合成生物学的关键技术及应用进展

合集下载

化学合成生物学的进展

化学合成生物学的进展

化学合成生物学的进展引言随着科学技术的不断进步,化学合成生物学作为一门新兴交叉学科,在生命科学和化学领域扮演着越来越重要的角色。

化学合成生物学结合了化学、生物学和工程学等多个学科的知识和技术,旨在通过化学手段设计和合成生物分子,以揭示生命现象的本质,并为医药、能源、材料等领域提供新的解决方案。

本文将介绍化学合成生物学的最新进展及其在未来的发展前景。

合成生物学的基本概念合成生物学是一门利用生物学原理设计和构建新的生命形式的学科。

它的核心思想是通过重新编程细胞的遗传物质,使其具备特定的功能或产生特定的物质。

化学合成生物学则是合成生物学的一个重要分支,主要关注于通过化学方法合成生物大分子,如核酸、蛋白质和多糖等。

化学合成生物学的主要研究领域核酸合成技术核酸是生命的遗传物质,对生命活动起着至关重要的作用。

近年来,随着核酸合成技术的不断发展,人们已经能够高效、精确地合成各种长度和序列的DNA和RNA分子。

这些合成的核酸可以用于基因编辑、基因治疗、疫苗研发等领域。

蛋白质合成与设计蛋白质是生命体内最主要的功能分子,参与了许多重要的生物过程。

化学合成生物学在蛋白质领域的研究主要集中在两个方面:一是通过化学方法合成具有特定功能的蛋白质;二是利用计算生物学和结构生物学的方法,设计新型蛋白质,以满足特定的应用需求。

多糖和其他生物大分子的合成多糖是生命体内的一类重要生物大分子,具有多种生物学功能。

化学合成生物学在多糖领域的研究主要包括多糖的合成、修饰以及其在医药、食品等领域的应用。

此外,化学合成生物学还关注其他类型的生物大分子,如脂质、氨基酸等的合成和应用。

化学合成生物学的应用前景生物医药领域化学合成生物学在生物医药领域的应用主要体现在以下几个方面:首先,通过合成生物学方法,可以生产出大量的药用蛋白和疫苗;其次,利用合成生物学技术,可以实现对疾病的精准诊断和治疗;最后,化学合成生物学还可以用于开发新型药物,如针对癌症、心脑血管疾病等难治性疾病的药物。

合成生物学的新进展和前景

合成生物学的新进展和前景

合成生物学的新进展和前景合成生物学是一种科学领域,它的目的是设计、构建和改造新的生物系统以实现特定的功能。

在过去的几年中,这个领域一直处于快速发展的状态,并取得了一些重大的突破,这些突破为合成生物学的未来发展开辟了新的道路。

合成生物学的新进展自1990年代以来,合成生物学一直在不断发展。

随着技术的不断进步,这个领域已经涵盖了许多不同的方向。

以下是合成生物学的一些新进展:1.基因编辑技术基因编辑技术,如CRISPR-Cas9,已成为合成生物学中的重要工具。

这种技术能够精准地编辑细胞中的DNA序列,因此可用于改变细胞的基因组和功能。

2. DNA合成近年来,DNA合成技术的价值和效率不断提高,这为合成生物学研究提供了强大的工具。

当然,一般情况下合成生物学家并不需要合成整个基因组,只需要按照自己的需要构造特定的DNA序列即可。

3. 代谢工程在合成生物学领域中,代谢工程是一个关键性的研究方向。

通过改变细胞代谢过程中的基因表达和调节,合成生物学家可以使细胞产生特异的代谢产物,也可以使细胞对环境的适应性更强。

4. 人工神经元人工神经元的开发也取得了突破。

利用这个技术,可以将细胞中的化学反应转化为电信号,这样可以实现信息输出和处理。

5. 细胞组成与功能合成生物学的目标之一就是组装可以实现特定功能的人工细胞。

近年来,研究人员已经开始通过改变细胞的种类和组合方式来实现这个目标。

合成生物学未来的前景对于合成生物学的未来发展,专家们已经有了一些亮点和预测:1. 治疗新型疾病利用合成生物学技术分子探测手段可以筛选出一些新型药物,可以针对细胞中的多种代谢途径进行干预,针对不同疾病可以进行针对性的治疗。

2. 建立百万种的人工细胞目前已经开发的合成生物学技术,可以对细胞的表达进行调节,同时并可以加入科学家们设计的新的代谢途径等等,未来这项技术可能会被用于开发由不同类型的细胞组成的人工细胞,从而扩大合成生物学的应用领域。

3. 解决环境问题合成生物学技术有巨大的潜力来解决环境问题,例如利用工程菌来处理废水和污染场地等问题。

合成生物学研究进展与发展趋势

合成生物学研究进展与发展趋势

合成生物学研究进展与发展趋势合成生物学是一门交叉学科,涵盖了生物学、化学、工程学等多个领域,旨在通过对生物系统的理解和工程设计,构建新的生物系统,解决现实中的问题。

随着科学技术的不断发展,合成生物学已经成为一个研究热点,并取得了一系列重要的研究进展。

本文将介绍合成生物学的研究进展及其未来的发展趋势。

一.合成生物学研究进展1.基因合成合成生物学的核心在于通过重新设计DNA序列,构建新的生物系统。

在这个过程中,基因合成技术起到了至关重要的作用。

基因合成技术可以将人工设计的DNA序列合成成为真实存在的DNA分子,并通过基因转移技术在细胞中实现功能。

基因合成技术的出现为合成生物学的发展提供了基础支撑。

2.转录的重编程转录重编程是指通过改变细胞内转录物的含量和组成来实现对细胞特性的重编程。

这种技术可以通过改变基因的表达水平,实现对细胞特性的调控。

在合成生物学中,转录重编程技术可以用来控制细胞的代谢通路和信号传递网络,从而实现对生物系统的重构。

3.代谢工程代谢工程是一种通过改变代谢通路来实现对生物表现的调控的技术。

利用代谢工程的方法可以通过调整细胞内代谢方式,实现对微生物的生产过程进行优化。

代谢工程技术在生物生产和药物开发等领域有着广阔的应用前景。

4.宏观合成宏观合成是指通过组合具有特定功能的细胞,构建出具有新生物体性质的生物组合体。

这种技术可以通过将多个细胞转化为互补功能的系统,来实现对生物性质的控制。

宏观合成技术在生物医学、生物能源等领域有着广泛的应用。

5.人工细胞人工细胞是指通过合成生物学的技术,构建出具有特定功能的细胞。

由于人工细胞是由DNA分子控制的,因此可对细胞的性质进行改造。

人工细胞技术在生物治疗和生物传感等领域有着广阔的应用。

二.合成生物学未来的发展趋势1.生物计算生物计算是一种利用生物分子的计算特性来实现信息处理的技术。

例如,DNA分子可以用来表示数字和逻辑运算。

将生物计算技术应用于合成生物学中,可以构建出更加灵活的生物系统,从而实现对生物系统的更加复杂的控制。

合成生物学在生物医学领域中的应用最新进展

合成生物学在生物医学领域中的应用最新进展

合成生物学在生物医学领域中的应用最新进展合成生物学是一门涉及到分子生物学、遗传学、计算机科学和工程学等学科,旨在通过对生物系统的定量分析以及基础生物学的研究,开发出更加高效、可编程的合成生物系统。

近年来,合成生物学在生物医学领域中的应用不断拓展和深入,取得了一系列积极的进展。

本文将从以下三个方面介绍合成生物学在生物医学领域中最新的应用进展。

1. 合成生物学在癌症治疗中的应用癌症作为一种严重的疾病,一直是医学界的难题。

随着合成生物学的迅速发展,研究人员不断探索将合成生物学应用于癌症治疗的方法。

其中最具有代表性的是利用合成生物学构建具有肿瘤杀伤作用的人工细胞。

2019年,美国哈佛大学的研究人员成功地构建了一种基于狂犬病病毒骨架的人工细胞(POW),该细胞内含葡萄糖输出酶(GOD),当细胞接受到外部质子刺激后,GOD将释放葡萄糖降解产物为吡咯烷酮,并将其分泌至周围环境中,最终杀伤癌细胞。

该POW具有高度的肿瘤靶向性和治疗效果。

2. 合成生物学在生物医学传感器方面的应用合成生物学在生物医学传感器方面的应用具有巨大的潜在价值。

传统的生物检测需要在实验室环境下进行,而利用合成生物学的方法可以将传感器集成到生物体内,快速检测生物体内的状况。

2018年,美国斯坦福大学的研究人员成功的构建了一种基于基因电路的免疫传感器集成系统。

该系统利用细胞内感受器的特异性和灵敏性,将目标物质的信号转化为基因电路信号,最终输出为可感测的荧光信号。

该系统在检测人类前列腺癌相关抗原(PSA)方面具有较好的灵敏性和特异性,有望应用于早期的癌症筛查和诊断。

3. 合成生物学在基因治疗中的应用基因治疗作为目前最具有前景的治疗手段之一,其核心在于利用基因编辑技术修改人的基因组来治疗疾病。

合成生物学作为一门可以精确编辑生物基因组的技术,对基因治疗具有重要意义。

2019年,中国科学院北京基因组研究所的研究人员利用基于CRISPR-Cas9技术的基因编辑技术,成功的修复了大鼠心脏组织中的突变基因,实现了快速促进心脏的修复和再生,对基因治疗的未来也有很好的启示作用。

合成生物学的关键技术及应用

合成生物学的关键技术及应用

然而,与任何新兴的技术一样,合成生物学的工业应用也面临着一些挑战。 例如,对基因编辑技术的伦理和安全问题、对新的生产流程的法规和政策问题等。 这些都需要我们在推进技术的积极研究和解决这些问题。
总的来说,合成生物学是一个充满活力和潜力的领域,它在工业应用上的发 展和创新将会对人类的生产方式和生活方式产生深远的影响。我们期待着这个领 域的进一步发展,以及它为解决全球性问题如环境保护、资源短缺等做出的贡献。
四、系统生物学
系统生物学是研究生物系统在各种尺度上的结构和动态ห้องสมุดไป่ตู้为的科学。这种研 究方法有助于理解生物系统的复杂性,并为预测和优化其行为提供工具。系统生 物学在药物开发、疾病诊断和治疗以及工业应用等方面都有广泛的应用。
五、生物信息学
生物信息学是利用计算机科学和统计学的技术来分析和解读生物学数据的科 学。这包括基因组学、蛋白质组学和代谢组学等数据。生物信息学为研究人员提 供了强大的工具,使他们能够更准确地理解和解释生物系统的复杂性。
感谢观看
一、基因编辑技术
基因编辑技术是合成生物学中的一项基础技术,它允许研究人员直接修改 DNA序列。CRISPR-Cas9系统是最常用的基因编辑工具之一,它能够以高精度和高 效率对特定DNA序列进行剪切和替换。这种技术已经应用于各种生物,包括人类 和农作物,用于治疗遗传性疾病以及提高作物的抗病性和产量。
二、电磁超材料的合成机理
电磁超材料的合成机理主要基于其独特的结构设计。这种材料由亚波长尺度 的元素周期性排列构成,从而产生具有特定性质的人工“元胞”。元胞的特性在 于它们可以谐振并对特定频率的电磁波产生强烈的响应。通过调整元胞的结构和 材料性质,我们可以实现对电磁波的传播行为进行精确调控。
在具体的合成过程中,通常采用光刻、纳米压印、纳米铸造等微纳米加工技 术来实现元胞的高精度制造。同时,为了获得更好的电磁性能,研究者们还积极 探索了各种新型的制备方法,如化学气相沉积、电化学沉积、分子束外延等。

合成生物学技术的研究进展及应用前景

合成生物学技术的研究进展及应用前景

合成生物学技术的研究进展及应用前景近年来,随着生物技术的快速发展,合成生物学技术作为一种新兴的生物学研究领域,逐渐引起了人们的广泛关注和研究。

合成生物学技术是基于生物合成、控制和优化的综合性学科,充分利用生物合成的特性和控制生命过程的方法,将分子工程、系统生物学、计算机科学等学科融合在一起,旨在设计和合成出具有特定功能的新型生物分子体系。

目前,合成生物学技术已成为新的热点研究领域,其研究方向主要包括以下几个方面:首先,生物合成。

合成生物学技术以生物合成为出发点,致力于构建生物体内的新代谢系统,利用细胞代谢网络来生产有用的化合物,如燃料、药品、化学品等,这为解决全球性的资源和环境问题奠定了重要基础。

其次,生物逻辑与计算。

合成生物学技术将计算机科学中的逻辑思维与生物学相结合,实现了对细胞系统的可编程控制,并进一步发掘了细胞代谢网络的规则性、复杂性及其相互作用,为生物信息学和计算机科学的交叉研究提供了新的思路和方法。

第三,人工基因组。

设计和构建高效、稳定的人工基因组是合成生物学的重要研究方向和挑战。

近年来,随着技术的成熟,合成生物学技术已经实现了单细胞有机体的制作,并且成功合成了不依赖天然基因、抗生素标记和复制系统的人工基因组,为基因组定向重组、遗传修饰等领域的开发和应用提供了新的机遇。

最后,合成生物学技术还致力于构建新型功能生物体系,如对抗癌症、抗菌、治疗疾病、环境治理等。

这些能够解决现实问题的生物体系,将为人类的生命健康、社会可持续发展做出重要贡献。

在应用方面,合成生物学技术已经为各个领域的发展和创新提供了新的思路和方法。

例如,利用合成生物学技术,可以生产出与传统生产方式不同的生物燃料,实现对化石能源的替代;同时,合成生物学技术还可以应用于医疗领域,设计和生产新型药物及治疗方案,如目前正在研究的癌症免疫治疗,这使得合成生物学技术具有了极高的应用价值和前景。

总之,合成生物学技术是未来生命科学发展的前沿研究领域,其应用价值不断得到挖掘和扩展,每一个细节都可以引发新的技术进展和发现。

合成生物学的发展及其在医学中的应用

合成生物学的发展及其在医学中的应用

合成生物学的发展及其在医学中的应用合成生物学是一门综合了生物学、化学、工程学等诸多学科的科学领域,其主要目标是通过设计和构建人工合成的生物系统,以实现对生物学过程的精准控制和改造。

近年来,合成生物学在医学领域的应用越来越受到关注,并展示出广阔的前景。

本文将就合成生物学的发展历程以及在医学中的应用进行阐述。

一、合成生物学的发展历程合成生物学起源于20世纪末,最早的关键里程碑是1997年,美国科学家载体·斯莱默在《科学》杂志上首次提出了合成生物学的概念。

随后,合成生物学逐渐形成了一套完整的技术体系,实现了对基因、蛋白质等生物分子的合成、修改和设计。

其中,基因合成技术的进步促进了合成生物学的快速发展,使得科学家可以从头设计和合成具有特定功能的基因序列。

二、合成生物学在医学中的应用1. 新药研发:合成生物学通过对生物系统的精确控制和改造,为新药研发提供了新的途径。

科学家可以通过改造细菌等微生物,使其产生新药物或合成药物的前体,从而加快药物研发的速度和效率。

2. 精准医学:合成生物学的技术手段为精准医学提供了重要的工具。

通过对基因组的编辑和调控,科学家可以实现对遗传疾病的治疗和预防。

此外,合成生物学还可以用于构建人工细胞,实现对疾病发生发展机制的研究,为精准医学的实施提供理论支持和技术支持。

3. 器官移植:合成生物学的另一个潜在应用是基于组织工程的器官移植。

科学家可以利用合成生物学的技术手段,设计和构建人工器官的前体,促进组织再生和器官移植的成功率。

4. 疫苗研发:合成生物学可以为疫苗的研发提供新思路。

通过合成疫苗基因序列,科学家可以构建更加有效并具有更强免疫活性的疫苗,提高人群的免疫水平,预防和控制传染性疾病的流行。

5. 个性化医疗:合成生物学的技术手段可以为个性化医疗提供支持。

例如,科学家可以基于患者的遗传信息设计并合成针对特定基因突变的药物,以实现精确治疗和个性化医疗。

综上所述,合成生物学作为一门新兴的跨学科科学领域,在医学中展示出巨大的潜力。

合成生物学技术研究进展

合成生物学技术研究进展

合成生物学技术研究进展合成生物学技术是一种基于生物系统的工程学方法,通过设计、构建和优化生物部件、设备和系统,实现新功能或改善现有功能。

随着近年来科研技术的不断发展,合成生物学技术在各个领域都取得了显著的研究成果。

本文将综述合成生物学技术的研究现状、关键技术及其在不同领域的应用进展,并探讨未来的研究方向。

合成生物学技术的研究现状合成生物学技术的研究范围广泛,包括基因编辑、生物传感器、基因表达调控等方面。

目前,合成生物学技术已经应用于医药、农业、环保等领域,并取得了良好的成果。

在医药领域,合成生物学技术的最新进展包括基于合成生物学技术的基因疗法、细胞疗法和药物研发。

例如,通过基因编辑技术纠正致病基因突变,治疗遗传性疾病;利用合成生物学方法设计新型药物,提高药物疗效和降低副作用。

在农业领域,合成生物学技术的应用包括基因编辑技术改良作物、生物传感器监测环境因素和基因表达调控优化农作物产量。

合成生物学技术在解决全球粮食安全和生态环境问题方面也发挥了重要作用。

在环保领域,合成生物学技术的应用包括设计生物传感器检测环境污染、基因编辑技术改善污染物降解菌以及基因表达调控研究生态修复等。

例如,通过合成生物学技术提高微生物对重金属的抗性和降解能力,降低污染物的环境影响。

合成生物学技术的关键技术基因编辑技术:基因编辑技术是合成生物学中的核心技能之一,它能够实现对DNA序列的精确修改。

CRISPR-Cas9系统是近年来最受欢迎的基因编辑工具,它能够在指定位置切割DNA,并允许研究人员插入或删除基因序列。

生物传感器:生物传感器是另一种关键技术,它利用生物分子识别特定目标,并转化为可检测的信号。

生物传感器的应用范围广泛,包括环境监测、食品工业和临床诊断等领域。

基因表达调控:基因表达调控是合成生物学技术的另一个关键领域。

它涉及对遗传信息的转录、翻译和修饰进行精确控制,以实现所需蛋白质的时空表达。

通过基因表达调控,研究人员可以优化生物系统的性能,并实现新功能的开发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DOI:10.3969/cmba.j.issn.1673-713X.2012.05.007 ·综述· 合成生物学的关键技术及应用进展邢玉华,谭俊杰,李玉霞,凌焱,刘刚,陈惠鹏20 世纪的生物学研究一直着眼于对生物系统的不断分解,解剖至细胞中单个蛋白或基因,研究其结构和功能来解释生命现象。

但随着当代分子生物学技术的迅猛发展,以系统化设计和工程化构建为理念的合成生物学成为新一代生物学的发展方向。

合成生物学旨在对多种天然的或人工设计的生物学元件进行合理而系统的组合以获得重构的或非天然的“生物系统”,其涵盖的研究内容可以大体分为 3 个层次:一是利用已知功能的天然生物模体(motif)或模块(module)构建成新型调控网络并表现出新功能;二是采用从头合成(de novo synthesis)的方法,人工合成基因组 DNA 并重构生命体;第三个层次则是在前两个研究领域得到充分发展之后,创建完整的全新生物系统乃至人工生命体(artificial life)。

合成生物学强调利用工程化的设计理念,实现从元件到模块再到系统的“自下而上”设计。

利用生物系统最底层的 DNA、RNA、蛋白质等作为设计的元件,利用转录调控、代谢调控等生物功能将这些底层元件关联起来形成生物模块,再将这些模块连接成系统,实现所需的功能。

这是一门涉及微生物学、分子生物学、系统生物学、遗传工程、材料科学以及计算科学等多个领域的综合性交叉学科。

它有别于传统的基因工程,其目的在于组装各种生命元件来建立人工生物体系,让它们能像电路一样在生物体内运行,使生物体能按预想的方式完成各种生物学功能。

合成生物学的最高境界是灵活设计和改造生命,重塑生命体。

本文就目前合成生物学采用的关键技术和研究应用进展两方面进行综述。

1 基因组的人工合成技术2010 年 5 月 20 日,Science报道了 Venter 研究组采用化学方法合成了一个 1.08 Mb 的蕈状支原体基因组,并将其移植入一个山羊支原体受体细胞,从而创造了一个仅由合成基因组控制的新的蕈状支原体细胞[1]。

这项成果在合成生物学的发展史中具有里程碑的意义。

在此之前,也有许多基因组合成的成功报道。

2002 年,纽约州立大学 Wimmer 实验室合成了脊髓灰质炎病毒,这是人类历史上第一个人工合成的病毒。

多年来,Venter 等一直致力于合成基因组的研究。

2003 年,合成了长达 5386 bp 的ΦX174 噬菌体基因组,实现了用寡核苷酸合成的方法精确合成了 5 ~ 6 kb 的 DNA 序列;2008 年,Venter 实验室又合成了生殖支原体基因组,该基因组全长 582970 bp,是已知的生物体中独立生存的最小基因组[2];2010 年 10 月他们又发明了迄今最简单有效的基因合成技术,并以此合成了实验小鼠的线粒体基因组[3]。

Dymond 等[4]的研究更进了一步,他们于 2011 年报道成功设计合成了酿酒酵母的部分染色体,这是酿酒酵母基因组人工合成计划(SC2.0 Project)取得的第一个成果,该项目的最终目标是人工合成构建酿酒酵母基因组。

酵母基因组人工合成将是合成生物学发展史上又一重要的里程碑。

DNA 合成是支撑合成生物学发展的核心技术,它不依赖于 DNA 模板,可根据已知的 DNA 序列直接合成,在基因及生物元件的合成、基因回路和生物合成途径的重新设计组装,以及全基因组的人工合成中发挥重大作用。

由于化学合成的 DNA 片段长度有限,要合成长的 DNA 片段需要先合成短的寡核苷酸,然后再将寡核苷酸进行拼接。

因此,基因组合成的基本思路为:①按照原始基因组序列设计合成寡核苷酸;②利用各种方法将寡核苷酸拼接成较长的 DNA 序列;③以较长的序列为基础,进一步拼接得到更长的DNA 序列,拼接成完整的基因组;④将合成的基因组移植到细胞中,并验证其功能。

1.1 寡核苷酸的合成目前寡核苷酸一般采用固相亚磷酰胺三酯法合成。

寡核苷酸的长度是一个重要的参数,随着长度的延长,产率下降,纯度也降低,积累的合成错误大大增加。

较短的寡核苷酸会有较少的错误,但是需要增加组装所需的重叠序列,使合成成本增加。

使用 60-mer 的寡核苷酸,可以最大程度地降低错配率和生产成本[5]。

1.2 由寡核苷酸拼接成较长的 DNA 片段寡核苷酸可以通过各种方法拼接成几百 bp 到几千 bp 的 DNA 片段。

常用的体外拼接方法有以下两种:连接酶链式反应(ligase chain reaction,LCR)和快速聚合酶链式组装法(polymerase chain assembly,PCA)。

LCR 法利用 Taq 连接酶将首尾相连、重叠杂交的寡核苷酸片段连接起来,连接反应在较高温度下进行,因而可以排除 DNA 二级结构的干扰;但是基因合成的成本大大增加。

PCA 法是两条具有部分重叠的寡核苷酸互为引物互为模板进行聚合酶的延伸,延伸得到的序列再通过与其他寡核苷酸退火、延伸,进行多次循环后,最终合成目的序列。

PCA 法合成成本较连接酶法大大降低。

这种方法逐渐得到广泛使基金项目:国家高技术研究发展计划(863 计划)子课题(2012AA 022001-03D)作者单位:100071 北京,军事医学科学院生物工程研究所(邢玉华、谭俊杰、李玉霞、凌焱、刘刚、陈惠鹏);130012 长春,吉林大学生命科学学院(邢玉华)通讯作者:刘刚,Email:jueliu@收稿日期:2012-07-16用,并且衍生出一系列的 DNA拼接方法,包括 TBIO 法(thermodynamically balanced inside-out)、双重不对称 PCR (dual asymmetric PCR)、重叠延伸 PCR(overlap extension PCR,OE-PCR)[6]和连续 PCR 等。

此外,Venter 小组报道将两端带有重叠序列的寡核苷酸片段和载体转入酵母细胞中,利用酵母体内的同源重组可以拼接起来并克隆到载体上,可以实现 38 个寡核苷酸片段同时拼接[7]。

1.3 DNA 大片段和基因组的组装利用 LCR 和 PCA 法一般可将寡核苷酸拼接成几千bp 以下的基因序列。

更长的大片段和基因组 DNA 则需要进一步拼接。

常用的拼接方法有以下几种:1.3.1利用限制性内切酶和连接酶的连接这是最简单的方法,通过连接将片段连成全长。

但是当进行多个 DNA 片段连接时,往往很难找到合适的酶切位点,而且连接片段会有几个碱基的残留,因此该方法在多个 DNA 片段连接时有很大的局限性。

合成生物学中的 Biobrick 连接法巧妙地设计了 4 个限制性内切酶,通过酶切连接可以将 DNA 片段拼接起来[8]。

还有一种筛选连接法(ligation by selection,LBS),使用 IIs 型限制性内切酶Bsa I 和Bbs I,并通过抗性筛选实现无痕拼接。

Kodumal 等[9]利用这种方法最终组装成了 32 kb 长的聚酮合酶基因簇。

1.3.2 基于重叠序列和聚合酶延伸的方法包括重叠延伸PCR(OE-PCR)法和环形聚合酶延伸法(circular polymerase extension cloning,CPEC)。

OE-PCR 法是相邻的具有重叠序列的 DNA 片段变性退火后形成互补双链,通过 DNA聚合酶进行延伸,再利用末端引物将其扩增出来。

该方法方便有效,但依赖于聚合酶的高保真度,合成的大片段长度有限,约在 20 kb 以下。

CPEC 法原理与 OE-PCR 类似,但是不需要扩增引物,可将多个相互重叠的 DNA 片段与载体一步连接成完整的环状质粒,然后直接转化细胞,在体内进行扩增。

1.3.3 不依赖于基因序列和连接反应的克隆方法[10] 利用T4 DNA 聚合酶在无 dNTPs 的情况下发挥的 3' ~ 5' 外切酶活性,能将 DNA 片段消化产生含有同源序列的5'-ssDNA 突出端(15 ~ 30 个碱基),DNA 片段之间及DNA 与载体依靠同源序列退火,形成环状中间体,直接转化细胞,利用大肠杆菌本身的修复系统修复成完整的环状质粒。

这种克隆方法不需要连接酶,也不需要考虑插入片段的序列,可实现多个 DNA 片段的一次性连接重组,用途非常广泛。

国外公司已经开始将其用于商业,比如 Novagen 公司的 Radiance TM系统及 Invitrogen 公司 Gateway TM 系统都是基于此技术的原理开发的。

Schmid-Burgk 等[11]对不依赖于基因序列和连接反应的克隆方法(sequence and ligation- independent cloning, SLIC)进行了改进,设计一段特殊序列,但是这种方法会在连接序列中引入多余的碱基,适用于基因之间的拼接,可用于合成生物学中基因回路的构建及生物途径的组装。

1.3.4 Gibson 等温一步拼接法该法是 SLIC 法的延伸。

选用核酸外切酶、DNA 聚合酶和 DNA 连接酶 3 种酶进行拼接。

相邻的具有重叠序列的片段,加入上述 3 种酶和dNTPs 共同孵育。

核酸外切酶能从5′降解核苷酸,且不与DNA 聚合酶竞争。

双链 DNA 被消化产生突出的单链DNA,重叠序列特异性退火,此时,外切酶逐渐热失活。

DNA 聚合酶和 DNA 连接酶修复连接成完整的双链 DNA 分子,从而实现无痕拼接。

Gibson 等[12]利用此方法成功地将 4 个大于 100 kb 的片段在体外组装成完整的 583 kb 的生殖支原体基因组。

此外,他们还尝试将 600 个长60-mers 的寡核苷酸(寡核苷酸之间带有 20 个重叠序列)成功地合成了小鼠的线粒体基因组(16.3 kb)。

这种方法方便、快速、高效,能组装长达 900 kb 的 DNA 大片段,而且出错率会大大降低。

体外重组拼接一般选用细菌人工染色体(BAC)为载体,但是当 DNA 片段达到一定长度时(约300 kb),BAC 在大肠杆菌中不稳定,达到转化的极限,更大的片段需要在微生物体内进行重组。

1.3.5 酵母体内同源重组拼接法利用酵母细胞内高效的同源重组系统来实现多个相互存在同源序列的 DNA 片段的组装。

V enter 研究组在 2008 年的Mycoplasma genitalium JCVI-1.0(582970 bp)基因组合成中最后一步拼接就是在酿酒酵母中完成的[2]。

虽然利用体外重组系统可以组装成完整的基因组,但是 BAC 载体在大肠杆菌内不稳定,为此他们建立了转化介导的重组克隆方法(transformation-associated recombination,TAR),利用酵母人工染色体(YAC)能大大提高稳定性及 TAR 克隆效率。

相关文档
最新文档