山东省中考数学试题目

合集下载

山东省德州市2024年中考数学真题试题含解析

山东省德州市2024年中考数学真题试题含解析

2024年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分) 1. -12的倒数是( )A. −2B. 12C. 2D. 12. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 据国家统计局统计,我国2024年国民生产总值(GDP )为900300亿元.用科学记数法表示900300亿是( ) A. 9.003×1012 B. 90.03×1012 C. 0.9003×1014 D. 9.003×1013 4. 下列运算正确的是( )A. (−2a )2=−4a 2B. (a +a )2=a 2+a 2C. (a 5)2=a 7D. (−a +2)(−a −2)=a 2−45. 若函数y =aa 与y =ax 2+bx +c 的图象如图所示,则函数y =kx +b 的大致图象为( )A. B.C. D.6. 不等式组{5a +2>3(a −1)12a −1≤7−32a 的全部非负整数解的和是( )A. 10B. 7C. 6D. 0 7. 下列命题是真命题的是( )A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {a −a =4.5a −12a =1B. {a −a =4.5a −12a =1C. {a −a =4.512a −a =1D. {a −a =4.512a −a =19. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透亮的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个嬉戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ) A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),肯定能使a 2−a 1a 2−a 1<0成立的是( )A. a =3a −1(a <0)B. a =−a 2+2a −1(a >0)C. a =−√3a(a >0)D. a =a 2−4a −1(a <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,全部正确结论的序号是( ) A. ①② B. ①③ C. ①②③ D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(a +1)(a −1)-3a −1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,假如梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.17. 如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,aa ⏜=aa ⏜,CE =1,AB =6,则弦AF 的长度为______. 18. 如图,点A 1、A 3、A 5…在反比例函数y =aa (x >0)的图象上,点A 2、A 4、A 6……在反比例函数y =−aa (x >0)的图象上,∠OA 1A 2=∠A 1A 2A 3=∠A 2A 3A 4=…=∠α=60°,且OA 1=2,则A n (n 为正整数)的纵坐标为______.(用含n 的式子表示)三、计算题(本大题共1小题,共10.0分)19. 习近平总书记说:“读书可以让人保持思想活力,让人得到才智启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面对社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同. (1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳实力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.四、解答题(本大题共6小题,共68.0分) 20. 先化简,再求值:(2a -1a )÷(a 2+a 2aa-5aa )•(a 2a +2a a +2),其中√a +1+(n -3)2=0.21.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康状况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成果进行分析.成果如下:七年级80 74 83 63 90 91 74 61 82 62 八年级74 61 83 91 60 85 46 84 74 82 (1)依据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级 2 3 5 0八年级 1 4 ______ 1分析数据:年级平均数众数中位数七年级76 74 77八年级______ 74 ______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康状况更好,并说明理由.22.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)依据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.23.下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30 25 0.1B50 50 0.1C100 不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.24.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请干脆写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转肯定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有改变吗?假如有改变,干脆写出改变后的结果(不必写计算过程);若无改变,请说明理由.mx-4与x轴交于A(x1,0),B(x2,25.如图,抛物线y=mx2-52.0)两点,与y轴交于点C,且x2-x1=112(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;2(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.依据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.依据轴对称图形的概念先求出图形中轴对称图形,再依据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:假如一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,假如把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.依据积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,驾驭各运算法则是关键,还要留意符号的处理.5.【答案】C【解析】解:依据反比例函数的图象位于二、四象限知k<0,依据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先依据二次函数及反比例函数的图象确定k、b的符号,然后依据一次函数的性质确定答案即可.本题考查了函数的图象的学问,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解:,解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的全部非负整数解是:0,1,2,3,4,∴不等式组的全部非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,精确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、依据全等三角形的判定方法,推断即可.B、依据垂径定理的推理对B进行推断;C、依据平行四边形的判定进行推断;D、依据平行线的判定进行推断.本题考查了命题与定理:推断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证明的,这样的真命题叫做定理.8.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.依据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,娴熟驾驭圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.首先依据题意画出树状图,然后由树状图求得全部等可能的结果,利用一元二次方程根的判别式,即可判定各种状况下根的状况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事务;解题时要留意此题是放回试验还是不放回试验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.依据各函数的增减性依次进行推断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,须要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可推断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可推断.本题考查正方形的性质,全等三角形的判定和性质,相像三角形的判定和性质等学问,解题的关键是娴熟驾驭基本学问,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;依据肯定值的意义,肯定值表示距离,所以3-x≥0,即可求解;本题考查肯定值的意义;理解肯定值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;依据分式方程的解法,先将式子通分化简为=1,最终验证根的状况,进而求解;本题考查分式方程的解法;娴熟驾驭分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.干脆利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;依据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7依据题意列出代数式解答即可.此题考查解一元一次不等式,关键是依据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,依据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√a−√a−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,-),依据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发觉点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×278=432<500 答:校图书馆能接纳第四个月的进馆人次. 【解析】 (1)先分别表示出其次个月和第三个月的进馆人次,再依据第一个月的进馆人次加其次和第三个月的进馆人次等于608,列方程求解; (2)依据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2a -1a )÷(a 2+a 2aa -5a a )•(a 2a +2a a +2) =2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −a aa •aa (a +2a )(a −2a )•(a +2a )22aa=-a +2a 2aa .∵√a +1+(n -3)2=0.∴m +1=0,n -3=0,∴m =-1,n =3.∴-a +2a 2aa =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m 和n 的值,最终代回化简后的分式即可.本题是分式化简求值题,须要娴熟驾驭通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)依据以上数据可得:七年级学生的体质健康状况更好.(1)依据平均数和中位数的概念解答即可;(2)依据样本估计总体解答即可;(3)依据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,驾驭众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD =120°,点A 、C 分别在射线PB 、PD 上,∠PAC =30°,AC =2√3,过A 、C 分别作PB 、PD 的垂线,它们相交于O ,以OA 为半径作⊙O ,OA ⊥PB ,求证:PB 、PC 为⊙O 的切线;证明:∵∠BPD =120°,PAC =30°,∴∠PCA =30°,∴PA =PC ,连接OP ,∵OA ⊥PA ,PC ⊥OC ,∴∠PAO =∠PCO =90°,∵OP =OP ,∴Rt △PAO ≌Rt △PCO (HL )∴OA =OC ,∴PB 、PC 为⊙O 的切线;(3)∵∠OAP =∠OCP =90°-30°=60°,∴△OAC 为等边三角形, ∴OA =AC =2√3,∠AOC =60°,∵OP 平分∠APC ,∴∠APO =60°,∴AP =√33×2√3=2,∴劣弧AC 与线段PA 、PC 围成的封闭图形的面积=S 四边形APCO -S 扇形AOC =2×12×2√3×2-60⋅a ⋅(2√3)2360=4√3-2π. 【解析】(1)过A 、C 分别作PB 、PD 的垂线,它们相交于O ,然后以OA 为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP ,先证明Rt △PAO ≌Rt △PCO ,然后依据切线的判定方法推断PB 、PC 为⊙O 的切线;(3)先证明△OAC 为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后依据扇形的面积公式,利用劣弧AC 与线段PA 、PC 围成的封闭图形的面积进行计算. 本题考查了作图-困难作图:困难作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟识基本几何图形的性质,结合几何图形的基本性质把困难作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x ≤853 853≤x ≤1753 x >1753【解析】解:(1)∵0.1元/min=6元/h ,∴由题意可得,y 1=, y 2=,y 3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)依据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)依据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题须要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC ⊥MN ,∠NGO =∠AGE =30°, ∴aa aa =cos30°=√32,∵GC =2OG ,∴aa aa =1√3,∵HGND 为平行四边形,∴HD =GN ,∴HD :GC :EB =1:√3:1.(2)如图2,连接AG ,AC ,∵△ADC 和△AHG 都是等腰三角形,∴AD :AC =AH :AG =1:√3,∠DAC =∠HAG =30°,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√3,∵∠DAB =∠HAE =60°,∴∠DAH =∠BAE ,在△DAH 和△BAE 中, {aa =aa∠aaa =∠aaaaa =aa∴△DAH ≌△BAE (SAS )∴HD =EB ,∴HD :GC :EB =1:√3:1.(3)有改变.如图3,连接AG ,AC ,∵AD :AB =AH :AE =1:2,∠ADC =∠AHG =90°,∴△ADC ∽△AHG ,∴AD :AC =AH :AG =1:√5,∵∠DAC =∠HAG ,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√5,∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,∵DA :AB =HA :AE =1:2,∴△ADH ∽△ABE ,∴DH :BE =AD :AB =1:2,∴HD :GC :EB =1:√5:2【解析】(1)连接AG ,由菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD=60°,易得A ,G ,C 共线,延长HG 交BC 于点M ,延长EG 交DC 于点N ,连接MN ,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线相互垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相像三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相像三角形的性质可得结论.本题是菱形与相像三角形,全等三角形,三角函数等学问点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-a 2a =54=a 1+a 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6),即:-6a =-4,解得:a =23, 故抛物线的表达式为:y =23x 2-53x -4;(2)当x 2=94时,y 2=2,①当a ≤a +2≤54时(即:a ≤-34), y 1≤y 2,则23a 2-53a -4≤2,解得:-2≤a ≤-92,而a ≤-34,故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时,则23(a +2)2-53(a +2)-4≤2,同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点, 点H (12,-92), 将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得:直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①,直线DC ⊥MH ,则直线MH 表达式中的k 值为1,同理可得直线HM 的表达式为:y =x -5…②,联立①②并解得:x =52,故点M (52,-52).【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种状况,分别求解即可; (3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要留意分类求解,避开遗漏.。

2023年山东省中考数学真题(附答案解析)

2023年山东省中考数学真题(附答案解析)
2023
(满分:120分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
温馨提示:
1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.
【解析】根据从上边看得到的图形是俯视图,可得答案.
【详解】解:俯视图是从上面看到的图形,应该是:
故选:D.
【点睛】本题主要考查简单几何体的三视图,掌握俯视图是从上边看得到的图形是解题的关键.
4.一元二次方程 根的情况为( )
A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定
【答案】A
如图,连接 ,则 , 是等边三角形
∴ ,弓形 的面积相等
∴阴影 的面积=扇形 的面积
∴图中三个阴影部分的面积之和 ;
故选:C.
【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.
8.已知点 是等边 的边 上的一点,若 ,则在以线段 为边的三角形中最小内角的大小为( )
A. B. C. D.
所有结果共有36种,其中点数之和等于7的结果有6种,概率为
故答案为: .
【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.
14.如图, 分别与 相切于 两点,且 .若点 是 上异于点 的一点,则 的大小为___________.
【答案】 或
【解析】根据切线的性质得到 ,根据四边形内角和为 ,得出 ,然后根据圆周角定理即可求解.

2024年山东省威海市中考数学真题(含答案)

2024年山东省威海市中考数学真题(含答案)

2024年山东省威海市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g.现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A.+7B.﹣5C.﹣3D.102.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为( )A.1×10﹣5B.1×10﹣6C.1×10﹣7D.1×10﹣83.下列各数中,最小的数是( )A.﹣2B.﹣(﹣2)C.−12D.−24.下列运算正确的是( )A.x5+x5=x10B.m+n2•1n=mnC.a6÷a2=a4D.(﹣a2)3=﹣a55.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是( )A.B.C.D.6.如图,在扇形AOB中,∠AOB=90°,点C是AO的中点.过点C作CE⊥AO交AB于点E,过点E作ED⊥OB,垂足为点D.在扇形内随机选取一点P,则点P落在阴影部分的概率是( )A .14B .13C .12D .237.定义新运算:①在平面直角坐标系中,{a ,b }表示动点从原点出发,沿着x 轴正方向(a ≥0)或负方向(a <0)平移|a |个单位长度,再沿着y 轴正方向(b ≥0)或负方向(b <0)平移|b |个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作(﹣2,1).②加法运算法则:{a ,b }+{c ,d }={a +c ,b +d },其中a ,b ,c ,d 为实数.若{3,5}+{m ,n }={﹣1,2},则下列结论正确的是( )A .m =2,n =7B .m =﹣4,n =﹣3C .m =4,n =3D .m =﹣4,n =38.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是( )A .3x−y =44x−y =1B .3x +4=y4x +1=yC −y =4−y =1D +4=y +1=y 9.如图,在▱ABCD 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是( )A .若CE CF =ADAB ,则EF ∥BDB .若AE ⊥BC ,AF ⊥CD ,AE =AF ,则EF ∥BD C .若EF ∥BD ,CE =CF ,则∠EAC =∠FAC D .若AB =AD ,AE =AF ,则EF ∥BD10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.如图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是( )A .甲车行驶83h 与乙车相遇B .A ,C 两地相距220km C .甲车的速度是70km /h D .乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.计算:12−8×6= .12.因式分解:(x +2)(x +4)+1=  .13.如图,在正六边形ABCDEF 中,AH ∥FG ,BI ⊥AH ,垂足为点I .若∠EFG =20°,则∠ABI =  .14.计算:4x−2+x 22−x =  .15.如图,在平面直角坐标系中,直线y 1=ax +b (a ≠0)与双曲线y 2=kx (k ≠0)交于点A(﹣1,m),B(2,﹣1).则满足y1≤y2的x的取值范围 .16.将一张矩形纸片(四边形ABCD)按如图所示的方式对折,使点C落在AB上的点C′处,折痕为MN,点D落在点D′处,C′D′交AD于点E.若BM=3,BC′=4,AC′=3,则DN= .三、解答题(本大题共8小题,共72分)17.(6分)某公司为节能环保,安装了一批A型节能灯,一年用电16000千瓦•时.后购进一批相同数量的B型节能灯,一年用电9600千瓦•时.一盏A型节能灯每年的用电量比一盏B型节能灯每年用电量的2倍少32千瓦•时.求一盏A型节能灯每年的用电量.18.(8分)为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).表1:2月份测试成绩统计表个数0136810人数484121表2:本学期测试成绩统计表平均数/个众数/个中位数/个合格率2月 2.6a 120%3月 3.13425%4月44535%5月 4.555540%6月b86c请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.(8分)某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整).课题测量某护堤石坝与地平面的倾斜角成员组长:×××￿￿组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:AC 是一根笔直的竹竿.点D 是竹竿上一点,线段DE 的长度是点D 到地面的距离.∠α是要测量的倾斜角测量数据…………(1)设AB=a,BC=b,AC=c,CE=d,DE=e,CD=f,BE=g,AD=h,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据(1)中选择的数据,写出求∠α的一种三角函数值的推导过程.(3)假设sinα≈0.86,cosα≈0.52,tanα≈1.66,根据(2)中的推导结果,利用计算器求出∠α的度数.你选择的按键顺序为 .20.(9分)感悟￿如图1,在△ABE中,点C,D在边BE上,AB=AE,BC=DE.求证:∠BAC=∠EAD.应用￿(1)如图2,用直尺和圆规在直线BC上取点D,点E(点D在点E的左侧),使得∠EAD=∠BAC,且DE=BC(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线AC上取一点D,在直线BC上取一点E,使得∠CDE=∠BAC,且DE=AB(不写作法,保留作图痕迹).21.(9分)定义￿我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离AB=a﹣b(a≥b).特别的,当a≥0时,表示数a的点与原点的距离等于a﹣0.当a<0时,表示数a的点与原点的距离等于0﹣a.应用￿如图,在数轴上,动点A从表示﹣3的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B到原点距离之和的最小值.22.(10分)如图,已知AB是⊙O的直径,点C,D在⊙O上,且BC=CD.点E是线段AB 延长线上一点,连接EC并延长交射线AD于点F.∠FEG的平分线EH交射线AC于点H,∠H=45°.(1)求证:EF是⊙O的切线;(2)若BE=2,CE=4,求AF的长.23.(10分)如图,在菱形ABCD中,AB=10cm,∠ABC=60°,E为对角线AC上一动点,以DE为一边作∠DEF=60°,EF交射线BC于点F,连接BE,DF.点E从点C出发,沿CA方向以每秒2cm的速度运动至点A处停止.设△BEF的面积为y cm2,点E的运动时间为x秒.(1)求证:BE=EF;(2)求y与x的函数表达式,并写出自变量x的取值范围;(3)求x为何值时,线段DF的长度最短.24.(12分)已知抛物线y=x2+bx+c(b<0)与x轴交点的坐标分别为(x1,0),(x2,0),且x1<x2.(1)若抛物线y1=x2+bx+c+1(b<0)与x轴交点的坐标分别为(x3,0),(x4,0),且x3<x4,试判断下列每组数据的大小(填写<、=或>):①x1+x2 x3+x4;②x1﹣x3 x2﹣x4;③x2+x3 x1+x4.(2)若x1=1,2<x2<3,求b的取值范围;(3)当0≤x≤1时,y=x2+bx+c(b<0)最大值与最小值的差为916,求b的值.2024年山东省威海市中考数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.C2.B3.A4.C5.D6.B7.B8.C9.D10.A二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.−2312.(x+3)213.50°14.﹣x﹣215.﹣1≤x<0或x≥216.3 2三、解答题(本大题共8小题,共72分)17.(6分)解:设一盏B型节能灯每年的用电量为x千瓦•时,则一盏A型节能灯每年的用电量为(2x﹣32)千瓦•时,根据题意得:160002x−32=9600x,解得:x=96,经检验,x=96是所列方程的解,且符合题意,∴2x﹣32=2×96﹣32=160(千瓦•时).答:一盏A型节能灯每年的用电量为160千瓦•时.18.(8分)解:(1)6月测试成绩中,引体向上3个的人数为20﹣4﹣1﹣6﹣4=5(人),补充统计图如下:c =1+6+420×100%=55%,根据表2可得a =1,b =120(4×1+5×3+1×6+6×8+4×10)=5.65,(2)本次引体向上训练活动的效果明显,理由如下:从平均数和合格率看,平均数和合格率逐月增加,从中位数看,引体向上个数逐月增加,从众数看,引体向上的个数越来越大(答案不唯一,合理即可);(3)400×55%=220(人),答:估算经过一学期的引体向上训练,可达到合格水平的男生人数约220人.19.(8分)解:(1)需要的数据为:AB =a ,AC =c ,DE =e ,CD =f ;(2)过点A 作AM ⊥CB 于点M ,则∠AMB =90°,∵DE ⊥CB ,∴DE ∥AM ,∴△CDE∽△CAM,∴DEAM=CDCA,即eAM=fc,∴AM=ecf,∴sinα=AMAB=ecfa=ecaf;(3)∵sinα=ecaf,∴按键顺序为2ndF,sin,0,•,8,6,=,故答案为:①.20.(9分)解:感悟:过点A作AH⊥BE于点H,∵AB=AE,BC=DE,∴∠BAH=∠EAH,∠CAH=∠DAH,∴∠BAC=∠DAE;应用:(1)解:如图2:点D,E即为所求;(2)点D,E即为所求.21.(9分)解:(1)设经过x秒,点A,B之间的距离等于3个单位长度,则:|(﹣3+x)﹣(12﹣2x)|=3,解得:x=4或x=6,答:经过4秒或6秒,点A,B之间的距离等于3个单位长度;(2)设经过x秒,点A,B到原点距离之和为y,则y=|﹣3+x|+|12﹣2x|,当x≤3时,y=|﹣3+x|+|12﹣2x|=3﹣x+12﹣2x=﹣3x+15,当x=3时,y值最小,为6,当3<x≤6时,y=|﹣3+x|+|12﹣2x|=﹣3+x+12﹣2x=﹣x+9,当x=6时,y值最小,为3,当x>6时,y=|﹣3+x|+|12﹣2x|=﹣3+x﹣12+2x=3x﹣15,当x=6时,y有极小值,为3,综上所述,点A,B到原点距离之和的最小值为3.22.(10分)(1)证明:如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵BC=CD,∴∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AF,∵EH平分∠FEG,∴∠FEH=∠GEH,∵∠GEH=∠H+∠BAC,∠FEH=∠F+∠BAF,∴2∠H+2∠BAC=∠F+∠BAF,∴∠BAF=2∠BAC,∴∠F=2∠H=90°,∴∠OCE=∠F=90°,即OC⊥EF,∵OC是半径,∴EF是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,即∠OCB+∠BCE=90°,∴∠OBC+∠BAC=90°,又∵OB=OC,∴∠OBC=∠OCB,∴∠BCE=∠EAC,∵∠CEB=∠CAE,∴△BCE∽△CAE,∴BE CE =CE AE =BC AC =24=12,∴CE 2=BE •AE ,即16=2AE ,解得AE =8,∴AB =8﹣2=6,在Rt △ABC 中,AB =6,BC AC =12,∴BC =655,AC =1255,∵∠F =∠ACB =90°,∠FAC =∠BAC ,∴△FAC ∽△CAB ,∴AF AC =ACAB ,∴AF =AC 2AB =245.23.(10分)(1)证明:设CD 与EF 相交于点M ,∵四边形ABCD 为菱形,∴BC ﹣=DC ,∠BCE =∠DCE ,AB ∥CD ,∵∠ABC =60°,∴∠DCF =60°,在△BCE 和△DCE 中,BC =DC ∠BCE =∠DCE СЕ=СЕ,∴△BCE ≌△DCE (SAS ),∴∠CBE=∠CDE,BE=DE,∵∠DMF=∠DEF+∠CDE=∠DCF+∠CFE,又∵∠DEF=∠DCF=60°,∴∠CDE=∠CFE,∴∠CBE=∠CFE,∴BE=EF;(2)解:过点E作EN⊥BC于N,则∠ENC=90°,∵BE=EF,∴BF=2BN,∵四边形ABCD为菱形,∠ABC=60°,∴ВС=АВ=10cm,∠АСВ=∠BСD=60°,即∠ECN=60°,∵CE=2x cm,∴EN=CE•sin60°=2x•32=3x(cm),CN=CE•cos60°=2x•12=x(cm),∴BN=BC﹣CN=10﹣x(cm),∴BF=2(10﹣x)cm,∴у=12ВF•ЕN=12×2(10﹣х)×3х=−3х2+103х,∵0<2x≤10,∴0<x≤5,∴y=−3х2+103х(0<x≤5);(3)解:∵BE=DE,BE=EF,∴DE=EF,∵∠DEF=60°,∴△DEF为等边三角形,∴DE=DF﹣EF,∴BE=DF,∴线段DF的长度最短,即BE的长度最短,当BE⊥AC时,BE取最短,如图,∵四边形ABCD是菱形,∴АВ=ВС,∵∠ABC=60°,∴△ABC为等边三角形,∴AE=AB=AC=10cm,∵BE⊥AC,∴CE=12AC=5cm,∴x=CE2=52,∴当x=52时,线段DF的长度最短.24.(12分)解:(1)∵y=x2+bx+c(b<0)与x轴交点的坐标分别为(x1,0),(x2,0),且x1<x2,∴x1+x2=﹣b,且抛物线开口向上,∵y1=x2+bx+c+1(b<0)与x轴交点的坐标分别为(x3,0),(x4,0),且x1<x4,即y=x2+bx+c(b<0)向上平移1个单位,∴x1<x3<x4<x2,且x1+x4=﹣b,∴①x1+x2=x1+x4;∵x2﹣x1>x4﹣x3∴x2﹣x4>x1﹣x3,即②x1﹣x5<x2﹣x4;∴x1+x3>x1+x4,即③x2+x3>x1+x4,故答案为:=;<;>;(2)∵x1=1,2<x2<3,∴3<x2+x1<4∴3<﹣b<4,∴﹣4<b<﹣3;(3)抛物线y=x2+bx+c(b<0)顶点坐标为(−b2,4c−b24),对称轴为直线x=−b2>0,当x=0时,y=c;当x=1时,y=1+b+c;①当在x=0 取得最大值,在x=1取得最小值时,有c−(1+b+c)=916,解得b=−25 16;②当在x=0取得最大值,在顶点取得最小值时,有c−4c−b24=916,解得b=32(舍去)或b=−32;③当在x=1取得最大值,在顶点取得最小值时,有1+b+c−4c−b24=916,解得b=−72(舍去)或b=−12,综上所述,b的值为−32或−12或−2516.。

2023年山东省济南市中考数学真题(解析版)

2023年山东省济南市中考数学真题(解析版)

济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列几何体中,主视图是三角形的为()A. B.C. D.【答案】A 【解析】【分析】分别判断出各选项中的几何体的主视图,即可得出答案.【详解】解:A 、圆锥的主视图是三角形,故本选项符合题意;B 、球的主视图是圆,故本选项不符合题意;C 、长方体的主视图是长方形,故本选项不符合题意;D 、三棱柱的主视图是长方形,故本选项不符合题意;故选:A .【点睛】本题考查了简单几何体的三视图,熟知常见几何体的主视图是解本题的关键.2.2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为()A.80.6865310B.86.865310C.76.865310 D.768.65310【答案】B 【解析】【分析】科学记数法的表示形式为10n a 的形式,其中110a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10 时,n 是正数;当原数的绝对值1 时,n 是负数.【详解】解:866.68360503000851 ,故选:B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a 的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图,一块直角三角板的直角顶点放在直尺的一边上.如果170 ∠,那么2 的度数是()A.20B.25C.30D.45【答案】A 【解析】【分析】根据两直线平行,同位角相等可得13 ,再结合三角板的特征利用平角定义即可算出2 的度数.【详解】解:如下图进行标注,AB CD ∥∵,1370 ,2180903907020 ,故选:A .【点睛】本题考查了平行线性质,三角形平角的定义,利用三角板的特点求出结果是解答本题的关键.4.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是()A.0abB.0a bC.33a bD.33a b【答案】D 【解析】【分析】根据题意可得32,2b a ,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:32,2b a ,所以b a ,∴,30,033,3a b ab a b a b ,观察四个选项可知:只有选项D 的结论是正确的;故选:D .【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出32,2b a 是解题的关键.5.下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是()A. B.C. D.【答案】A 【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,是中心对称图形,故此选项符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.将一个图形沿着一条直线翻折后,直线两侧能完全重合的图形是轴对称图形,将一个图形绕一点旋转180度后能与自身重合的图形是中心对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.下列运算正确的是()A.248a a aB.43a a aC.325a a D.422a a a 【答案】D 【解析】【分析】根据同底数幂的乘除法、合并同类项、幂的乘方等运算法则逐项判断即得答案.【详解】解:A 、246a a a ,故本选项运算错误,不符合题意;B 、4a 与3a 不是同类项,不能合并,故本选项运算错误,不符合题意;C 、326a a ,故本选项运算错误,不符合题意;D 、422a a a ,故本选项运算正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方等知识,熟练掌握相关运算法则是解题的关键.7.已知点 14,A y , 22,B y , 33,C y 都在反比例函数 0ky k x的图象上,则1y ,2y ,3y 的大小关系为()A.321y y yB.132y y yC.312y y y D.231y y y 【答案】C 【解析】【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:∵在反比例函数(0)ky k x中,0k , 此函数图象在二、四象限,420 ∵,点 14,A y ,2(2,)B y 在第二象限,10y ,20y ,∵函数图象在第二象限内为增函数,420 ,120y y .30 ∵,3(3,)C y 点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y .故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.8.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为()A.13B.12C.23D.34【答案】B 【解析】【分析】根据题意画树状图,再利用概率公式,即可得到答案.【详解】解:根据题意,画树状图如下:一共有12种情况,被抽到的2名同学都是男生的情况有6种,61122P,故选:B .【点睛】本题考查了列表法或画树状图法求概率,熟练掌握概率公式是解题关键.9.如图,在ABC 中,AB AC ,36BAC ,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12B D 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确...的是()A.36BCEB.BC AEC.512BE AC D.512AEC BEC S S △△【答案】C 【解析】【分析】由题意得,BC DC ,CE 平分ABC ,根据三角形内角和及角平分线判断A 即可;由角平分线求出36ACE A ,得到AE CE ,根据三角形内角和求出72BEC B ,得到CE BC ,即可判断B ;证明ABC CBE △∽△,得到AB BCBC BE,设1,AB BC x ,则1BE x ,求出x ,即可判断C ;过点E 作EG BC 于G ,EH AC 于H ,由角平分线的性质定理推出EG EH ,即可根据三角形面积公式判断D .【详解】解:由题意得,BC DC ,CE 平分ABC ,∵在ABC 中,AB AC ,36BAC ,∴72ABC ACB ∵CE 平分ABC ,∴36BCE ,故A 正确;∵CE 平分ABC ,72ACB ∴36ACE A ,∴AE CE ,∵72ABC ,36BCE ,∴72BEC B ,∴CE BC ,∴BC AE ,故B 正确;∵,A BCE ABC CBE ,∴ABC CBE △∽△,∴AB BCBC BE,设1,AB BC x ,则1BE x ,∴11x x x,∴21x x ,解得12x,∴13122BE,∴352BE AC,故C 错误;过点E 作EG BC 于G ,EH AC 于H,∵CE 平分ACB ,EG BC ,EH AC ,∴EG EH∴112122AEC BECAC EHS ACS BC BC EG △△,故D 正确;故选:C .【点睛】此题考查了等腰三角形等边对等角,相似三角形的判定和性质,角平分线的作图及性质,解一元二次方程,熟练掌握各知识点是解题的关键.10.定义:在平面直角坐标系中,对于点 11,P x y ,当点 22,Q x y 满足 12122x x y y 时,称点22,Q x y 是点 11,P x y 的“倍增点”,已知点 11,0P ,有下列结论:①点 13,8Q , 22,2Q 都是点1P 的“倍增点”;②若直线2y x 上的点A 是点1P 的“倍增点”,则点A 的坐标为 2,4;③抛物线223y x x 上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB 的最小值是5.其中,正确结论的个数是()A.1B.2C.3D.4【答案】C 【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点 ,2A a a ,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点2,23D t t t 是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点 ,B m n ,根据“倍增点”定义可得 21m n ,根据两点间距离公式可得 22211PB m n ,把 21n m 代入化简并配方,即可得出21PB 的最小值为165,即可判断.【详解】解:①∵ 11,0P , 13,8Q ,∴ 121282288103,x x y y ,∴ 12122x x y y ,则 13,8Q 是点1P 的“倍增点”;∵ 11,0P , 22,2Q ,∴ 121222212202,x x y y ,∴ 12122x x y y ,则 22,2Q 是点1P 的“倍增点”;故①正确,符合题意;②设点 ,2A a a ,∵点A 是点1P 的“倍增点”,∴ 2102a a ,解得:0a ,∴ 0,2A ,故②不正确,不符合题意;③设抛物线上点2,23D t t t 是点1P 的“倍增点”,∴ 22123t t t ,整理得:2450t t ,∵ 24415360 ,∴方程有两个不相等实根,即抛物线223y x x 上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点 ,B m n ,∵点B 是点1P 的“倍增点”,∴ 21m n ,∵ ,B m n , 11,0P ,∴ 22211PB m n 22121m m2565m m 2316555m,∵50 ,∴21PB 的最小值为165,∴1PB 5,故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:216x =__________.【答案】(x+4)(x-4)【解析】【分析】【详解】x 2-16=(x+4)(x-4),故答案为:(x+4)(x-4)12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒子中棋子的总个数是_________.【答案】12【解析】【分析】利用概率公式,得出黑色棋子的数量除以对应概率,即可算出棋子的总数.【详解】解:13124,∴盒子中棋子的总个数是12.故答案为:12.【点睛】本题考查了简单随机事件概率的相关计算,事件出现的概率等于出现的情况数与总情况数之比.13.关于x 的一元二次方程2420x x a 有实数根,则a 的值可以是_________(写出一个即可).【答案】2(答案不唯一)【解析】【分析】由于方程有实数根,则其根的判别式0 ,由此可以得到关于a 的不等式,解不等式就可以求出a 的取值范围,进而得出答案.【详解】解:∵关于x 的一元二次方程2420x x a 有实数根,∴ 22444120b ac a ,即1680a ,解得:2a ,∴a 的值可以是2.故答案为:2(答案不唯一).【点睛】本题考查一元二次方程 200ax bx c a 的根与判别式的关系,当0a 时,方程有两个不相等的实数根;当0a 时,方程有两个相等的实数根;当a<0时,方程没有实数根.14.如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留 ).【答案】65【解析】【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A 的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和 52180540 ,5401085A ,2108263605ABES 扇形,故答案为:65.【点睛】本题考查了扇形面积和正多边形内角和的计算,熟练掌握扇形面积公式和正多边形内角和公式是解答本题的关键.15.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离 km s 和时间 h t 的关系,则出发__________h 后两人相遇.【答案】0.35【解析】【分析】根据题意和函数图象中的数据可以计算出小明和小亮的速度,从而可以解答本题.【详解】解:由题意和图象可得,小明0.5小时行驶了 6 3.5 2.5km ,∴小明的速度为: 2.55km/h 0.5,小亮0.4小时行驶了6km ,∴小明的速度为:615km/h 0.4 ,设两人出发h x 后两人相遇,∴ 155 3.5x 解得0.35x ,∴两人出发0.35后两人相遇,故答案为:0.35【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ,2AP ,则PE 的长等于__________.【答案】26【解析】【分析】过点A 作AQ PE 于点Q ,根据菱形性质可得75DAC ,根据折叠所得30E D ,结合三角形的外角定理得出45EAP ,最后根据cos 45PQ AP tan 30AQ EQ 求解.【详解】解:过点A 作AQ PE 于点Q ,∵四边形ABCD 为菱形,30ABC ,∴AB BC CD AC ,30ABC D ,∴ 118030752DAC ,∵CPE △由CPD △沿CP 折叠所得,∴30E D ,∴753045EAP ,∵AQ PE ,2AP ,∴cos 45PQ AP AQ PQ ,∴tan 30AQ EQ∴PE EQ PQ.【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.计算: 1011tan 602 .【答案】3【解析】【分析】根据绝对值的意义、负整数指数幂、零指数幂以及特殊角的三角函数值分别计算后,再根据二次根式加减运算法则求解即可得到答案.【详解】解: 1011tan 60221 3 .【点睛】本题考查了绝对值的意义、负整数指数幂运算、零指数幂运算、特殊角的三角函数值、二次根式加减运算,熟练掌握相关运算法则是解本题的关键.18.解不等式组: 223235x x x x①②,并写出它的所有整数解.【答案】13x ,整数解为0,1,2【解析】【分析】分别求解两个不等式,再写出解集,最后求出满足条件的整数解即可.【详解】解:解不等式①,得1x ,解不等式②,得3x ,在同一条数轴上表示不等式①②的解集,原不等式组的解集是13x ,∴整数解为0,1,2.【点睛】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.19.已知:如图,点O 为ABCD Y 对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F .求证:DE BF.【答案】详见解析【解析】【分析】根据平行四边形的性质得出AD BC ,AD BC ∥,进而得出EAO FCO ,OEA OFC ,再证明AOE COF ≌△△,根据全等三角形的性质得出AE CF ,再利用线段的差得出AD AE BC CF ,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ,AD BC ∥,∴EAO FCO ,OEA OFC ,∵点O 为对角线AC 的中点,∴AO CO ,∴AOE COF ≌△△,∴AE CF ,∴AD AE BC CF ,∴DE BF .【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,正确理解题意是解题的关键.20.图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m AB ,0.6m BC ,123ABC ,该车的高度 1.7m AO .如图2,打开后备箱,车后盖ABC 落在AB C 处,AB 与水平面的夹角27B AD .(1)求打开后备箱后,车后盖最高点B 到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C 处经过,有没有碰头的危险?请说明理由.(结果精确到.....001m .,参考数据:sin 270.454 ,cos 270.891 ,tan 270.510 1.732 )【答案】(1)车后盖最高点B 到地面的距离为2.15m(2)没有危险,详见解析【解析】【分析】(1)作B E AD ,垂足为点E ,先求出B E 的长,再求出B E AO 的长即可;(2)过C 作C F B E ,垂足为点F ,先求得63AB E ,再得到60C B F AB C AB E ,再求得cos600.3B F B C ,从而得出C 到地面的距离为2.150.3 1.85 ,最后比较即可.【小问1详解】如图,作B E AD ,垂足为点E在Rt AB E △中∵27B AD ,1AB AB ∴sin 27B EAB∴sin 2710.4540.454B E AB ∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO 答:车后盖最高点B 到地面的距离为2.15m .【小问2详解】没有危险,理由如下:过C 作C F B E ,垂足为点F∵27B AD ,90B EA∴63AB E∵123AB C ABC∴60C B F AB C AB E在Rt B FC 中,0.6B C BC ∴cos600.3B F B C .∵平行线间的距离处处相等∴C 到地面的距离为2.150.3 1.85 .∵1.85 1.8∴没有危险.【点睛】本题主要考查了解直角三角形的应用,掌握直角三角形的边角关系是解题的关键.21.2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ;B 组:1223m ;C 组:2334m ;D 组:3445m ;E 组:4556m .下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万;(4)各组“五一”假期的平均出游人数如下表:组别A 112m B 1223m C 2334m D 3445m E 4556m 平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【答案】(1)36(2)详见解析(3)15.5(4)20百万【解析】【分析】(1)由E 组的个数除以总个数,再乘以360 即可;(2)先用D 组所占百分比乘以总个数得出其个数,再用总个数减去A 、B 、D 、E 组的个数得出C 组个数,最后画图即可;(3)根据中位数的定义可得出中位数为第15和16个数的平均数,第15和16个数均在B 组,求解即可;(4)根据加权平均数的求解方法计算即可.【小问1详解】33603630,故答案为:36;【小问2详解】D 组个数:3010%3 个,C 组个数:30128334 个,补全频数分布直方图如下:【小问3详解】共30个数,中位数为第15和16个数的平均数,第15和16个数均在B 组,∴中位数为151615.52百万,故答案为:15.5;【小问4详解】5.51216832.544235032030(百万),答:这30个地区“五一”假期的平均出游人数是20百万.【点睛】本题考查了扇形统计图和频数分布直方图的相关知识,涉及求扇形所对的圆心角的度数,画频数分布直方图,求中位数,求加权平均数,熟练掌握知识点,并能够从题目中获取信息是解题的关键.22.如图,AB ,CD 为O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ,点E 是 BD的中点,弦CE ,BD 相交于点E .(1)求OCB 的度数;(2)若3EF ,求O 直径的长.【答案】(1)60(2)【解析】【分析】(1)根据切线的性质,得出OC PC ,再根据直角三角形两锐角互余,得出90OCB BCP ,再根据等边对等角,得出OCB OBC ,再根据等量代换,得出2OCB BCP ,再根据90OCB BCP ,得出290BCP BCP ,即390BCP ,得出30BCP ,进而计算即可得出答案;(2)连接DE ,根据圆周角定理,得出90DEC ,再根据中点的定义,得出 DEEB ,再根据同弧或同弦所对的圆周角相等,得出1302DCE ECB FDE DCB ,再根据正切的定义,得出DE ,再根据30 角所对的直角边等于斜边的一半,得出2CD DE 【小问1详解】解:∵PC 与O 相切于点C ,∴OC PC ,∴90OCB BCP ,∵OB OC ,∴OCB OBC ,∵2ABC BCP ,∴2OCB BCP ,∴290BCP BCP ,即390BCP ,∴30BCP ,∴260OCB BCP ;【小问2详解】解:如图,连接DE ,∵CD 是O 直径,∴90DEC ,∵点E 是 BD的中点,∴ DEEB ,∴1302DCE ECB FDE DCB,在Rt FDE △中,∵3EF ,30FDE ,∴tan 30EF DE,在Rt DEC △中,∵30DCE ,∴2CD DE∴O 的直径的长为.【点睛】本题考查了切线的性质、直角三角形两锐角互余、等边对等角、圆周角定理及其推论、锐角三角函数、含30 角的直角三角形的性质,解本题的关键在熟练掌握相关的性质定理.23.某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元(2)购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元【解析】【分析】(1)设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是 200x 元,根据:用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同即可列出关于x 的分式方程,解方程并检验后即可求解;(2)设购买A 型编程机器人模型m 台,购买A 型和B 型编程机器人模型共花费w 元,根据题意可求出m 的范围和W 关于m 的函数关系式,再结合一次函数的性质即可求出最小值【小问1详解】解:设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是 200x 元.根据题意,得20001200200x x 解这个方程,得500x 经检验,500x 是原方程的根.200300x 答:A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元.【小问2详解】设购买A 型编程机器人模型m 台,购买B 型编程机器人模型 40m 台,购买A 型和B 型编程机器人模型共花费w 元,由题意得:403m m ,解得10m .∴5000.83000.840w m m 即1609600w m ,∵1600 ,∴w 随m 的增大而增大.∴当10m 时,w 取得最小值11200,此时4030m ;答:购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元.【点睛】本题考查了分式方程的应用、一元一次不等式的应用和一次函数的性质,正确理解题意、找准相等与不等关系、得出分式方程与不等式是解题的关键.24.综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为2m a .【问题提出】小组同学提出这样一个问题:若10a ,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为28m ,得到8xy ,满足条件的 ,x y 可看成是反比例函数8y x的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y ,满足条件的 ,x y 可看成一次函数210y x 的图象在第一象限内点的坐标,同时满足这两个条件的 ,x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数 80y x x的图象与直线1l :210y x 的交点坐标为 1,8和_________,因此,木栏总长为10m 时,能围出矩形地块,分别为:1m AB ,8m BC ;或AB ___________m ,BC __________m .(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a ,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数2y x a .发现直线2y x a 可以看成是直线2y x 通过平移得到的,在平移过程中,当过点 2,4时,直线2y x a 与反比例函数 80y x x的图象有唯一交点.(3)请在图2中画出直线2y x a 过点 2,4时的图象,并求出a 的值.【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a 与8y x图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围.【答案】(1) 4,2;4;2;(2)不能围出,理由见解析;(3)图见解析,8a ;(4)817a 【解析】【分析】(1)联立反比例函数和一次函数表达式,求出交点坐标,即可解答;(2)根据6a 得出,26y x ,在图中画出26y x 的图象,观察是否与反比例函数图像有交点,若有交点,则能围成,否则,不能围成;(3)过点 2,4作1l 的平行线,即可作出直线2y x a 的图象,将点 2,4代入2y x a ,即可求出a 的值;(4)根据存在交点,得出方程 820x a a x有实数根,根据根的判别式得出8a ,再得出反比例函数图象经过点 1,8, 8,1,则当2y x a 与8y x 图象在点 1,8左边,点 8,1右边存在交点时,满足题意;根据图象,即可写出取值范围.【详解】解:(1)∵反比例函数 80y x x,直线1l :210y x ,∴联立得:8210y x y x ,解得:1118x y ,2242x y ,∴反比例函与直线1l :210y x 的交点坐标为 1,8和 4,2,当木栏总长为10m 时,能围出矩形地块,分别为:1m AB ,8m BC ;或4m AB ,2m BC .故答案为: 4,24;2.(2)不能围出.∵木栏总长为6m ,∴26x y ,则26y x ,画出直线26y x 的图象,如图中2l 所示:∵2l 与函数8y x图象没有交点,∴不能围出面积为28m 的矩形;(3)如图中直线3l 所示,3l 即为2y x a 图象,将点 2,4代入2y x a ,得:422a ,解得8a ;(4)根据题意可得∶若要围出满足条件的矩形地块,2y x a 与8y x图象在第一象限内交点的存在问题,即方程 820x a a x有实数根,整理得:2280x ax ,∴ 24280a ,解得:8a ,把1x 代入8y x 得:188y ,∴反比例函数图象经过点 1,8,把1y 代入8y x 得:81x ,解得:8x ,∴反比例函数图象经过点 8,1,令 1,8A , 8,1B ,过点 1,8A , 8,1B 分别作直线3l 的平行线,由图可知,当2y x a 与8y x图象在点A 左边,点B 右边存在交点时,满足题意;把 8,1代入2y x a 得:116a ,解得:17a ,∴817a .【点睛】本题主要考查了反比例函数和一次函数综合,解题的关键是正确理解题意,根据题意得出等量关系,掌握待定系数法,会根据函数图形获取数据.25.在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上, 2,3C , 1,3D .抛物线 220y ax ax c a 与x 轴交于点 2,0E 和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线 220y ax ax c a 与正方形ABCD 恰有两个交点,求a 的取值范围.【答案】(1)233384y x x, 4,0F ;(2) 4,6 ;(3)103a 或3358a 【解析】【分析】(1)将点 2,3C , 2,0E 代入抛物线22y ax ax c ,利用待定系数法求出抛物线的表达式,再令0y ,求出x 值,即可得到点F 的坐标;(2)设直线CE 的表达式为y kx b ,将点 2,3C , 2,0E 代入解析式,利用待定系数法求出直线CE 的表达式为:33y x 42,设点233,384Q t t t ,根据平移的性质,得到点2332,684P t t t ,将点P 代入33y x 42,求出t 的值,即可得到点Q 的坐标;(3)根据正方形和点C 的坐标,得出3BC ,2OB ,1OA ,将 2,0E 代入22y ax ax c ,求得 222819y ax ax a a x a ,进而得到顶点坐标 1,9a ,分两种情况讨论:①当抛物线顶点在正方形内部时,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,分别列出不等式组求解,即可得到答案.【小问1详解】解:∵抛物线22y ax ax c 过点 2,3C ,2,0E 443440a a c a a c ,解得:383a c , 抛物线表达式为233384y x x,当0y 时,2333084x x ,解得:12x (舍去),24x ,4,0F ;【小问2详解】解:设直线CE 的表达式为y kx b ,∵直线过点 2,3C , 2,0E ,2320k b k b ,解得:3432k b,直线CE 的表达式为:33y x 42,∵点Q 在抛物线233384y x x 上,设点233,384Q t t t ,2,3C ∵, 4,0F ,且PQ 由CF 平移得到,点Q 向左平移2个单位,向上平移3个单位得到点2332,684P t t t,∵点P 在直线CE 上,将2332,684P t t t 代入33y x 42 ,23333642428t t t ,整理得:216t ,解得:14t ,24t (舍去),当4x 时, 233443684y Q 点坐标为 4,6 ;【小问3详解】解:∵四边形ABCD 是正方形, 2,3C ,3BC AB ,2OB ,1OA AB OB ,点A 和点D 的横坐标为1 ,点B 和点C 的横坐标为2,将 2,0E 代入22y ax ax c ,得:8c a ,222819y ax ax a a x a , 顶点坐标为 1,9a ,①如图,当抛物线顶点在正方形内部时,与正方形有两个交点,9390a a ,解得:103a ;②如图,当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D下方时,与正方形有两个交点,222228312183a a a a a a ,解得:3358a ,综上所述,a 的取值范围为103a 或3358a .【点睛】本题是二次函数综合题,考查了二次函数的图象和性质,待定系数法求函数解析式,平移的性质,函数图像上点的坐标特征,抛物线与直线交点问题,解一元二次方程,解一元一次不等式组等知识,利用。

2023年山东省济南市中考数学真题及参考答案

2023年山东省济南市中考数学真题及参考答案

济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列几何体中,主视图是三角形的为A. B.C. D.2.2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为 A. 80.6865310× B. 86.865310× C. 76.865310×D. 768.65310×3.如图,一块直角三角板的直角顶点放在直尺的一边上.如果∠1=70°,那么∠2的度数是 A.20°B.25°C.30°D.45°4.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是A. 0ab >B. 0a b +>C. 33a b +<+D. 33a b −<−5.下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是A. B.C.D.6.下列运算正确的是A. 248a a a ⋅=B. 43a a a −= C. ()325a a =D. 422a a a ÷=7.已知点()14,A y −,()22,B y −,()33,C y 都在反比例函数()0ky k x=<的图象上,则1y ,2y ,3y 的大小关系为A. 321y y y <<B. 132y y y <<C. 312y y y <<D. 231y y y <<8.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为 A.13B.12C.23D.349.如图,在ABC △中,AB AC =,36BAC ∠=°,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12BD 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确...的是A. 36BCE ∠=°B. BC AE =C.BE AC =D.AEC BEC S S =△△10.定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y 的“倍增点”,已知点()11,0P ,有下列结论: ①点()13,8Q ,()22,2Q −−都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4; ③抛物线223y x x =−−上存在两个点是点1P 的“倍增点”; ④若点B 是点1P 的“倍增点”,则1PB其中,正确结论的个数是 A.1B.2C.3D.4二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:216m −=_________.12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则4盒中棋子的总个数是_________. 13.关于x 的一元二次方程2420x x a −+=有实数根,则a 的值可以是_________(写出一个即可). 14.如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留π).15.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离()km s 和时间()h t 的关系,则出发__________h 后两人相遇.16.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ∠=°,2AP =,则PE 的长等于__________.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)()1011tan 602π−++−°.18.(本小题满分6分)解不等式组:()223,2.35x x x x +>++< ①②,并写出它的所有整数解. 19.(本小题满分6分)已知:如图,点O 为ABCD □对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F.求证:DE BF =.20.(本小题满分8分)图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m AB =,0.6m BC =,123ABC ∠=°,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ′′处,AB ′与水平面的夹角27B AD ′∠=°.(1)求打开后备箱后,车后盖最高点B ′到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C ′处经过,有没有碰头的危险?请说明理由.(结果精确到.....0.01m .....,参考数据:sin 270.454°≈,cos 270.891°≈,tan 270.510°≈ 1.732≈)21.(本小题满分8分)2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组: A 组:112m ≤<;B 组:1223m ≤<;C 组:2334m ≤<;D 组:3445m ≤<;E 组:4556m ≤<. 下面给出了部分信息:a.B 组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度; (2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万; (4)各组“五一”假期的平均出游人数如下表: 组别A112m ≤< B1223m ≤< C2334m ≤< D3445m ≤< E4556m ≤<平均出游人数(百万) 5.51632.54250求这30个地区“五一”假期的平均出游人数. 请将答案写在答题卡指定区域内 22.(本小题满分8分)如图,AB ,CD 为O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ∠=∠,点E 是 BD的中点,弦CE ,BD 相交于点E . (1)求OCB ∠的度数;(2)若3EF =,求O 直径的长.23.(本小题满分10分)某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同. (1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?24.(本小题满分10分)综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为2m a .【问题提出】小组同学提出这样一个问题:若10a =,能否围出矩形地块? 【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为28m ,得到8xy =,满足条件的(),x y 可看成是反比例函数8y x=的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y +=,满足条件的(),x y 可看成一次函数210y x =−+的图象在第一象限内点的坐标,同时满足这两个条件的(),x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数()80y x x=>的图象与直线1l :210y x =−+的交点坐标为()1,8和_________,因此,木栏总长为10m 时,能围出矩形地块,分别为:1m AB =,8m BC =;或AB =___________m ,BC =__________m.(1)根据小颖的分析思路,完成上面的填空. 【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由. 【问题延伸】当木栏总长为m a 时,小颖建立了一次函数2y x a =−+.发现直线2y x a =−+可以看成是直线2y x =−通过平移得到的,在平移过程中,当过点()2,4时,直线2y x a =−+与反比例函数()80y x x=>的图象有唯一交点.(3)请在图2中画出直线2y x a =−+过点()2,4时的图象,并求出a 的值. 【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a =−+与8y x=图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围. 25.(本小题满分12分)在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上,()2,3C ,()1,3D − .抛物线()220y ax ax c a =−+<与x 轴交于点()2,0E −和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线()220y ax ax c a =−+<与正方形ABCD 恰有两个交点,求a 的取值范围.26.(本小题满分12分)在矩形ABCD 中,2AB =,AD =E 在边BC 上,将射线AE 绕点A 逆时针旋转90°,交CD 延长线于点G ,以线段AE ,AG 为邻边作矩形AEFG . (1)如图1,连接BD ,求BDC ∠的度数和DGBE的值; (2)如图2,当点F 在射线BD 上时,求线段BE 的长;(3)如图3,当EA EC =时,在平面内有一动点P ,满足PE EF =,连接PA ,PC ,求PA PC +的最小值.济南市2023年九年级学业水平考试 数学试题参考答案及评分意见一、选择题:本题共10小题,每小题4分,共40分.题号 1 2 3 4 56 7 8 9 10答案 A B A D A D C B C C二、填空题:本题共6小题,每小题4分,共24分.11. ()()44m m +− 12.12 13. 2a ≤的一个实数 14.65π15.0.35 16. +三、解答题:本题共10小题,共86分.17.解:原式213=++−18.解:解不等式①,得1x >− 解不等式②,得3x <在同一条数轴上表示不等式①②的解集原不等式组的解集是13x −<< ∴整数解为0,1,2.19.证明:∵四边形ABCD 是平行四边形∴AD BC =,AD BC ∥.∴EAO FCO ∠=∠,OEA OFC ∠=∠. ∵点O 为对角线AC 的中点 ∴AO CO =∴AOE COF ≌△△∴AE CF =∴AD AE BC CF −=−∴DE BF = 20.解:(1)如答案图,作B E AD ′⊥,垂足为点E在Rt AB E ′△中∵27B AD ′∠=°,1AB AB ′==∴sin 27B EAB ′°=′∴sin 2710.4540.454B E AB ′′=°≈×= ∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO′+=+=≈ 答:车后盖最高点B ′到地面的距离为2.15m. (2)如答案图,没有危险,理由如下:过C ′作C F B E ′′⊥,垂足为点F∵27B AD ′∠=°,90B EA ′∠=°∴63AB E ′∠=°∵123AB C ABC ′′∠=∠=°∴60C B F AB C AB E ′′′′′∠=∠−∠=° 在Rt B FC ′′△中,0.6B C BC ′′==∴cos 600.3BF B C ′′′=⋅°=. ∵平行线间的距离处处相等∴C ′到地面的距离为2.15-0.3=1.85.∵1.85>1.8∴没有危险.21.解:(1)36(2)(3)15.5(4)5.51216832.544235032030×+×+×+×+×=(百万) 答:这30个地区“五一”假期的平均出游人数是20百万.22.解:(1)∵PC 与O C∴OC PC ⊥.∴90OCB BCP∠+∠=° ∵OB OC =∴OCB OBC ∠=∠∵2ABC BCP ∠=∠∴2OCB BCP ∠=∠∴390BCP ∠=°∴30BCP ∠=°∴60OCB ∠=°. (2)如答案图,连接DE∵CD 是直径∴90DEC ∠=°∵点E 是 BD的中点 ∴ DE EB =∴1302DCE ECB FDE DCB ∠=∠=∠=∠=° 在Rt FDE △中,3EF =,30FDE ∠=°∴tan 30EF DE ==°在Rt DEC △中,30DCE ∠=°2CD DE ==∴O 的直径的长为23.解:(1)设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是()200x −元. 根据题意,得20001200200x x =− 解这个方程,得500x =经检验,500x =是原方程的根.200300x −=答:A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元.(2)设购买A 型编程机器人模型m 台,购买B 型编程机器人模型()40m −台, 购买A 型和B 型编程机器人模型共花费w 元,由题意得403m m −≤解得10m ≥.()5000.83000.840w m m =×⋅+×⋅−1609600w m =+∵160>0∴w 随m 的减小而减小.当10m =时,w 取得最小值112004030m −=答:购买A 型机器人模型10台和B 型机器人模型30台时花费最少, 最少花费是11200元.24.解:(1)(4,2);4;2.(2)不能围出.26y x =−+的图象,如答案图中2l 所示∵2l 与函数8y x =图象没有交点∴不能围出面积为28m 的矩形(3)如答案图中直线3l 所示 将点(2,4)代入2y x a =−+,解得8a = (4)817a ≤≤25.解:(1)∵抛物线22y ax ax c =−+过点()2,3C ,()2,0E − 得443440a a c a a c −+= ++=解得383a c =− = ∴抛物线表达式为233384y x x =−++. 当0y =时,2333084x x −++= 解得12x =−(舍去),24x =∴()4,0F .(2)设直线CE 的表达式为y kx b =+∵直线过点()2,3C ,()2,0E −得2320k b k b += −+=解得3432k b = =∴直线CE 的表达式为3342y x =+ 如答案图1,设点233,384Q t t t−++ ,则点Q 向左平移2个单位,向上平移3个单位得到点2332,684P t t t −−++将2332,684P t t t−−++ 代入3342y x =+ 解得14t =−,24t =(舍去)∴Q 点坐标为(-4,-6).(3)将()2,0E −代入22y ax ax c =−+得8c a =− ∴()222819y ax ax a a x a =−−=−−∴顶点坐标为()1,9a −如答案图2,①当抛物线顶点在正方形内部时,与正方形有两个交点 ∴9390a a −< −>解得103a −<<; 如答案图3,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,与正方形有两个交点()()222228312183a a a a a a ×−×−> ×−−×−−< 解得3358a −<<− 综上所述,a 的取值范围为103a −<<或3358a −<<−.26.解:(1)∵矩形ABCD 中,2AB =,AD =∴90C ∠=°,2CD AB ==,BCAD ==∴tan BC BDC DC∠=60BDC ∠=° 由矩形ABCD 和矩形AEFG 可得,90ABE BAD EAG ADG ∠=∠=∠=∠=° ∴EAG EAD BAD EAD ∠−∠=∠−∠,即DAG BAE ∠=∠ ∴ADG ABE ∽△△∴DGAD BE AB ==(2)如答案图1,过点F 作FM CG ⊥于点M由矩形ABCD 和矩形AEFG 可得,90ABE AGF ADG ∠=∠=∠=° AE GF =,∴BAE DAG CGF ∠=∠=∠,90ABE GMF ∠=∠=°∴ABE GMF ≌△△∴BE MF =,2AB GM == ∴60MDF BDC ∠=∠=°,FM CG ⊥∴tan tan 60MF MDFMD ∠=°==∴MF =设DM x =,则BEMF == ∴2DG GM MD x =+=+∵DG BE ==, 解得1x =∴BE =.(3)如答案图2,连接AC∵矩形ABCD 中,ADBC ==,2AB = ∴则30ACB ∠=°,24AC AB ==∵EA EC =∴30EAC ACE ∠=∠=°,120AEC ∠=° ∴903060ACG GAC ∠=∠=°−°=°∴AGC △是等边三角形,4AGAC == ∴4PEEF AG === 将AEP △绕点E 顺时针旋转120°,EA 与EC 重合,得到CEP ′△∴PA P C ′=,120PEP ′∠=°,4EP EP ′==∴PP ′=∴当点P ,C ,P ′三点共线时,PA PC +的值最小,此时为PA PC PP ′+==.。

2023年山东省菏泽市中考数学真题(原卷版和解析版)

2023年山东省菏泽市中考数学真题(原卷版和解析版)

2023年菏泽市初中学业水平考试一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列运算正确的是()A.632a a a ÷= B.235a a a ⋅= C.()23622a a = D.()222a b a b +=+3.一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=()A.30︒B.40︒C.50︒D.60︒4.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.()0c b a -<B.()0b c a -<C.()0a b c ->D.()0a c b +>5.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是()A.B.C.D.6.一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为()A.32B.3- C.3D.32-7.ABC 的三边长a ,b ,c满足2()||0a b c --=,则ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”,在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是()A.114c -≤< B.43c -≤<- C.154c -<< D.45c -≤<二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.因式分解:24m m -=______.10.计算:0|2|2sin 602023-+︒-=___________.11.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.12.如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为__________(结果保留π).13.如图,点E 是正方形ABCD 内的一点,将ABE 绕点B 按顺时针方向旋转90︒得到CBF V .若55ABE ∠=︒,则EGC ∠=__________度.14.如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩.16.先化简,再求值:223x x xx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=.17.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.18.无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC(结果保留根号)19.某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?20.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数ky x=在第一象限的图象于点(,1)C a .(1)求反比例函数ky x=和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.21.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?22.如图,AB 为O 的直径,C 是圆上一点,D 是 BC的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.23.(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.24.已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到AB D 'V ,当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求FG 的最大值.2023年菏泽市初中学业水平考试一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.)1.剪纸文化是我国最古老的民间艺术之一,下列剪纸图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A 【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .既是轴对称图形,也是中心对称图形,故A 符合题意;B .是轴对称图形,不是中心对称图形,故B 不符合题意;C .不是轴对称图形,也不是中心对称图形,故C 不符合题意;D .不是轴对称图形,是中心对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2.下列运算正确的是()A.632a a a ÷=B.235a a a ⋅= C.()23622a a = D.()222a b a b +=+【答案】B 【解析】【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、633a a a ÷=,故选项错误;B 、235a a a ⋅=,故选项正确;C 、()23624a a =,故选项错误;D 、()2222a b a ab b +=++,故选项错误;故选:B .【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.3.一把直尺和一个含30︒角的直角三角板按如图方式放置,若120∠=︒,则2∠=()A.30︒B.40︒C.50︒D.60︒【答案】B 【解析】【分析】根据平行线的性质,得出3120∠=∠=︒,进而260340Ð=°-Ð=°.【详解】由图知,3120∠=∠=︒∴2603602040Ð=°-Ð=°-°=°故选:B【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键.4.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是()A.()0c b a -<B.()0b c a -<C.()0a b c ->D.()0a cb +>【答案】C 【解析】【分析】根据数轴可得,0a b c <<<,再根据0a b c <<<逐项判定即可.【详解】由数轴可知0a b c <<<,∴()0c b a ->,故A 选项错误;∴()0b c a ->,故B 选项错误;∴()0a b c ->,故C 选项正确;∴()0a c b +<,故D 选项错误;故选:C .【点睛】本题考查实数与数轴,根据0a b c <<<进行判断是解题关键.5.如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是()A.B.C.D.【答案】A 【解析】【分析】根据主视图是从正面看到的图形进行求解即可.【详解】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示:故选:A .【点睛】本题主要考查了简单几何组合体的三视图,熟知三视图的定义是解题的关键.6.一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为()A.32B.3- C.3D.32-【答案】C 【解析】【分析】先求得123x x +=-,121x x ⋅=-,再将1211+x x 变形,代入12x x +与12x x ⋅的值求解即可.【详解】解:∵一元二次方程2310x x +-=的两根为12x x 、,∴123x x +=-,121x x ⋅=-∴1211+x x 1212x x x x +=31=--3=.故选C .【点睛】本题主要考查了一元二次方程根与系数的关系,牢记12b x x a+=-,12cx x a ⋅=是解决本题的关键.7.ABC 的三边长a ,b ,c满足2()||0a b c --=,则ABC 是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形【答案】D 【解析】【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到ABC 为直角三角形.【详解】解∵2()|0a b c -+-=又∵()200a b c ⎧-≥≥-≥⎪⎩∴()2000a b c ⎧-==-=⎪⎩,∴02300a b a b c ⎧-=⎪--=⎨⎪-=⎩解得33a b c ⎧=⎪=⎨⎪=⎩,∴222+=a b c ,且a b =,∴ABC 为等腰直角三角形,故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识,求解的关键是熟练掌握非负数的和为0,每一个非负数均为0,和勾股定理逆定理.8.若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:(1,3),(2,6),(0,0)A B C --等都是三倍点”,在31x -<<的范围内,若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是()A.114c -≤< B.43c -≤<- C.154c -<< D.45c -≤<【答案】D【解析】【分析】由题意可得:三倍点所在的直线为3y x =,根据二次函数2y x x c =--+的图象上至少存在一个“三倍点”转化为2y x x c =--+和3y x =至少有一个交点,求0∆≥,再根据3x =-和1x =时两个函数值大小即可求出.【详解】解:由题意可得:三倍点所在的直线为3y x =,在31x -<<的范围内,二次函数2y x x c =--+的图象上至少存在一个“三倍点”,即在31x -<<的范围内,2y x x c =--+和3y x =至少有一个交点,令23x x x c =--+,整理得:240x x c --+=,则()()22444116+40b ac c c ∆---⨯-⨯≥===,解得4c ≥-,41642x±=-,∴12x =-+22x =--∴321-<-+或321-<--<当321-<-+时,13-<,即03≤<,解得45c -≤<,当321-<--时,31-<<,即01≤<,解得43c -≤<-,综上,c 的取值范围是45c -≤<,故选:D .【点睛】本题考查二次函数与一次函数交点问题,熟练掌握相关性质是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.)9.因式分解:24m m -=______.【答案】()4-m m【解析】【分析】直接提取公因式m ,进而分解因式即可.【详解】解:m 2-4m =m (m -4).故答案为:m (m -4).【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.计算:0|2|2sin 602023-+︒-=___________.【答案】1【解析】【分析】根据先计算绝对值,特殊角的三角函数值,零指数幂,再进行加减计算即可.22sin 602023-+︒-32212=⨯-1=故答案为:1.【点睛】本题考查了实数的运算,掌握绝对值、特殊角的三角函数值、零指数幂的运算是解题的关键.11.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为__________.【答案】59【解析】【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.12.如图,正八边形ABCDEFGH 的边长为4,以顶点A 为圆心,AB 的长为半径画圆,则阴影部分的面积为__________(结果保留π).【答案】6π【解析】【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可.【详解】解:由题意,()821801358HAB -⋅︒∠==︒,4AH AB ==∴213546360S ππ⋅==阴,故答案为:6π.【点睛】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积2360n r S π=,正多边形的每个内角度数为()2180n n-⋅︒.13.如图,点E 是正方形ABCD 内的一点,将ABE 绕点B 按顺时针方向旋转90︒得到CBF V .若55ABE ∠=︒,则EGC ∠=__________度.【答案】80【解析】【分析】先求得BEF ∠和CBE ∠的度数,再利用三角形外角的性质求解即可.【详解】解:∵四边形ABCD 是正方形,∴90ABC ∠=︒,∵55ABE ∠=︒,∴905535CBE ∠=︒-︒=︒,∵ABE 绕点B 按顺时针方向旋转90︒得到CBFV ∴90EBF ∠=︒,BE BF =,∴45BEF ∠=︒,∴EGC ∠=354580CBE BEF ∠+∠=︒+︒=︒,故答案为:80.【点睛】本题考查了正方形的性质,等腰三角形的性质,旋转图形的性质和三角形外角的性质,利用旋转图形的性质求解是解题的关键.14.如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.【答案】292-##229-+【解析】【分析】设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',证明90DFA ∠=︒,可知点F 在以AD 为直径的半圆上运动,当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,据此求解即可.【详解】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD ,∴122AO OF AD '===,,∴BO ==,BF2-,2-.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F 的运动轨迹是解题的关键.三、解答题(本题共78分,把解答或证明过程写在答题卡的相应区域内.)15.解不等式组:()5231,32232x x x x x ⎧-<+⎪⎨--≥+⎪⎩.【答案】23x ≤【解析】【分析】分别求出各个不等式的解,再取各个解集的公共部分,即可.【详解】解:解()5231x x -<+得:52x <,解32232x x x --≥+得:23x ≤,∴不等式组的解集为23x ≤.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的基本步骤,是解题的关键.16.先化简,再求值:223x x x x y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中x ,y 满足230x y +-=.【答案】42x y +,6【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时将除法变为乘法,约分得到最简结果,将230x y +-=变形整体代入计算即可求解.【详解】解:原式()()()()()()()()3x x y x x y x y x y x y x y x y x y x ⎡⎤+--+=+⨯⎢⎥-+-+⎣⎦()()()()2233x y x y x xy x xy x y x y x -+++-=⨯-+()()()()242x y x y x xy x y x y x -++=⨯-+42x y =+;由230x y +-=,得到23x y +=,则原式()226x y =+=.【点睛】此题考查分式的化简求值,解题关键熟练掌握分式混合运算的顺序以及整体代入法求解.17.如图,在ABCD Y 中,AE 平分BAD ∠,交BC 于点E ;CF 平分BCD ∠,交AD 于点F .求证:AE CF =.【答案】证明见解析【解析】【分析】由平行四边形的性质得B D ∠=∠,AB CD =,AD BC ∥,由平行线的性质和角平分线的性质得出BAE DCF ∠=∠,可证BAE DCF ≌△△,即可得出AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴B D ∠=∠,AB CD =,BAD DCB ∠=∠,AD BC ∥,∵AE 平分BAD ∠,CF 平分BCD ∠,∴BAE DAE BCF DCF ∠=∠=∠=∠,在BAE 和DCF 中,B D AB CD BAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA BAE DCF ≌ ∴AE CF =.【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.18.无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC(结果保留根号)【答案】大楼的高度BC 为.【解析】【分析】如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,可得QH BC =,BH CQ =,求解sin 60802PH AP =︒=⨯= cos 6040AH AP =︒= ,可得704030CQ BH ==-=,tan 30PQ CQ =︒= BC QH ==【详解】解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,∴QH BC =,BH CQ =,由题意可得:80AP =,60PAH ∠=︒,30PCQ ∠=︒,70AB =,∴3sin 60802PH AP =︒=⨯= cos 6040AH AP =︒= ,∴704030CQ BH ==-=,∴tan 30PQ CQ =︒=∴BC QH ===,∴大楼的高度BC 为.【点睛】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键.19.某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解析(3)大约有1725名学生达到适宜心率.【解析】【分析】(1)根据中位数和众数的概念求解,先求出总人数,然后求出B 组所占的百分比,最后乘以360︒即可求出在统计图中B 组所对应的扇形圆心角;(2)根据样本估计总体的方法求解即可.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74,∴中位数为6870692+=;∵74出现的次数最多,∴众数是74;88%100÷=,1536054100︒⨯=︒∴在统计图中B 组所对应的扇形圆心角是54︒;故答案为:69,74,54;【小问2详解】10081545230----=∴C 组的人数为30,∴补全学生心率频数分布直方图如下:【小问3详解】304523001725100+⨯=(人),∴大约有1725名学生达到适宜心率.【点睛】本题主要考查调查与统计的相关知识,理解频数分布直方图,扇形统计图的相关信息,掌握运用样本百分比估算总体数量是解题的关键.20.如图,已知坐标轴上两点()()0,4,2,0A B ,连接AB ,过点B 作BC AB ⊥,交反比例函数k y x=在第一象限的图象于点(,1)C a .(1)求反比例函数k y x=和直线OC 的表达式;(2)将直线OC 向上平移32个单位,得到直线l ,求直线l 与反比例函数图象的交点坐标.【答案】(1)4y x=,14y x =(2)()2,2或18,2⎛⎫--⎪⎝⎭【解析】【分析】(1)如图,过点C 作CD x ⊥轴于点D ,证明ABO BCD ∽ ,利用相似三角形的性质得到2BD =,求出点C 的坐标,代入k y x=可得反比例函数解析式,设OC 的表达式为y mx =,将点()4,1C 代入即可得到直线OC 的表达式;(2)先求得直线l 的解析式,联立反比例函数的解析式即可求得交点坐标.【小问1详解】如图,过点C 作CD x ⊥轴于点D ,则1CD =,90CDB ∠=︒,∵BC AB ⊥,∴90ABC ∠=︒,∴90ABO CBD ∠+∠=︒,∵90CDB ∠=︒,∴90BCD CBD ∠+∠=︒,∴BCD ABO ∠=∠,∴ABO BCD ∽ ,∴OA BDOB CD =,∵()()0,4,2,0A B ,∴4OA =,2OB =,∴421BD=,∴2BD =,∴224OD =+=,∴点()4,1C ,将点C 代入k y x =中,可得4k =,∴4y x=,设OC 的表达式为y mx =,将点()4,1C 代入可得14m =,解得:14m =,∴OC 的表达式为14y x =;【小问2详解】直线l 的解析式为1342y x =+,当两函数相交时,可得13442x x +=,解得12x =,8x =-,代入反比例函数解析式,得1122x y =⎧⎨=⎩,22812x y =-⎧⎪⎨=-⎪⎩∴直线l 与反比例函数图象的交点坐标为()2,2或18,2⎛⎫-- ⎪⎝⎭【点睛】本题考查了相似三角形的判定与性质,待定系数法求函数的解析式,反比例函数与一次函数的交点问题,一次函数的平移问题,解一元二次方程等知识.21.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A ,B 两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?【答案】(1)长为60米,宽为20米时,有最大面积,且最大面积为1200平方米(2)最多可以购买1400株牡丹【解析】【分析】(1)设长为x 米,面积为y 平方米,则宽为1203x -米,可以得到y 与x 的函数关系式,配成顶点式求出函数的最大值即可;(2)设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意列出不等式求得种植牡丹面积的最大值,即可解答.【小问1详解】解:设长为x 米,面积为y 平方米,则宽为1203x -米,∴()221140601200331203y x x x x x =⨯=--+-+=-,∴当60x =时,y 有最大值是1200,此时,宽为120203x -=(米)答:长为60米,宽为20米时,有最大面积,且最大面积为1200平方米.【小问2详解】解:设种植牡丹的面积为a 平方米,则种植芍药的面积为()1200a -平方米,由题意可得()252152120050000a a ⨯+⨯-≤解得:700a ≤,即牡丹最多种植700平方米,70021400⨯=(株),答:最多可以购买1400株牡丹.【点睛】本题考查二次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.22.如图,AB 为O 的直径,C 是圆上一点,D 是 BC的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.【答案】(1)证明见解析;(2)43(3)72【解析】【分析】(1)由D 是 BC的中点得 CD BD =,由垂径定理得 BE BD =,得到»»BC DE =,根据同圆中,等弧对等弦即可证明;(2)连接OD ,证明ACB OFD ∽ ,设O 的半径为r ,利用相似三角形的性质得=5r ,210AB r ==,由勾股定理求得BC ,得到84tan 63BC CAB AC ∠===,即可得到tan BPC ∠43=;(3)过点B 作BG CP ⊥交CP 于点G ,证明CBG 是等腰直角三角形,解直角三角形得到cos 4542CG BG BC ==︒=,由tan BPC ∠43=得到43BG GP =,解得32GP =【小问1详解】解:∵D 是 BC的中点,∴ CDBD =,∵DE AB ⊥且AB 为O 的直径,∴ BEBD =,∴»»BCDE =,∴BC DE =;【小问2详解】解:连接OD ,∵ CD BD =,∴CAB DOB ∠=∠,∵AB 为O 的直径,∴90ACB ∠=︒,∵DE AB ⊥,∴90DFO ∠=︒,∴ACB OFD ∽ ,∴AC OFAB OD =,设O 的半径为r ,则622r r r -=,解得=5r ,经检验,=5r 是方程的根,∴210AB r ==,∴228AB BC AC -==,∴84tan 63BCCAB AC ∠===,∵BPC CAB ∠=∠,∴tan BPC ∠43=;【小问3详解】解:如图,过点B 作BG CP ⊥交CP 于点G ,∴90BGC BGP ∠=∠=︒∵90ACB ∠=︒,CP 是ACB ∠的平分线,∴45ACP BCP ∠=∠=︒∴45CBG ∠=︒∴cos 45CG BG BC ==︒=∵tan BPC ∠43=∴43BG GP =,∴GP =∴CP =+=.【点睛】本题考查了相似三角形的判定与性质,垂径定理,圆周角定理及推论,解直角三角形等知识,熟练掌握以上知识并灵活运用是解题的关键.23.(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADFH ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.【答案】(1)见解析(2)见解析(3)3【解析】【分析】(1)由矩形的性质可得90ADE DCF ∠=∠=︒,则90CDF DFC ∠+∠=︒,再由AE DF ⊥,可得90DGE ∠=︒,则90CDF AED ∠+∠=︒,根据等角的余角相等得AED DFC ∠=∠,即可得证;(2)利用“HL ”证明 ≌ADE DCF ,可得DE CF =,由CH DE =,可得CF CH =,利用“SAS ”证明DCF DCH ≌,则DHC DFC ∠=∠,由正方形的性质可得AD BC ∥,根据平行线的性质,即可得证;(3)延长BC 到点G ,使8CG DE ==,连接DG ,由菱形的性质可得AD DC =,AD BC ∥,则ADE DCG ∠=∠,推出()SAS ADE DCG △≌△,由全等的性质可得60DGC AED ∠=∠=︒,DG AE =,进而推出DFG 是等边三角形,再根据线段的和差关系计算求解即可.【详解】(1)证明: 四边形ABCD 是矩形,90ADE DCF ∴∠=∠=︒,90CDF DFC ∴∠+∠=︒,AE DF ⊥,90DGE ∴∠=︒,90CDF AED ∴∠+∠=︒,AED DFC ∴∠=∠,ADE DCF ∴△∽△;(2)证明: 四边形ABCD 是正方形,AD DC ∴=,AD BC ∥,90ADE DCF ∠=∠=︒,AE DF = ,()HL ADE DCF ∴ ≌,DE CF ∴=,又 CH DE =,∴CF CH =,点H 在BC 的延长线上,∴90DCH DCF ∠=∠=︒,DC DC = ,()SAS DCF DCH ∴ ≌,H DFC ∴∠=∠,AD BC ∥,ADF DFC H ∴∠=∠=∠;(3)解:如图,延长BC 到点G ,使8CG DE ==,连接DG ,四边形ABCD 是菱形,AD DC ∴=,AD BC ∥,ADE DCG ∴∠=∠,()SAS ADE DCG ∴ ≌,60DGC AED ∴∠=∠=︒,DG AE =,AE DF = ,DG DF ∴=,DFG ∴ 是等边三角形,11FG FC CG DF ∴=+==,111183FC CG ∴=-=-=.【点睛】本题是四边形综合题,主要考查了矩形的性质,正方形的性质,菱形的性质,相似三角形的判定,全等三角形的判定和性质,等边三角形的判定和性质,熟练掌握这些知识点并灵活运用是解题的关键.24.已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点()0,4C ,其对称轴为32x =-.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD BD ,,将ABD △沿直线AD 翻折,得到AB D 'V ,当点B '恰好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点P 作直线AC 的垂线,分别交直线AC ,线段BC 于点E ,F ,过点F 作FG x ⊥轴,垂足为G ,求2FG 的最大值.【答案】(1)234y x x =--+(2)D ⎛ ⎝(3)496【解析】【分析】(1)由题易得c 的值,再根据对称轴求出b 的值,即可解答;(2)过B '作x 轴的垂线,垂足为H 求出A 和B 的坐标,得到5AB AB '==,52AH =,由52AB AB AH '===,推出1302DAB B AB '∠=∠=︒,解直角三角形得到OD 的长,即可解答;(3)求得BC 所在直线的解析式为144y x =-+,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,得2224y x m m =---+,令12y y =,解得223m m x +=,分别表示出FG ,再对FG 进行化简计算,配方成顶点式即可求解.【小问1详解】解:抛物线与y 轴交于点()0,4C,∴4c =,∵对称轴为32x =-,∴322b -=--,3b =-,∴抛物线的解析式为234y x x =--+;【小问2详解】如图,过B '作x 轴的垂线,垂足为H ,令2340x x --+=,解得:121,4x x ==-,∴()4,0A -,()10B ,,∴()145AB =--=,由翻折可得5AB AB '==,∵对称轴为32x =-,∴()35422AH =---=,∵52AB AB AH '===,∴30AB H '∠=︒,60B AB '∠=︒∴1302DAB B AB '∠=∠=︒,在Rt AOD中,tan 30OD OA =︒=,∴D ⎛ ⎝;【小问3详解】设BC 所在直线的解析式为111y k x b =+,把B 、C 坐标代入得:11104k b b +=⎧⎨=⎩,解得1144k b =-⎧⎨=⎩,∴144y x =-+,∵OA OC =,∴45CAO ∠=︒,∵90AEB ∠=︒,∴直线PE 与x 轴所成夹角为45︒,设()2,34P m m m --+,设PE 所在直线的解析式为:22y x b =-+,把点P 代入得2224b m m =--+,∴2224y x m m =---+,31令12y y =,则24424x x m m -+=---+,解得223m mx +=,∴()24243F m m FG y -+==+()()223F P x x m m ==-=-∴()()22422433m m m m FG -+-+=++22549326m ⎛⎫=-++ ⎪⎝⎭∵点P 在直线AC 上方,∴40m -<<,∴当52m =-时,FG +的最大值为496.【点睛】本题考查了二次函数综合问题,利用数形结合的思想是解题的关键.。

2024年山东省滨州市中考数学试题+答案详解

2024年山东省滨州市中考数学试题+答案详解

2024年山东省滨州市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求. 1. 12−的绝对值是( )A. 2B. 12 C. 12− D. 2−2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是( )A. B.C. D.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是( )A. B.C. D.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x−+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x −在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11. 将抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.16. 如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)AB 的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB 为边的矩形ABCD ,使其面积为263,并简要说明点C ,D 的位置是如何找到的(不用证明):____________. 三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 18. 解方程:(1)21132x x −+=; (2)240x x −=.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.2024年山东省滨州市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.12−的绝对值是()A. 2B. 12C.12− D. 2−【答案】B【解析】【分析】本题考查了绝对值,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:∵11 22−=,∴12−的绝对值是12,故选:B.2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是()A. B.C. D.【答案】A【解析】【分析】本题考查了物体的三视图,根据三棱柱的表面由2个三角形,1个正方形,2个矩形构成即可判断求解,掌握三棱柱的结构特点是解题的关键.【详解】解:∵三棱柱的表面由2个三角形,1个正方形,2个矩形构成,∴其主视图可能是三角形或正方形或矩形,不可能是圆,故选:A.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进行判断即可.【详解】解:A,C,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;B选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:B.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=【答案】D【解析】【分析】本题考查了幂的运算.根据幂的乘方运算、积的乘方运算、同底数幂的乘法运算、同底数幂的除法运算逐项验证即可得到答案.【详解】解:A 、()3396n n n =≠,本选项不符合题意;B 、222(2)44a a a −=≠−,本选项不符合题意;C 、8264x x x x ÷=≠,本选项不符合题意;D 、23m m m ⋅=,本选项符合题意;故选:D .5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 【答案】A【解析】【分析】本题考查各象限内的点的坐标特点,解一元一次不等式组.根据点()12,N a a −在第二象限可得不等式组1200a a −<⎧⎨>⎩,求解即可. 【详解】解:∵点()12,N a a −在第二象限,∴1200a a −<⎧⎨>⎩, 解得:12a >. 故选:A .6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③ 【答案】A【解析】【分析】本题考查了平均数、中位数、众数.根据平均数、中位数、众数的意义求解即可.【详解】解:①这些运动员成绩的平均数是()12 1.53 1.62 1.653 1.74 1.751 1.8 1.615⨯+⨯+⨯+⨯+⨯+⨯=,原说法不正确;②这些运动员成绩的中位数是从小到大排列第8个数为1.70,原说法正确;③这些运动员成绩出现最多的是1.75,则的众数是1.75,原说法正确.故选:A .7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x −+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>【答案】C【解析】【分析】本题考查了反比例函数的性质,利用配方法可得()2223120k k k −+=−+>,进而得到反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,据此即可求解,利用配方法得到()2223120k k k −+=−+>是解题的关键.【详解】解:∵()2223120k k k −+=−+>, ∴反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,∵120x x <<,∴120y y <<,故选:C .8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−【答案】D【解析】【分析】如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,再结合切线长定理可判定A ,再结合三角形的面积可判定B ,再由d a b c =+−,结合完全平方公式与勾股定理可判断C ,通过举反例可得D 错误.【详解】解:如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,OD BC ⊥,OF AB ⊥,2d OD OE OF ===,由切线长定理得,AE AF =,CE CD =,BD BF =,∵90ACB OEC ODC ∠=∠=∠=︒,CE CD =,∴四边形ODCE 是正方形, ∴2d CE CD OD ===, ∴2d AE b =−,2d BD a =−,∴2d BF a =−, ∴22d d AF c a c a ⎛⎫=−−=−+ ⎪⎝⎭, ∵AE AF =, ∴22d d b c a −=−+, ∴d a b c =+−,故A 正确,不合题意;∵ABC BOC AOC AOB S S S S =++△△△△, ∴11112222222d d d ab a b c =⨯+⨯+⨯, ∴2ab ad bd cd =++ ∴2ab d a b c=++,故B 正确,不合题意; ∵d a b c =+−,∴()22d a b c =+− 222222a b c ab ac bc =+++−−,∵222+=a b c ,222222d c ab ac bc ∴=+−−()()22c c a b c a =−−−()()2c a c b =−−,∵0d >,d ∴=C 正确;令3a =,4b =,5c =,3452d a b c ∴=+−=+−=,而()()()()34541a b c b −−=−⨯−=,|()()|d a b c b ∴≠−−,故D 错误;故选D【点睛】本题考查的是三角形的内切圆的性质,勾股定理的应用,分解因式的应用,举反例的应用,切线长定理的应用,掌握基础知识并灵活应用是解本题的关键.第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x−在实数范围内有意义,则x的取值范围是_____.【答案】x≠1【解析】【分析】分式有意义的条件是分母不等于零.【详解】∵分式11x−在实数范围内有意义,∴x−1≠0,解得:x≠1故答案为x≠1.【点睛】此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.10.小的整数是___________.【答案】2或3【解析】的大小,然后确定范围在其中的整数即可.【详解】2<,323<<<小的整数为2或3,故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.11. 将抛物线2y x=−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.【答案】()1,2【解析】【分析】本题考查了二次函数的图象与几何变换和二次函数的性质.根据“上加下减,左加右减”的规律进行解答即可.【详解】解:由抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,根据“上加下减,左加右减”规律可得抛物线是()212y x =−−+,∴顶点坐标是()1,2故答案为:()1,2.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.【答案】75【解析】【分析】本题考查了的平行线的性质,三角形的外角性质.由AB OD ∥,推出45BOD B ∠=∠=︒,再利用三角形的外角性质即可求解.【详解】解:∵AB OD ∥,∴45BOD B ∠=∠=︒,∴1453075BOD D ∠=∠+∠=︒+︒=︒,故答案为:75.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)【答案】ADE C ∠=∠或AED B ∠=∠或AD AE AC AB= 【解析】 【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.利用有两组角对应相等的两个三角形相似添加条件.【详解】解:DAE CAB ∠=∠,∴当ADE C ∠=∠时,ADE ACB ∽.当AED B ∠=∠时,ADE ACB ∽. 当AD AE AC AB=时,ADE ACB ∽. 故答案为:ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =. 14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.【答案】60°##60度【解析】【分析】根据圆内接四边形的性质得到∠B +∠D =180°,根据菱形的性质,圆周角定理列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B +∠D =180°,∵四边形OACD 是菱形,∴∠AOC =∠D ,由圆周角定理得,∠B =12∠AOC , ∴∠B +2∠B =180°,解得,∠B =60°,故答案为:60°.【点睛】本题考查的是圆内接四边形的性质,菱形的性质,掌握圆内接四边形的对角互补是解题的关键. 15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.【答案】108,99⎛⎫⎪⎝⎭##181,99⎛⎫ ⎪⎝⎭ 【解析】 【分析】本题考查了一次函数的应用,两点之间线段最短.连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,利用待定系数法求得直线AB 和OC 的解析式,联立即可求解.【详解】解:连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,设直线AB 的解析式为y kx b =+,则有331k b k b −+=⎧⎨+=−⎩, 解得12k b =−⎧⎨=⎩, ∴直线AB 的解析式为2y x =−+,设直线OC 的解析式为y mx =,则有45m =, 解得45m =, ∴直线OC 的解析式为45y x =, 联立得425x x =−+,解得109x=,则4108599y=⨯=,∴P点坐标为108,99⎛⎫ ⎪⎝⎭,故答案为:108,99⎛⎫ ⎪⎝⎭.16. 如图,在边长为1的正方形网格中,点A,B均在格点上.(1)AB的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB为边的矩形ABCD,使其面积为263,并简要说明点C,D的位置是如何找到的(不用证明):____________.【答案】①. ②. 取点,E F,得到正方形ABEF,AF交格线于点C,BE交格线于点D,连接DC,得到矩形ABCD,即为所求.【解析】【分析】本题考查了网格与勾股定理,勾股定理的逆定理,矩形的性质与判定,掌握勾股定理是解题的关键.(1)根据勾股定理直接计算即可求解;(2)取点,E F,得到正方形ABEF,AF交格线于点D,BE交格线于点C,连接DC,得到矩形ABCD,即为所求.【详解】(1)AB==(2)取点,E F,则AF AB===ABEF,∴正方形ABEF13=,AF交格线于点D,BE交格线于点C,连接DC ,得到矩形ABCD ,∵DG FH , ∴23AD AG AF AH ==,∴23AD AF BC ===,∴矩形ABCD 263=, 如图,矩形ABCD ,即为所求..故答案为:取点,E F ,得到正方形ABEF ,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 【答案】0【解析】【分析】本题考查了实数的混合运算,根据实数的运算法则和运算律即可求解,掌握据实数的运算法则和运算律是解题的关键. 【详解】解:原式13122=+−, 13122=−+, =11−+,0=.18. 解方程:(1)21132x x −+=; (2)240x x −=.【答案】(1)5x =(2)10x =,24x =.【解析】【分析】本题主要考查了解一元一次方程和一元二次方程,解题的关键是熟练掌握解方程的一般步骤,准确计算.(1)先去分母,再去括号,然后移项并合并同类项,最后系数化为1即可得解;(2)用因式分解法,解一元二次方程即可.【小问1详解】 解:21132x x −+=, 去括号得:()()22131x x −=+,去括号得:4233x x −=+,移项合并同类项得:5x =;【小问2详解】解:240x x −=,分解因式得:()40x x −=,∴0x =或40x −=,解得:10x =,24x =.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.【答案】(1)()()()()()()0111P a b a c b c b a c a c b =++−−−−−−(2)10P =【解析】 【分析】本题考查分式的化简求值,弄清欧拉公式的特点,利用分式的加减法计算是解题的关键. (1)将0n =代入欧拉公式即可;(2)将1n =代入欧拉公式化简计算即可.【小问1详解】解:当0n =时,()()()()()()0000a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()111a b a c b c b a c a c b =++−−−−−− 【小问2详解】 ()()()()()()1a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()a b a c b c a b a c b c a b c =−+−−−−−− ()())()()()(a b c b a c c a b a b a c b c =−−−−−−+− ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ 0=.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B,C,D三门课程中随机选择一门参加劳动实践,小亮同学从C,D,E三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为72︒;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:29.【解析】【分析】(1)根据选择“E”的人数及比例求出总人数,总人数乘以D占的比例求得“D”的人数,总人数减去其他类别的人数求得“A”的人数,据此即可将条形统计图补充完整,再用360度乘以“C”占的比例即为“手工制作”对应的扇形圆心角度数;(2)利用样本估计总体思想求解;(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.【小问1详解】解:参与调查的总人数为:3030%100÷=(人),“D”的人数10025%25⨯=(人),“A”的人数1001020253015−−−−=(人),“手工制作”对应的扇形圆心角度数2036072 100⨯︒=︒,补充条形统计图如图:【小问2详解】解:180030%540⨯=(人),因此估计全校最喜欢“绿植栽培”的学生人数为540人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中两位同学选择相同课程的情况有2种, 因此甲乙两位同学选择相同课程的概率为:29. 【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理. 21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民 ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.【答案】(1)见解析 (2)见解析【解析】【分析】题目主要考查全等三角形的判定和性质,勾股定理解三角形,理解题意,作出辅助线,综合运用这些知识点是解题关键.(1)根据题意利用全等三角形的判定和性质即可证明;(2)小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,根据全等三角形的判定和性质得出E F ∠∠=,再由等边对等角及三角形的外角性质即可证明;小民证明:利用勾股定理得出AD ==,AD ==AB BD AC CD −=−,然后求和得出AB AC =,即可证明.【小问1详解】证明:∵AD BC ⊥,∴90ADB ADC ∠∠==︒, 在Rt ADB 与Rt ADC 中,90AD AD ADB ADC BD CD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADB Rt ADC ≌,∴B C ∠=∠;【小问2详解】小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,如图所示:∵AB BD AC CD +=+,∴BE BD CF CD +=+即DE DF =,∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADE 与Rt ADF 中,90AD AD ADB ADC ED FD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADE Rt ADF ≌,∴E F ∠∠=,∵,BE AB CF AC ==,∴E EAB F FAC ∠∠∠∠===,∴,E EAB ABC F FAC ACB ∠∠∠∠∠∠+=+=,∴ABC ACB ∠∠=;小民:证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形,根据勾股定理,AD ==,AD ==∵AB BD AC CD +=+①,∴AB BD AC CD −=−②,+①②得:AB AC =,∴B C ∠=∠.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?【答案】(1)()43243080y x x =−+≤≤(2)()2432420003080w x x x =−+−≤≤ (3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【解析】【分析】本题是一次函数与二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质. (1)设y 与x 之间的函数关系式为y kx b =+,根据待定系数法代入求解即可;(2)“利润=票房收入-运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由3080x ≤≤,且x 是整数,结合二次函数的性质求解可得.【小问1详解】解:设y 与x 之间的函数关系式为y kx b =+,则1644012450k b k b =+⎧⎨=+⎩,解得4324k b =−⎧⎨=⎩, ∴y 与x 之间的函数关系式()43243080y x x =−+≤≤;【小问2详解】由题意得:22000(4324)200043242000w xy x x x x =−=−+−=−+−,即w 与x 之间的函数关系式为:()2432420003080w x x x =−+−≤≤.【小问3详解】()2281432420004()456130802w x x x x =−+−=−−+≤≤, x 是整数,且 3080x ≤≤,∴ 当40x =或41时,w 取得最大值,最大值为4560.价格低更能吸引顾客,定价40元/张或41元/张时,每天获利最大,最大利润是4560元.如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)【答案】23. ①见解析;②见解析24. 见解析【解析】【分析】本题考查了平行四边形的判定定理、菱形的判定定理、尺规作图,熟练掌握相关判定定理是解题的关键.(1)①DF AC DE AB ,∥∥,即可证明四边形AFDE 为平行四边形;②由DF AC DE AB ,∥∥,可得DF BD AC BC =,DE CD AB BC=,即DF BC AC BD ⋅=⋅, DE BC AB CD ⋅=⋅,再由AB BD AC DC=,得AB DC AC BD ⋅=⋅,因此DF DE =,进而即可证明四边形AFDE 为菱形; (2)作NMH ∠的角平分线,交NH 于点P ,作MP 的垂直平分线,交MN 于点D ,交MH 于点E ,则四边形MDPE 是菱形.【23题详解】①证明:DF AC DE AB ∥,∥,∴四边形AFDE 为平行四边形;②DF AC ∥,DF BD AC BC∴=, 即DF BC AC BD ⋅=⋅DE AB ∥,DE CD AB BC∴=, 即DE BC AB CD ⋅=⋅, 又AB BD AC DC =, AB DC AC BD ∴⋅=⋅,DF DE ∴=,由①知四边形AFDE 为平行四边形,∴四边形AFDE 为菱形;【24题详解】如图,菱形MDPE 即为所求.∵MP 平分NMH ∠,∴DMP EMP ∠=∠,∵DE 是MP 的垂直平分线,∴DM DP =,EM EP =,∴DMP DPM ∠=∠,=EMP EPM ∠∠,∴DPM EMP ∠=∠,EPM DMP ∠=∠,∴DP ME ∥,EP DM ∥,∴四边形MDPE 是平行四边形,∵DM DP =,∴平行四边形MDPE 是菱形.25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C ===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:R =. 【解析】。

2023山东省潍坊市中考数学真题试卷和答案

2023山东省潍坊市中考数学真题试卷和答案

泰安市2023年初中学业水平考试化学试题本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

满分100分,考试时间60分钟。

注意事项:1.答卷前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答。

2.考试结束后,监考人员将本试卷和答题卡一并收回。

相对源子质量:H1 C12 O16 Na23 S32 Cl35.5 Fe 56 Cu 64 Zn 65第I卷(选择题共40分)一、选择题(本题包括20小题,每小题2分,共40分。

每小题只有一个选项符合题意。

)1. 下列过程没有涉及化学变化的是A. 酒精消毒B. 金属冶炼C. 海水晒盐D. 镁条燃烧2. 材料是人类社会物质文明进步的标志之一。

下列材料属于有机高分子材料的是A. 玻璃B. 青铜C. 玻璃钢D. 聚乙烯3. 正确的实验操作是实验安全和成功的重要保证。

下列图示的实验操作正确的是A. 蒸发氯化钠溶液B. 加热液体C. 稀释浓硫酸D. 测溶液的pH4. 下列有关做法不利于“促进人与自然和谐共生”的是A. 开发清洁新能源,防治大气污染B. 使用可降解塑料,减少白色污染C. 研制无污染农药,减轻水体污染D. 深埋废铅蓄电池,防止土壤污染5. 对下列事实的解释不合理的是A. 通过气味区别氮气和氨气——分子是运动的,不同分子的性质不同B. 干冰升华为二氧化碳气体——状态变化,分子大小随之变化C. 氧气经压缩储存在钢瓶中——压强增大,分子之间的间隔变小D. 蔗糖在热水中溶解更快——温度升高分子的运动速率加快6. 如图所示,概念之间存在着包含、并列、交叉等关系。

下列概念间的关系正确的是A. 纯净物与化合物属于包含关系B. 饱和溶液与浓溶液属于并列关系C. 分解反应与化合反应属于交叉关系D. 糖类与油脂属于交叉关系7. 下列关于化学肥料的说法正确的是A. 尿素()22CO NH ⎡⎤⎣⎦属于复合肥料B. 大量施用化肥以提高农作物产量C. 棉花叶片枯黄,应施用硫酸钾等钾肥D. 铵态氮肥与碱性物质混用,会降低肥效8. 关于下列符号或图示的说法正确的是①2H ②3Al + ③ ④A. ①表示2个氢元素B. ②表示铝元素的化合价为+3价C. ③表示镁离子的结构示意图D. 由④可知硒的相对原子质量为78.96g9. 实验室用固体氯化钠配制50g 溶质质量分数为6%的氯化钠溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省二○○八年中等学校招生考试
数学试题
一、选择题:
1.只用下列图形不能镶嵌的是
A.三角形B.四边形C.正五边形D.正六边形
2.下列计算结果正确的是
A.B.=
C.D.
3.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为
A.-1<m<3B.m>3C.m<-1D.m>-1
4.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.
将纸片展开,得到的图形是
5.若关于x的一元二次方程的常数项为0,则m的值等于
A.1B.2C.1或2D.0
6.如图1,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为△x,ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是
A.10y
B.16 C.18D C
P
D.20O49x
图1图2

B
7.若A(),B(),C()为二次函数的图象上的三点,则的大小关系是
A.B.C.D.
8.如图所示,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有
A.2个
B.3个
C.4个
D.5个
二、填空题:本大题共8小题,每小题填对得4分,共32分.只要求填写最后结果.
9.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材.4.581亿帕用科学计数法表示为__________帕(保留两位有效数字)10.如图,已知AB∥CD,BE平分∠ABC,E
∠CDE=150°,则∠C=__________.D C
11.分解因式:=____________.
12.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,
俯视图是一个圆,那么这个几何体的侧面积是.
13.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价
为.
14.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:
则a n=(用含n的代数式表示).
15.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是.
16.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:
①AD=BE;
②PQ∥AE;
③AP=BQ;
④DE=DP;
⑤∠AOB=60°.
恒成立的有______________(把你认为正确的序号都填上).
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.(本题满分6分)先化简,再求值:
÷,其中,.
18.(本题满分8分)
振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
19.(本题满分8分)
为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?
C
D
20.(本题满分10分)
在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.
E
A B
求证:CE⊥BE.
21.(本题满分10分)
如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC =15°.
(1)求B,D之间的距离;
(2)求C,D之间的距离.
C D 22.(本题满分10分)
(1)探究新知:
如图△1,已知ABC与△ABD的面积相等,试判断AB与CD的位置关系,
并说明理由.A
B
图1(2)结论应用:
①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.
试证明:MN∥EF.y
M
E
N N
O F x
图2
②若①中的其他条件不变,只改变点M,N
的位置如图3所示,请判断MN与EF是否平行.
23.(本题满分12分)
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC
交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
D
图2
图3。

相关文档
最新文档