供热管网水力平衡

合集下载

供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨随着城市化进程的加快和居民生活水平的提高,供热管网作为城市基础设施的重要组成部分,承担着为居民提供温暖的重要任务。

在供热管网的运行中,水力平衡是一个重要问题,它直接关系到整个供热系统的运行效率和稳定性。

对供热管网水力平衡的调节措施进行探讨,对于提高供热系统的运行效率和保证居民供热质量有着重要的意义。

一、水力平衡的概念和意义水力平衡是指系统中各分支管道的局部压力、流量和温度等参数的合理调控,使各点的水压、流量和温度能够在规定的范围内保持稳定,并且水力资源得以均衡利用。

在供热管网中,水力平衡是指在整个系统中,各个分支管道的水压、流量和温度等参数能够平衡分布,保证热水能够均匀地传递给各个用户,从而实现供热系统的高效、稳定运行。

水力平衡对于提高供热系统的能效和稳定性具有重要的意义。

二、水力平衡调节措施的必要性1. 提高供热系统的运行效率如果供热管网中存在严重的水力不平衡现象,就会导致系统中部分管道的流量过大,而另一部分管道的流量过小,从而导致热水的传递不均匀,一些用户会得到过热的热水,而另一些用户则会得到过冷的热水。

这不仅会降低供热系统的能效,还会影响用户的供热体验。

2. 保证居民供热质量如果供热管网中存在水力不平衡的问题,就会导致一些用户受到供热质量的影响,有些用户会出现供热不足的情况,而另一些用户则会出现供热过热的情况,这不仅会影响用户的生活质量,还会造成用户的投诉和维修成本的增加。

水力平衡调节措施的必要性无疑是非常明显的,它关系到整个供热系统的运行效率和居民供热质量,是供热系统运行中需要高度重视的问题。

1. 合理设置阀门在供热管网中,合理设置阀门是保证系统水力平衡的必要措施之一。

通过合理设置调节阀和截止阀等,可以实现对供热系统中不同支路的流量、压力、温度等参数的调节和控制,从而达到整个系统的水力平衡。

2. 使用比例阀比例阀是一种根据流量大小自动调节开度的阀门,通过安装比例阀,可以实现对各分支管道流量的自动调节,从而达到供热系统的水力平衡。

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究1. 引言1.1 背景介绍供热管网是指用于供应建筑物采暖、热水等热能的管道网络系统。

随着城市化进程的加速,供热管网作为城市的重要基础设施之一,其重要性日益凸显。

在供热管网运行过程中,由于管道长度复杂、供热负荷变化等因素的影响,常常会出现部分区域供热效果不佳的情况,造成部分用户感受到的供热温度不够、供热不均等问题。

为了解决供热管网中的水力失衡问题,需要进行水力平衡调节,即通过调整管道长度、直径、阀门开度等参数,使得供热管网内各个支路之间的流动速度、流量、水压等参数保持平衡,确保供热效果均匀稳定。

对供热管网水力平衡调节方法进行研究具有重要的理论和实际意义。

本文旨在探讨供热管网水力平衡调节方法的研究,通过对不同调节方法的分析与比较,为供热管网的运行和管理提供科学依据,促进供热系统的有效运行。

1.2 研究意义供热管网水力平衡调节方法的研究意义在于优化供热系统的运行效率,提高能源利用率,减少能源消耗,降低运行成本,延长设备寿命,提高系统稳定性和安全性,改善室内舒适度,减少能源排放,降低环境污染等方面具有重要意义。

通过研究水力平衡调节方法,可以有效解决供热管网中存在的流量分布不均、管网热负荷不平衡、系统能效低等问题,提高整个供热系统的综合性能和运行效率。

水力平衡调节方法的研究还可以为供热系统的设计、施工、运行和维护提供科学依据,为节能减排、建设节能型社会、推动绿色发展等方面做出贡献。

深入研究供热管网水力平衡调节方法的意义重大,对于提高供热系统的整体效益和社会效益具有积极的促进作用。

【End of 研究意义】.1.3 研究目的研究目的是为了探究供热管网水力平衡调节方法,以提高供热系统的运行效率和能源利用效率。

通过研究水力平衡调节原理和各种调节方法,找到最适合实际工程应用的调节方案,从而确保供热管网内各支路的水流量均衡,减少管网压力损失和能源消耗,延长管网设备的使用寿命,提高供热系统的稳定性和可靠性。

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究随着城市化进程的加快,城市热力供应系统也得到了迅速发展。

而在热力供应系统中,供热管网的水力平衡调节是非常重要的一环。

水力平衡是指在供热管网中,各个支路、回路以及末端用户之间保持合理的压力、流量等参数的均衡状态,以保证整个供热系统的稳定工作和高效能运行。

提高供热管网的水力平衡调节方法显得尤为重要。

本文将对当前供热管网水力平衡调节方法进行研究,并提出一些改进措施,以期能够提高供热系统的运行效率和稳定性。

1. 静态平衡调节方法静态平衡调节方法是最为直接和常见的一种方法,通常是通过合理的管道设计和安装来保证供热管网的水力平衡。

在设计和安装过程中,需要考虑管道的布局、管径、阀门的位置等因素,以确保各个支路和回路在负载均衡时能够保持相对稳定的水力平衡状态。

此方法的优点是操作简单,易于理解和掌握。

但是其缺点也显而易见,即在实际运行中由于用户用热量的变化,会使得管网产生不同程度的水力不平衡,从而影响整个供热系统的运行效率。

2. 动态平衡调节方法动态平衡调节方法是通过安装调节阀、联动阀等设备来实现管网的水力平衡调节。

这些设备能够根据系统的实际运行情况,及时调整水流的分配,从而保证管网的各个部分能够在不同的工况下保持水力平衡。

这种方法相对于静态平衡调节方法来说,能够更加灵活地应对管网运行中可能出现的各种情况,保证整个供热系统的稳定运行。

但是这种方法需要有较高的技术水平和经验来进行操作,同时成本也相对较高,对于一些小型和中小型供热系统来说,可能会存在一定的困难。

1. 结合现代控制技术随着现代控制技术的不断发展,人们可以更加方便地对供热系统进行监控和调节。

结合现代控制技术,可以通过安装传感器、控制阀等设备,对供热管网进行实时监测和调节。

在管网中设置控制节点,通过数据采集和处理,可以根据实际运行情况进行动态调节,及时解决管网中的水力不平衡问题。

这种方法能够更加精确地掌握管网的运行情况,提高供热系统的运行效率和稳定性。

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究1. 引言1.1 背景介绍供热管网水力平衡调节是指在供热系统中保持热水流动均匀和稳定,避免管道中出现过热和过冷的现象,以提高供热效率和节约能源。

随着供热管网规模的不断扩大和复杂度的增加,保持水力平衡成为一个重要的挑战。

水力失衡会导致部分房间温度过高或过低,影响供暖效果,甚至影响管网和设备的正常运行。

在过去的研究中,人们主要通过手动调节阀门的方式进行水力平衡调节,然而这种方法存在着调节不及时、效果不稳定等问题。

寻找一种更加科学、高效的水力平衡调节方法显得尤为重要。

本文将从基于动态水力学模型和实测数据两个方面探讨供热管网水力平衡调节方法,通过仿真模拟验证和参数优化来验证研究结果的有效性。

这将有助于提高供热系统的运行效率、减少能源浪费,为供热管网的设计和运行提供一定的参考依据。

1.2 研究意义研究供热管网水力平衡调节方法的意义在于优化供热系统的运行效率,提高能源利用率,降低运行成本,减少能源浪费,减少对环境的影响。

水力平衡是保证供热系统正常运行的关键因素,通过调节系统中的水流量和压力分布,可以有效地解决管网中水流速度不均匀、管网阻力较大、系统过热或过冷等问题,提高系统的稳定性和可靠性。

研究水力平衡调节方法还可以帮助系统运行人员更好地了解供热管网的运行状态,及时发现并解决问题,确保供热系统的安全运行。

研究供热管网水力平衡调节方法还可以为供热行业提供技术支持和参考,促进供热系统的技术水平和管理水平的提升,推动供热行业的可持续发展。

深入研究供热管网水力平衡调节方法具有重要的理论意义和实践价值。

1.3 研究方法研究方法是对于研究目标的实现路径和方法论的设计和安排。

在本文中,我们将采用多种研究方法来探讨供热管网水力平衡调节方法,并通过这些方法来验证我们的研究成果。

我们将基于现有的文献和理论知识,对供热管网水力平衡调节方法进行概述和总结,以建立起对该领域的全面认识和理解。

通过文献综述和理论分析,我们可以系统地了解目前该领域的研究现状和存在的问题,为后续的研究工作提供指导和启示。

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究供热管网是城市供暖的重要设施之一,其稳定运行对于保障居民生活至关重要。

然而,由于管网复杂性、流量变化范围大等因素,常常会出现供热管网的水力失衡问题,严重影响其正常运行。

因此,本文将探讨一些供热管网水力平衡调节方法。

一、管网水力特性分析管网水力特性是管网设计中最基本、最关键的参数,因为它直接决定了管网各处的压力和流量大小。

当供热管网的水力特性不平衡时,会导致管路水压过高或过低,从而影响设备的正常运行、降低供暖效率,同时也会增加土建、设备等方面的运行成本,造成不必要的经济浪费。

二、调节方式1. 阀门调节法阀门调节是常见的管网水力平衡调节方式。

通过调整各处的阀门开启度实现管路水流量的分配均衡。

此法调节简单,现场施工方便,成本低廉,但需要有经验丰富的工程师制定合理的阀门开启度,且维护成本较高。

管网供热泵组调节,是指通过调节管网内的泵组流量或压力,调节管路的水流动力,从而实现供热管网的水力平衡。

该法操作较为复杂,但是操作技能高的人员可以很好地解决问题,在调节某些较远的回路时也可以很有效地调节。

3. 外加水箱法供热管网外加水箱调节是将水箱作为管网的“缓冲器”,通过外加水箱调节管路的压力、水位等参数,实现管网的水力平衡。

该方法可以保持较为稳定的水位及压力,保证系统的安全运行。

使用此法需要大量调节时间和较高的成本。

4. 管网改建法当管网的设计存在严重问题时,用改建法来解决问题,将管网水流分配再次规划,以实现管网水力平衡。

往往需要专业的设计师对整个管网进行全面的分析和规划。

三、总结供热管网水力平衡调节是供热系统管理的一个重要方面,合理的调节方法能够使管网的供热效果得到最大化。

在调节中,需要根据具体情况采用不同的方法,如阀门调节、泵组调节、外加水箱法和管网改建法来实现管网水力平衡。

同时,管网管理者还需要定期检查系统的水位、压力等参数,以确保系统达到最佳效率,保证供热的人民群众生活的舒适性和安全性。

基于热力管网水力平衡调节问题的思考

基于热力管网水力平衡调节问题的思考

基于热力管网水力平衡调节问题的思考热力管网水力平衡调节问题是热力管道系统运行过程中常见的技术难题之一。

在热力管网系统中,水力平衡是指在供水和供热过程中,各个分支管道的水流量、压力和温度能够达到平衡状态,保证整个系统的稳定运行和高效能使用。

由于管网系统的复杂性和运行环境的变化,水力平衡经常受到影响,导致系统的能耗增加,设备的寿命缩短,并可能引起一些安全隐患。

对热力管网水力平衡调节问题进行深入思考和研究,对于提高系统的运行效率、降低能耗、延长设备寿命等方面具有重要意义。

一、水力平衡调节的意义热力管道系统中的水力平衡调节问题,主要表现在以下几个方面:1. 供水/供热页边缘段流量、压降及温度控制不稳定,影响到用户端的舒适度。

2. 系统运行参数的不稳定,影响了系统的运行效率,增加了系统的运行成本。

3. 系统设计、改造时未对涌流、回流和死水等水力不平衡因素进行充分考虑,导致了系统运行不稳定。

在水力平衡调节的过程中,需要解决的问题包括:1. 确定各分支管道的流量、压力和温度的分布规律。

2. 建立合理的水力平衡调节措施,确保系统运行稳定。

3. 通过合理的管道设计、优化调节设备的选型等方法,提高系统的运行效率和节能效果。

针对热力管网水力平衡调节问题,通常可采取以下方法进行解决:1. 系统的优化设计。

在系统设计阶段,就需要充分考虑水力平衡的问题,合理设计输水管道、主副泵、水箱等设备,以及设置合理的调节装置。

2. 优化调节设备的选型。

选择合适的泵、阀门、管道等调节设备,保证系统可以实现水力平衡调节。

3. 合理规划管道布局。

通过引入换向器、弯头、渐变管等,减小水流的阻力,降低系统的压降,使系统能够更容易实现水力平衡。

4. 进行系统的水力模拟计算。

借助计算机仿真软件,对系统的水力特性进行模拟计算,找出问题所在,并制定相应的调节方案。

通过以上方法的综合应用,可以有效的解决热力管网水力平衡调节问题,提高系统的运行效率,降低系统的运行成本。

供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨随着城市供热管网的不断完善和发展,供热管网水力平衡问题也日益引起人们的关注。

水力平衡是指管网中各个分支和末端热量的分配均匀,使热力管网中的水流量和压力保持稳定。

而供热管网水力平衡的调节措施是确保供热系统正常运行的关键,本文将从调节措施的技术原理和应用效果两个方面探讨供热管网水力平衡的调节措施。

一、调节措施的技术原理1. 流量调节阀的安装在供热管网中,通过合理设置流量调节阀实现管网中各个分支和末端热量的分配均匀,保证供热系统水力平衡。

流量调节阀安装在管道上,通过调节阀门的开度来控制管道中的水流量,从而实现供热管网的水力平衡。

这种技术原理简单易行,操作方便,能够有效地调节供热管网的水力平衡。

2. 自动调节阀的应用3. 管网调节技术的优化通过对供热管网的调节技术进行优化,包括管网的设计、安装和维护等方面的措施,能够更好地实现供热管网的水力平衡。

在供热管网的设计中,应根据管道的长度、直径、材质等因素进行合理的布局和设计,确保管网中的水流量和压力均匀分布。

在管网的安装和维护过程中,应加强对管道的维护和管理,及时检测和修复管道中的漏水和堵塞等问题,保证供热系统的正常运行。

二、调节措施的应用效果1. 提高供热系统的稳定性通过采取有效的水力平衡调节措施,能够提高供热系统的稳定性,确保供热管网中各个分支和末端热量的分配均匀。

水力平衡调节措施能够减少管网中的水流量和压力的波动,降低供热系统的运行风险,保证供热系统的安全稳定运行。

2. 减少能源消耗3. 延长设备的使用寿命通过调节措施,能够使供热系统中的设备运行更加稳定,延长设备的使用寿命。

水力平衡调节措施能够降低供热系统中设备的运行压力和负荷,减少设备的磨损和损坏,延长设备的使用寿命。

供热管网水力平衡的调节措施是确保供热系统正常运行的关键。

通过应用流量调节阀、自动调节阀等设备,优化管网调节技术,能够提高供热系统的稳定性,减少能源消耗,延长设备的使用寿命。

供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨1. 引言1.1 研究背景供热管网水力平衡是指在热水供应过程中,各个支路、回路水流量相等,满足各支路、回路热负荷需要的一种状态。

水力平衡是保证供热系统正常运行的基础,是提高供热系统能效的重要手段之一。

在实际运行中,由于供热管网的复杂性和变化性,水力平衡往往会受到各种因素的影响而被破坏,从而导致供热系统运行不稳定、能耗增加等问题。

目前,我国供热管网水力平衡调节方面的研究尚处于起步阶段,对于如何有效地调节供热管网水力平衡还存在一定的不确定性和挑战。

深入研究供热管网水力平衡的调节措施,为提高供热系统运行效率,降低能耗,具有重要的现实意义和价值。

为此,本文将对供热管网水力平衡的调节措施进行深入探讨,以期为供热系统的优化设计和运行管理提供参考和指导。

1.2 研究目的研究目的是为了探讨供热管网水力平衡的调节措施,以解决供热系统中存在的水力失衡问题,提高供热效率和节能减排。

通过深入分析供热管网水力平衡的概念和影响因素,我们可以更好地理解水力失衡对供热系统运行的影响,为有效调节提供依据。

本研究旨在提出可行的调节措施,包括优化管网设计和采用智能控制系统,从而实现供热管网水力平衡的动态调节,达到系统运行的最佳状态。

通过本研究的实施,将有助于提升供热系统的整体性能,提高供热质量和用户满意度,为供热行业的可持续发展做出贡献。

1.3 研究意义供热管网水力平衡的调节是保障供热系统运行稳定、高效的关键环节。

随着供热管网规模的不断扩大和复杂程度的增加,供热管网水力平衡的调节变得更加重要。

保持供热管网的水力平衡不仅可以提高供热系统的热效率,降低运行成本,延长设备寿命,还能减少能源消耗,减少碳排放,对于节能减排、可持续发展具有重要的意义。

研究供热管网水力平衡的调节措施,可以为优化供热系统运行提供科学依据,提高系统的整体性能和稳定性。

通过深入研究水力平衡的调节措施,可以为供热系统的设计、施工、运行和维护提供更可靠的技术支持,促进我国供热行业的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供热管网水力平衡
保障供热管网水力平衡的关键环节
引言
集中供热系统在采暖季运行初期存在水力平衡问题,其调试期的长短与精度不仅关系到供暖质量,更涉及节能减排与社会和谐。

水力平衡主要包括供热系统的充水及排气、管网水力调节、系统的运行管理三个方面。

根据多年运行管理经验认为,抓好这三个关键环节;可极大地促进供热节能减排。

1、供热系统充水、排气是管网良性循环的首要工作
1.1确保系统充水、排气顺序系统的充水、排气是开始供暖前的必备条件,正确的充水顺序为:锅炉——一次网——换热站——二次网——热用户。

系统充水顺序一定要正确,否则在管道中会产生“空气塞”,这是造成局部热用户不热的主要原因。

用补水泵进行系统充水,所用水质应符合GBl576《低压锅炉水质标准》。

对于目前普遍采用的补水泵间歇补水定压方式的定压系统来讲,维持定压点压力的稳定是供热系统正常运行的基本前提。

电接点压力上下限的设定应满足运行要求。

锅炉充水是从锅炉迸水口开始充水,当其顶部集气罐放气阀经过数次排气后有大量水冒出时,关闭放气阀,锅炉充水完毕。

外管网充水前,应关闭所有泄水阀,同时打开各支线阀门及管线末端连接供回水管的旁通阀门。

在关闭所有热用户人口阀门的条件下,将水由回水压入网路,当其最高点上排气阀经数次排气后有大量水冒出时,表明管网已充满水,外管网充水完毕。

楼内充水时,应由回水压入系统中,先将热力入口处的所有泄水阀门关闭,并缓慢打开热力入口处的回水阀门。

充水速度不宜太快,
以便从系统中排出空气。

然后将供水阀门打开,同时迅速开启楼道内立管顶部排气阀进行排气,当立管顶部排气阀排出大量的水时,立管充水完毕。

热用户充水启动的顺序必须按先远后近、先打开回水阀再打开供水阀的原则进行。

当每个楼栋的热用户的水满后,对最末端的热用户进行l——2次排气。

这样可避免大量空气带入热用户系统中,减少运行期排气次数。

系统应边充水边排气,最好把系统内气体一次排净,以免造成气塞现象。

对热用户本着“先远后近”的原则进行排气,有利于将系统中的空气赶向近端,减少维修人员往返路程,避免重复劳动,缩短调试时间,同时避免大量热水排放,节约能源。

1.2 保证循环系统顺利启动,维持稳定压差
在循环水泵启动前应再次确认一、二次网补水泵的上下限定压点数值是否在合理范围内;另外还应确认管网各支线末端连接供、回水的旁通阀门是否开启,将二次网高点排若干次气后,打开楼栋口的回水阀门,再打开供水阀门,才可启动循环水泵。

这样做可避免将大量空气通过循环泵带入热用户系统中。

循环水泵启动完毕后,须将末端旁通阀门关闭。

运行初期,必须严密注意网路中的压力,随时调整变频大小或调节循环泵阀门的开启度,楼栋口平衡阀的开启度,使集、分水器压差保持稳定。

经多年运行经验,分、集水器供回水压差范围为O.1~0.2MPa。

2、供热系统调节是管网水力平衡的核心工作
供热管网调节分为系统的初调节和运行调节以间接供暖为例,其调节顺序为:一次网——换热站——二次网——热力入口——热用户。

2.1 调节系统回水温度,使其流量分配合理在锅炉房集水器上安装各回路温度表,调节各阀门的开度,将各支路的回水温度调成一致,其流量分配基本按照需要的供热量进行分配,这就是回水温度调节平衡法。

热源的供水温度是相同的,考虑距离远近管网散热略有差异,其用户供水温度不会有很大差别,所以调节回水温度可以保持基本平衡。

由于热水系统和房屋维护结构存在很大的热惰性,故回水温度的调节不宜过频。

2.2 安装平衡阀,保持远近管网之间的动态平衡对于间接供暖,要连带换热站的一次供回水阀门同步调节,通过调节流量,使各换热站的一次网回水温度基本保持一致。

如果多次调节后,近端的换热站一次网回水温度仍然偏高,则应通过安装平衡阀,将近端环路的富裕压头克服掉,就不会发生离热源近的换热站二次供水温度高而远者二次供水温度低的现象,从而达到多个换热站之间二次回水温度基本保持一致。

2.3 加强外管网调节,防止水力失调超声波流量计法是避免水力失调最有效、最直接的方法。

先计算出该段管网的要求流量,然后再应用超声波流量计测量实际流量。

调节各支路流量,使实际流量接近于设计流量,达到调节目标。

用超声波流量计测量流量时,要求选好测点前后的直管段,测点前应有10cm,测点后应有5cm的直管段。

开始调试时,先要调试热力入口平衡阀开启的大小,使所测实际流量接近于理论流量。

然后再调节支路的流量,通过调节阀门开度,使所测实际流量接近于理论流量,误差在±5%以内为合格。

阀门调节是相互干扰的,每个部位应反复进行,才可使流量达到最佳状态。

管网平衡调试过程应由大到小、由粗到细,经过反复调试,才能使热力管网达到稳定的平衡状态。

2.4 实现内管网调节,防止水平失调与垂直失调垂直失调就是楼宇上下层之间的失调。

可以通过调节供暖支管的闭合管阀门或三通阀达到上下层热水温度基本保持一致或室内温度保持一致。

水平失调就是楼宇同层之间的失调。

它主要靠调节各立管的供回水阀门。

从最不利环路开始,逐个向靠近主管方向进行各环路阻力平衡,其最终目的达到各环路阻力基本一致,从而使供热温度基本一致。

2.5 采用变频调速水泵,以达到节能目的变频调速水泵是指通过变频器改变电机电流频率而改变转速的水泵。

当通过变频器减小电流频率时,流量相应减少。

由于电机轴功率与流量3次方成正比,功率下降程度很大,同时又能始终保证水泵在高效段运行,所以它在保持水泵较高机械效率和减少电耗方面是非常有效的。

对于有仪表自控的管网,根据室外温度的变化,调整一次网循环水泵的流量,从而调整锅炉出水温度,减少能耗量。

一、二次网可根据补水量的大小采用变频调速的补水泵。

同样由于室内温控阀的主动调节,二次网是个变流量系统,二次网循环泵应采用相应的变频调速控制,及时调整水泵转速,适应室内系统的流量调节,以达到节能目的。

3、加强系统的运行调节和运行管理
3.1加强运行调节
在保证热用户室温条件下,供热系统还必须根据室外气象条件的变化进行调节。

根据多年的运行经验,对运行调节常采用4种方法:
(1)质调节。

就是根据室外环境温度和用户室内温度要求,调节锅炉的出水温度,以达到节能和满足供暖温度的要求的方法。

(2)量调节。

就是根据室外环境温度和用户室内温度要求,调节循环水泵的流量,从而改变管网回水的流量进行调节的方法。

(3)质调节和量调节相结合。

根据供热负荷发生变化(如室外气温变化)采用质调节,再根据热用户末端负荷变化采用量调节。

(4)间歇调节。

当室外温度升高时,不改变热网的流量与供水温度,而只减少每日供暖的时数,这种调节方式称为间歇调节。

间歇调节可以在室外温度较高的供暖初期和末期,作为一种辅助措施来采用。

由于量调节的节煤、节水、节电效果比较直观,所以应用较多。

3.2 严格控制补给水量
在系统运行过程中,应尽可能地将系统的补给水量控制在系统循环水量的O.5%以下。

这对节能减排、降低系统的运行费用和减轻锅炉及管网的腐蚀具有重要意义。

因此,需经常检查系统中有无漏水点,若发现漏水点,应及时采取措施,降低水耗。

在实际应用中,常采用压力表检漏法,效果较好。

当管网补水量突然增大,证明管网有丢水或漏水情况。

可在所属供水、回水管上各安装l块压力表,待安装好后记住压力表上显示的压力,然后同时关闭供回水阀门,几分钟后,若有漏水点,会发现该管段上压力表显示数值迅速下降;若无漏水点,则压力表显示数值不变。

这种方法对及时发现漏水点,及时抢修,降低补给水量,很有作用。

3.3 加强日常考核管理
加强水质管理制度,合理排污,及时排除水渣,每天对水质的情况进行记录,保证水质合格,避免不安全事故的发生。

对管网和用户系统设立每班次的巡回检查制度,做好每天室外温度、炉膛温度、锅炉出水温度、循环流量、补水量、锅炉及管网运行压力等数据的记录,以便及时发现运行安全问题及系统不热、漏水和其他不正常现象。

对煤、水、电等各项指标进行每日的记录,每周进行分析及核算,做到节能减排。

相关文档
最新文档