重积分积分区域的对称性

合集下载

积分的对称性

积分的对称性
(1) 当 f ( x , y ) f ( x , y )时 f ( x , y )ds 0
L
( 2) 当 f ( x , y ) f ( x , y ) 时
L f ( x, y)ds 2L
f ( x , y )ds
3
其中 L3 是 L 的对称的部分弧段
L3 ( x , y ) | ( x , y ) L , x 0 y 0
D3
①、②、③简单地说就是 奇函数关于对称域的积分等于0,偶函数关于 对称域的积分等于对称的部分区域上积分的两倍, 完全类似于对称区间上奇偶函数的定积分的性质
三重积分的对称性
使用对称性时应注意: 1、积分区域关于坐标面的对称性;
2、被积函数在积分区域上的关于三个坐标轴的 奇偶性.
一般地,当积分区域 关于 xoy 平面对称,且 被积函数 f ( x , y , z ) 是关于 z 的奇函数,则三重积分 为零,若被积函数 f ( x , y , z ) 是关于 z 的偶函数,则 三重积分为 在 xoy 平面上方的半个闭区域的三重 积分的两倍.
D1 ( x, y ) ( x, y ) D, x 0 D
1
③若D关于原点对称
(1) 当f( x, y) f( x, y) 时I 0 (2)当f ( x, y ) f ( x , y )时 I 2 f ( x , y )dxdy
D3 ( x, y ) D, x 0, y 0
(2)当f ( x, y ) f ( x, y )时 I 2 f ( x , y )dxdy
D2 ( x , y ) D, y 0
D2
②若D关于 y 轴对称
(1)当f ( x, y ) f ( x, y )时 I 0

重积分积分的轮换对称性

重积分积分的轮换对称性
D
若f ( x, y) f ( x, y)
则 f ( x, y)d 2 f ( x, y)d
D
D1
其 中D1为D的 上 半 部 分 ( 或 右 半 部分 ) 区 域
例 计算 e y2 dxdy,其中D为直线y x,与曲线
D
1
y x 3所围有界区域
轮换对称性
定 义1 设 Rn , ( x1 , x2 ,, xn ) , , 都 有 ( x2 , x3 ,, xn , x1 ) ,( xn , x1 ,, xn1 ) , 则 称 区 域关 于 变 量x1 , x2 ,, xn具 有 轮 换 对 称 性
定 义2 若 函 数 F ( x1 , x2 , x3 ,, xn ) F ( x2 , x3 ,, xn , x1 ) F ( xn , x1 ,, xn1 ) 则 称 函 数F关 于 变 量x1 , x2 ,, xn具 有 轮 换 对 称 性
命 题 设 区 域D关 于x, y具 有 轮 换 对 称 性 , 则 ( x, y) D, 有( y, x) D。 而( x, y)与( y, x) 关 于 直 线y x对 称 , 由( x, y)任 意 性 知 , 区 域D 关 于y x是 对 称 的
命 题 若 积 分区 域D关 于x, y具 有 轮换 对 称 性 , 则
1.
D
f
( x,
y)d
1 2
(
D
f
( x,
y)
f
( y,
x))d
2.D关 于 直线y x对 称 。 记D位 于 直线y x
上 半 部 分 区 域 为D1。
(1)当f ( x, y) f ( y, x)时, f ( x, y)d 2 f ( x, y)d

积分的对称性问题

积分的对称性问题

例 1:求积分 ∫(∫ 2x + y)2dxdy x2 + y 2 ≤1
分析: ∫(∫ 2x + y)2dxdy = ∫∫ (4x2 + y2 + 4xy)dxdy = 4 ∫∫ x2 + ∫∫ y2 + 4 ∫∫ xy 。
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y 2 ≤1
x2 + y2 ≤1
43
L
分析:xy 关于 x 为奇函数,曲线 L 关于 Oyz 面对称。
∫ ∫ ∫ ∴ 2xyds = 0 ,原积分 = 12 ( x2 + y2 )ds = 12 ds = 12a。
L
L4 3
L
上面的结论还可推广到第二型曲面积分,但第二型曲面积分的奇偶对称性定理与第一型积分及重积分的奇偶对称性定理
相反。
D1UD2
D3UD4
D
∫∫ 而在 D3∪D4 上, f (x, y) = sin ye−x2 −y2 是关于 y 的奇函数,所以 sin ye−x2−y2dxdy = 0 。
D3UD4
∫∫ ∫∫ 在 D1∪D2 上, f (x, y) = sin ye−x2 −y2 是关于 x 的偶函数,所以 sin ye−x2−y2 dxdy = 2 sin ye−x2−y2dxdy 。因此选 A。
x2+ y2≤1
x2 + y2≤1
(-1,1)
y
∫∫ ∫∫ ∫ ∫ 所以:原积分 = 5 y2dσ = 5 (x2 + y2)dσ = 5 2π dθ 1r3dr = 5π 。
D
2D
20
0
4

积分中的对称性

积分中的对称性

积分中的对称性作者:刘建康【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。

【关键词】积分;轮换对称性;奇对称;偶对称在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。

这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。

设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。

在一元函数积分学中,我们有下面所熟悉结论:若f(x)在闭区间[-a,a]上连续,则有∫a-af(x)dx= 0, f(-x)=-f(x)2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x)利用这一性质,可以简化较复杂的定积分的计算。

对重积分、曲线积分及曲面积分也有类似的结论。

下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。

1 对称性在重积分计算中的应用对称性在计算二重积分Df(x,y)dσ方面的应用。

结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有①Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。

其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。

结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有:①Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称;②Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。

结论3 若f(x,y)在区域D内可积,且区域D关于直线L对称,则有:①Df(x,y)dσ=0,f(x,y)关于直线L奇对称;②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y) 关于偶对称。

积分对称性定理

积分对称性定理

关于积分对称性定理1、定积分:设 f ( x) 在 a,a 上连续,则2、 二重积分:若函数f(x,y)在平面闭区域D 上连续,则(1) 如果积分区域D 关于x 轴对称,f(x,y)为y 的奇(或偶)函数, 即 f(x, y) f(x, y)(或 f(x, y) f (x, y)),则二重积分0,f x,y 为y 的奇函数f x, y dxdy2 f x, y dxdy, f x,y 为y 的偶函数DD 1其中:D i 为D 满足y 0上半平面区域。

(2) 如果积分区域D 关于y 轴对称,f(x,y)为x 的奇(或偶)函数, 即 f x, y f x, y (或 f x, y f x, y ),则二重积分0, f x, y 为x 的奇函数,fx,ydxdy 2 f x,ydxdy, f x, y 为)的偶函数.DD 2其中:D 2为D 满足x 0的右半平面区域。

(3) 如果积分区域D 关于原点对称,f(x,y)为x,y 的奇(或偶)函a -ax dx0,a2 f x dx,0 x 为X 的奇函数, X 为X 的偶数,即卩f ( x, y) f (x,y)(或 f ( x, y) f(x,y))则二重积分0, f x,y为x,y的奇函数f x,ydx:y2 f xydxy,f x,y 为Xy的偶函数DD2其中:D1为D在y 0上半平面的部分区域。

(4)如果积分区域D关于直线y x对称,则二重积分f x, ydxdy f y,x dxdy .(二重积分的轮换对称性)D D(5)如果积分区域D关于直线y x对称,则有0, 当f( y, x) f(x,y)时f(x,y)dxdy 2 f(x,y)dxdy 当仁y, x) f(x,y)时D D利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D对称及被积函数fx,y具有奇偶性两个特性。

3、三重积分:(1)若f X, y,z为闭区域上的连续函数,空间有界闭区域关于xoy坐标面对称,1为位于xoy坐标面上侧z 0的部分区域,贝卩有0, f x, y, z为z的奇函数f儿y,zcXdydz 2 f x,y,zdxdydz, f x,y,z 为z的偶函数1注:f (x, y,z)是z的奇函数:f(x, y z) f (x,y,z)f (x, y,z)是z的偶函数:f(x,y z) f(x, y,z)同样,对于空间闭区域关于xoz, yoz坐标面对称也有类似的性质。

积分区域关于原点对称二重积分

积分区域关于原点对称二重积分

积分区域关于原点对称二重积分一、什么是积分区域关于原点对称二重积分?在数学中,积分是一种重要的运算工具,它可以用来计算函数在某个区域上的总量。

积分区域关于原点对称二重积分是一种特殊的积分形式,它要求被积函数关于原点对称。

在这种情况下,我们可以通过一些特殊的技巧来简化积分计算过程。

二、如何计算积分区域关于原点对称二重积分?要计算积分区域关于原点对称二重积分,我们可以按照以下步骤进行:1. 确定积分区域首先,我们需要确定被积函数的积分区域。

积分区域通常由一些特定的几何形状所构成,如圆、矩形、三角形等。

在确定积分区域时,我们需要考虑被积函数的定义域和对称性。

2. 利用对称性简化积分由于积分区域关于原点对称,我们可以利用对称性简化积分计算。

具体来说,如果被积函数关于原点对称,则可以将积分区域分为对称的两个部分,并只计算其中一个部分的积分,然后将结果乘以2。

3. 坐标变换在计算积分时,我们通常需要进行坐标变换,以便更方便地表示积分区域和被积函数。

常见的坐标变换方法包括极坐标变换和直角坐标变换。

4. 积分计算最后,我们可以根据坐标变换后的积分区域和被积函数,利用积分的定义进行计算。

根据具体情况,我们可以选择使用定积分、累次积分或其他积分方法。

三、积分区域关于原点对称二重积分的应用积分区域关于原点对称二重积分在数学和物理领域中有广泛的应用。

以下是一些常见的应用场景:1. 几何体的体积计算积分区域关于原点对称二重积分可以用来计算几何体的体积。

例如,我们可以通过将几何体划分为对称的两个部分,并计算其中一个部分的体积,然后将结果乘以2来得到整个几何体的体积。

2. 质心的计算质心是一个几何体的重心或平均位置。

通过对积分区域关于原点对称二重积分进行计算,我们可以求得几何体的质心坐标。

3. 物理问题的建模积分区域关于原点对称二重积分在物理问题的建模中也有重要的应用。

例如,在电磁场中计算电荷分布的势能、计算质点在力场中的位能等问题中,我们可以利用积分区域关于原点对称二重积分来进行计算。

积分对称性定理

积分对称性定理

关于积分对称性定理1、 定积分:设)(x f 在[],a a -上连续,则()()()()-00,d 2d ,a aaf x x f x x f x x f x x ⎧⎪=⎨⎪⎩⎰⎰为的奇函数,为的偶函数.2、 二重积分:若函数),(y x f 在平面闭区域D 上连续,则(1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分()()()()10,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。

(2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分()()()()20,,,d d 2,d d ,,DD f x y x f x y x y f x y x y f x y x ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:2D 为D 满足0x ≥的右半平面区域。

(3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分()()()()20,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.其中:1D 为D 在0≥y 上半平面的部分区域。

(4)如果积分区域D 关于直线x y =对称,则二重积分()()y x x y f y x y x f DDd d ,d d ,⎰⎰⎰⎰=.(二重积分的轮换对称性)(5)如果积分区域D 关于直线y x =-对称,则有10,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-⎧⎪=⎨--=⎪⎩⎰⎰⎰⎰当时当时利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特性。

对称性在定积分及二重积分计算中的应用

对称性在定积分及二重积分计算中的应用

定积分和二重积分是高等数学中常用的积分计算方法,它们都可以用来计算曲线、曲面或曲面的某些区域的积分。

它们的计算方法是基于定积分和二重积分的对称性的,而对称性是它们的重要特性之一。

对称性在定积分和二重积分计算中可以用来提高计算效率。

在定积分计算中,我们可以用对称性来减少计算量,只需要计算一半的区域,就可以得出积分值。

在二重积分计算中,我们可以利用对称性来减少计算量,只需要计算一半的单元格,就可以得出积分值。

此外,对称性在定积分和二重积分计算中还可以用来检查计算结果的准确度。

在定积分计算中,如果积分结果不是对称的,则可能存在计算错误;在二重积分计算中,如果积分结果不是对称的,则可能存在计算错误。

总之,对称性在定积分和二重积分计算中具有重要的意义,可以提高计算效率,也可以检查计算结果的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

情形一:积分区域D 关于坐标轴对称
定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D
f x y dxdy =⎰⎰ .
2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有
1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰
⎰⎰ .
其中1D 是由x 轴分割D 所得到的一半区域。

例5 计算3()D
I xy y dxdy =+⎰⎰,其中D 为由22y x =与2x =围成的区域。

解:如图所示,积分区域D 关于x 轴对
称,且
3(,)()(,)f x y xy y f x y -=-+=-

即(,)f x y 是关于y 的奇函数,由定理13()0D
f xy y dxdy +=⎰⎰
.
类似地,有:
定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 其中2D 是由y 轴分割D 所得到的一半区域。

例 6 计算
2,
D
I x ydxdy =⎰⎰其中D 为由
22;-220y x y x y =+=+=及所围。

解:如图所示,D 关于y 轴对称,并且
2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的偶
函数,由对称性定理结论有:
1
1
22
22200
2
2215
x D
D I x ydxdy x ydxdy dx x ydxdy -+====
⎰⎰⎰⎰⎰⎰
.
定理6 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴和y 轴都对称,则 (1)当(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-时,有
(,)0D
f x y dxdy =⎰⎰
.
(2)当(,)(,)(,)f x y f x y f x y -=-=时,有 其中1D 为由x 轴和y 轴分割D 所的到的1/4区域。

9例7 计算二重积分()D
I x y dxdy =+⎰⎰,其中D :1x y +≤ .
解:如图所示,D 关于x 轴和y 轴均对称,且被积分函数关于x 和y 是偶函数,即有
(,)(,)(,)f x y f x y f x y -=-=,由定理2,得
其中1D 是D 的第一象限部分,由对称性知,1
1
D D x dxdy y dxdy =
⎰⎰⎰⎰

故1
4()D I x y dxdy =+⎰⎰1
4()D x x dxdy =+⎰⎰1
8D x dxdy =⎰⎰4
3
=.
情形二、积分区域D 关于原点对称
定理7 设平面区域12D D D =+,且1,D 2D 关于原点对称,则当D 上连续函数满足 1)(,)(,)f x y f x y --=时,有1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰⎰⎰
2)(,)(,)f x y f x y --=-时,有(,)0D
f x y dxdy =⎰⎰.
例8 计算二重积分33()D
x y dxdy +⎰⎰,D 为3y x =与y x =所围区域.
解:如图所示,区域D 关于原点对称,对于被积函数
33(,)f x y x y =+,有
3333(,)()()()(,)f x y x y x y f x y --=-+-=-+=-,有定
理7,得
3
3()0D
x
y dxdy +=⎰⎰.
情形三、积分区域D 关于直线y x =±对称
定理8 设二元函数(,)f x y 在平面区域D 连续,且12D D D =+,1,2D D 关于直线y x =对
称,则
1)(,)(,)D
D
f x y dxdy f y x dxdy =⎰⎰⎰⎰;
1
2
(,)(,)D D f x y dxdy f x y dxdy =⎰⎰⎰⎰.
2)当(,)(,)f y x f x y =-时,有(,)0D
f x y dxdy =⎰⎰.
3)当(,)(,)f y x f x y =时,有1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰⎰⎰.
例9 求22
22()D
x y I dxdy a b =+⎰⎰,D 为222x y R +≤所围.
解:积分区域D 关于直线y x =对称,由定理8,得
2222
2222()()D D
x y y x dxdy dxdy a b a b +=+⎰⎰⎰⎰, 故 2222()D x y I dxdy a b =+⎰⎰2222
22221[()()]2D D
x y y x dxdy dxdy a b a b =+++⎰⎰⎰⎰
422
11
(
)4
R a b π
=
+. 类似地,可得:
定理9 设二元函数(,)f x y 在平面区域D 连续,且12D D D =+,1,2D D 关于直线y x =对称,则 (1)当(,)(,)f y x f x y --=-,则有(,)0D
f x y dxdy =⎰⎰;
(2)当(,)(,)f y x f x y --=,则有1
(,)2(,)D
D f x y dxdy f x y dxdy =⎰⎰⎰⎰.
例10 计算22()arcsin()D
I x y x y dxdy =++⎰⎰,其中D 为区域:
01x ≤≤,10y -≤≤ .
解:如图所示,积分区域D 关于直线y x =-对称,且满足
(,)(,)f y x f x y --=-,
由以上性质,得:
22()arcsin()0D
I x y x y dxdy =++=⎰⎰.
注:在进行二重积分计算时,善于观察被积函数的积分区域的特点,注意兼顾被积函数的奇偶性和积分区域的对称性,恰当地利用对称方法解题,可以避免繁琐计算,使二重积分的解答大大简化。

相关文档
最新文档