计算机理论水平限制,Agent的能力不强,几乎没有影响力。
从80年代末开始,Agent理论、技术研究从分布式人工智能领域中拓展开来,并与许多其他领域相互借鉴及融合,在许多领域得到了更为广泛的应用。
M.Minsky曾试图将社会与社会行为的概念引入计算机中,并把这样一些计算社会中的个体称为Agent,这是一个大胆的假设,同时是一个伟大的、意义深远的思想突破,其主要思想是“人格化”的计算机抽象工具,并具有人所有的能力、特性、行为,甚至能够克服人的许多弱点等。
90年代,随着计算机网络以及基于网络的分布计算的发展,对于Agent及多Agent系统的研究,已逐渐成为人工智能领域的一个新的研究热点,也成为分布式人工智能的重要研究方向。
目前,对于Agent系统的研究正在蓬勃的发展可分为基于符号的智能体研究和基于行为主义的智能体研究。
2024版人工智能概述ppt课件

02
AI系统如何做出决策往往缺乏透明度,难以解释和理解。
人工智能对就业的影响
03
自动化和智能化技术可能导致部分传统岗位的消失,引发就业
结构和社会经济问题。
隐私保护策略及实现方式
01
02
03
数据匿名化
通过去除或修改数据中的 个人标识符,保护用户隐 私。
差分隐私
在数据分析过程中引入随 机噪声,使得攻击者无法 推断出特定个体的信息。
在自然语言处理中,数据驱动方法通 过统计语言模型、深度学习等技术处 理海量文本数据,实现自然语言理解 和生成。
在机器学习领域,数据驱动思想体现 在通过大量数据训练模型,使模型自 动学习并改进。
知识表示和推理机制
知识表示是将现实世界中的知识转化为计算机可理解和处理的形式,如逻辑表示法、 语义网络、框架表示法等。
06
未来发展趋势与挑战
技术创新方向预测
深度学习
进一步探索神经网络结构与优化算法,提升 模型性能与泛化能力。
迁移学习
实现跨领域、跨任务的知识迁移,降低人工 智能应用门槛。
强化学习
研究更高效的探索与利用策略,拓展在复杂 决策问题中的应用。
自监督学习
利用无标签数据进行预训练,提升模型在少 样本或无监督任务中的表现。
计算机视觉技术及应用
计算机视觉定义
常见计算机视觉技术
研究如何让计算机从图像或视频中获取信息、 理解内容并作出决策的一门学科。
图像分类、目标检测、图像分割、人脸识别 等。
计算机视觉应用
发展趋势
智能安防、智能交通、医疗影像分析、工业 自动化等。
随着深度学习技术的不断发展,计算机视觉 技术的应用领域也在不断扩展,未来将有更 多的创新应用涌现。
人工智能PPT课件

反欺诈
AI技术可以监测和识别金融交 易中的欺诈行为,保障用户资
金安全。
客户服务
AI可以提供智能客服服务,快 速响应用户的问题和需求。
教育领域
个性化学习
AI可以根据学生的学习特点和需求,提供个 性化的学习资源和建议。
在线辅导
AI可以提供在线辅导服务,帮助学生解决学 习中的疑难问题。
智能评估
AI可以对学生的学习成果进行评估和反馈, 帮助教师了解学生的学习情况。
工业领域
智能制造
AI技术可以实现自动化生产流程,提高生产 效率和产品质量。
工业机器人
AI可以控制和协调工业机器人的工作,提高 生产线的自动化水平。
智能供应链管理
AI可以对供应链数据进行挖掘和分析,优化 库存和物流管理。
预测性维护
AI可以对设备运行数据进行监测和分析,预 测设备故障和维护需求。
04
Alexa在智能家居中的应用
人工智能在家庭生活的普及化ቤተ መጻሕፍቲ ባይዱ
Alexa是亚马逊公司推出的一款智能语音助手,广泛应用于智能家居领域。通过 与各种智能家居设备的连接,用户可以通过语音指令实现对灯光、空调、电视等 家电的控制,提升了家庭生活的便利性和智能化水平。
IBM的Watson在医疗诊断中的应用
人工智能在医疗领域的创新应用
06
案例分析
AlphaGo战胜围棋世界冠军
人工智能在游戏领域的里程碑事件
AlphaGo是一款由谷歌DeepMind开发的围棋人工智能程序,于2016年击败了世界围棋冠军李世石,成为人工智能在游戏领 域的一项重大突破。AlphaGo通过深度学习和强化学习技术,不断自我学习和进步,最终在围棋这个被视为人类智力巅峰的 领域取得了胜利。
《人工智能课件》.pptx

一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影
响
数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。
2024版40套人工智能PPT模板

机器学习的工作流程
数据预处理、特征提取、模型训练、评 估与优化。
2024/1/24
8
常见机器学习算法及应用场景
线性回归、逻辑回归等 回归算法:用于预测连 续值,如股票价格、销 售额等。
K近邻、决策树、随机 森林等分类算法:用于 分类问题,如垃圾邮件 识别、疾病诊断等。
聚类算法如K均值、层 次聚类等:用于无监督 学习任务,如客户细分、 图像分割等。
语音合成技术 阐述不同类型的语音合成技术,如波形拼接法、参数合成 法和端到端合成法等,并讨论其适用场景和优缺点。
语音情感分析技术 介绍语音情感分析的基本原理和方法,包括情感特征提取、 情感分类和情感识别等,并分析其在智能客服、智能家居 等领域的应用前景。
21
智能语音在智能家居、智能客服等领域的应用
安防领域
利用计算机视觉技术对监控视频进行处理和分析,实现人脸 识别、行为分析、异常检测等功能,提高安防监控的效率和 准确性。
自动驾驶领域
通过计算机视觉技术对车载摄像头获取的图像进行处理和分 析,实现车道线检测、车辆检测、行人检测等功能,为自动 驾驶系统提供感知和决策支持。
医疗领域
利用计算机视觉技术对医学影像进行处理和分析,实现病灶 检测、辅助诊断等功能,提高医疗诊断的准确性和效率。
03
AI对文化和艺术的 影响
探讨AI技术如何影响文化和艺术 领域,包括创作过程、艺术表现 形式等方面的变化。
2024/1/24
26
2024/1/24
谢谢聆听
27
探讨企业在开发和应用AI技术时如何确保合规性,避免法律风险。
2024/1/24
25
人工智能对社会经济、文化等方面的影响
01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以,智能主体的研究应该是人工智能的核心问题。斯坦福 大学计算机科学系的 Hayes-Roth在IJCAI'95的特邀报告中谈到:“智能的计算机主体既是
人工智能最初的目标,也是人工智能最终的目标。”
结果共享的求解方式适合于求解与任务有关的各 子任务的结果相互影响, 并且部分结果需要综合才能 得出问题解的领域。如分布式运输调度系统、分布式 车辆监控实验系统DVMT
2021/2/21
.
18
分布式问题求解系统分类
根据组织结构,分布式问题求解系统可 以分为三类:
▪ 层次结构类 ▪ 平行结构类 ▪ 混合结构类
2021/2/21
.
6
合同网
1980年Davis 和 Smith提出了合同网 (CNET) CNET使用投标---合同方式实现任务在多 个节点上的分配。合同网系统的重要贡献 在于提出了通过相互选择和达成协议的协 商过程实现分布式任务分配和控制的思想。
2021/2/21
.
7
分布式车辆监控测试系统
DVMT
任务分担的、 数 字逻辑电路设计、 医疗诊断。
2021/2/21
.
17
结果共享
Lesser 和 Corkill 提出了结果共享方式。在 结果共享方式的系统中, 各结点通过共享部分结果 相互协作, 系统中的控制以数据为指导, 各结点在 任何时刻进行的求解取决于当时它本身拥有或从其它 结点收到的数据和知识。
2021/2/21
.
9
MACE系统
是一个实验型的分布式人工智能系统开发环境 (Gasser 1987)。
MACE中每一个计算单元都称作主体,它们具有知识表示和 推理能力,主体之间通过消息传送进行通信。MACE是 一个类面向对象环境,但避开了并发对象系统中难于 理解和实现的继承问题。MACE的各个机构并行计算, 并提供了描述机构的描述语言, 具有跟踪的demons 机制。 该课题研究的重点是在实际并行环境下运行 分布式人工智能系统,保持概念的清晰性。
2021/2/21
.
4
分布式人工智能系统的主要优点
1) 提高问题求解能力。 2) 提高问题求解效率。 3) 扩大应用范围。 4) 降低软件的复杂性。
2021/2/21
.
5
分布式人工智能
分布式人工智能的研究可以追溯到70 年代末期。早期分布式人工智能的 研究主要是分布式问题求解,其目 标是要创建大粒度的协作群体,它 们之间共同工作以对某一问题进行 求解。
1980年麻萨诸塞大学的Lesser, Corkill 和
Durfee 等人主持研制DVMT
该系统对市区内行驶的车辆轨迹进行监控,
并以此环境为基础, 对分布式问题求解
系统中许多技术问题进行研究。DVMT是以
分布式传感网络数据解释为背景,对复杂
的黑板问题求解系统之间的相互作用进行
了研究,提供了抽象和模型化分布式系统
2021/2/21
.
10
分布式运输调度系统DTDS-I
1989年清华大学石纯一等主持研制了分布式 运输调度系统DTDS-I(石纯一 1989)。
该系统以运输调度为背景,提出了分布式问 题求解系统的体系结构,对问题分解、任 务分布算法和基于元级通信的协作机制等 方面进行了探讨。
2021/2/21
.
11
2021/2/21
.
13
多主体系统
关于主体的研究不仅受到了人工智能研究人 员的关注,也吸引了数据通信、人机界面 设计、机器人、并行工程等各领域的研究 人员的兴趣。有人认为:“基于主体的计 算(Agent-Based Computing, 简称ABC)
将成为软件开发的下一个重要的突破。”
2021/2/21
分布式人工智能
.
1
内容
1 概述 2 分布式问题求解 3 主体 4 主体理论 5 主体结构 6 主体通信 7 主体的协调与协作 8 多主体环境MAGE
2021/2/21
.
2
1 概述
分布式人工智能主要研究在逻辑上或物 理上分散的智能系统如何并行的、相 互协作地实现问题求解。
两种解决问题的方法: ▪ 自顶向下:分布式问题求解 ▪ 自底向上:基于主体的方法
.
14
分布式问题求解
特点: 数据、知识、控制均分布在系统 的各节点上,既无全局控制,也 无全局数据和知识存储。
2021/2/21
.
15
分布式问题求解
两种协作方式: ▪ 任务分担 ▪ 结果共享
2021/2/21
.
16
任务分担
Smith 和Davis 提出了任务分担方式。 在任务分担系统中, 结点之间通过分担 执行整个任务的子任务而相互协作, 系统 中的控制以目标为指导, 各结点的处理 目标是为了求解整个任务的一部分。
行为的方法。 2021/2/21
.
8
ACTOR模型
1983年Hewitt 和他的同事们研制了基于 ACTOR模型的并发程序设计系统。
ACTOR模型提供了分布式系统中并行计算理论 和一组专家或ACTOR获得智能行为的能力。 在1991年Hewitt提出开放信息系统语义, 指出竞争、承诺、协作、协商等性质应作 为分布式人工智能的科学基础,试图为分 布式人工智能的理论研究提供新的基础。
分布式知识处理系统DKPS
1990中国科学院计算技术研究所史忠植等研 究了分布式知识处理系统DKPS。
该系统采用逻辑------对象知识模型,研究 了知识共享和协作求解等问题。
2021/2/21
.
12
多主体系统
90年代,多主体系统Multiagent systems)的研究成为分布式人工智能研究的热点。多 主体系统主要研究自主的智能主体之间智能行为的协调,为了一个共同的全局目标, 也可能是关于各自的不同目标,共享有关问题和求解方法的知识,协作进行问题求 解。
2021/2/21
.
3
分布式人工智能系统的特色
1) 系统中的数据、知识, 以及控制不但在 逻辑上, 而且在物理上是分布的, 既没 有全局控制, 也没有全局的数据存储。
2) 各个求解机构由计算机网络互连, 在问 题求解过程中, 通信代价要比求解问题 的代价低得多。
3) 系统中诸机构能够相互协作, 来求解单 个机构难以解决, 甚至不能解决的任务。