《用数学归纳法证明不等式》参考教(学)案
4.2用数学归纳法证明不等式举例--教案(优秀经典公开课比赛教案)

课题:4.2用数学归纳法证明不等式举例一、教材分析: 数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。
数学归纳法的证明过程中展现的推理与逻辑能让学生体会数学的严谨与规范,学习数学归纳法后学生对数列和不等式证明等问题会有新的解决思路和方法。
二、教学目标:1、知识与技能:(1)使学生初步了解数学归纳法,理解数学归纳法的基本原理。
(2)掌握数学归纳法证明题目的步骤和适用范围,能够使用数学归纳法证明与正整数有关的命题。
2、过程与方法:(1)通过类比多米诺骨牌游戏,使学生进一步理解数学归纳法,并培养在观察,归纳,猜想中逐步解决问题的能力。
(2)让学生经历发现问题,提出问题,分析问题,解决问题的过程,形成能力并应用于今后的学习中。
3、情感、态度与价值观:(1)通过对数学归纳法的探究培养学生严谨的,实事求是的科学态度和积极思考,大胆质疑的学习氛围。
(2)通过有限到无限的这种跨越,体会数学证明的美感与用途。
三、教学重点:了解数学归纳法的原理及其使用范围和基本步骤四、教学难点:(1)认识数学归纳法的证明思路。
(2)运用数学归纳法时,在“假设与递推”的步骤中发现具体问题中的递推关系。
五、教学准备1、课时安排:2课时2、学情分析:学生在学习本节之前已经学习过归纳推理,以及一些简单的数学证明方法,并且已经开始使用与正整数有关的结论(例1的公式),但学生只是停留在认知阶段;另外高二学生经过了一年半的高中学习之后,已初步具有了发现和探究问题的能力,这为本节学习数学归纳法奠定了一定基础。
3、教具选择:多媒体六、教学方法:讲练结合 合作探究法七、教学过程1、自主导学:一.复习回顾引入:<师>(1)请同学们回顾学习过的证明方法有哪些?<生> 请一名学生回答该问题。
<师>(2)思考:通过计算下面式子,你能猜想出1357(1)(21)n n -+-++⋅⋅⋅+-⋅-的结果吗?证明你的结论。
《用数学归纳法证明贝努利不等式》 导学案

《用数学归纳法证明贝努利不等式》导学案一、学习目标1、理解贝努利不等式的内容和形式。
2、掌握数学归纳法的基本原理和步骤。
3、能够运用数学归纳法证明贝努利不等式。
二、知识回顾1、不等式的基本性质(1)对称性:若 a > b,则 b < a。
(2)传递性:若 a > b 且 b > c,则 a > c。
(3)加法法则:若 a > b,则 a + c > b + c。
(4)乘法法则:若 a > b 且 c > 0,则 ac > bc;若 a > b 且 c <0,则 ac < bc。
2、数学归纳法的原理(1)(归纳奠基)证明当 n 取第一个值 n₀时命题成立。
(2)(归纳递推)假设当 n = k(k ≥ n₀,k ∈ N)时命题成立,证明当 n = k + 1 时命题也成立。
三、贝努利不等式对于任意实数 x >-1 和正整数 n,有(1 +x)ⁿ ≥ 1 + nx 成立。
四、数学归纳法证明贝努利不等式(一)当 n = 1 时左边= 1 + x,右边= 1 + 1×x = 1 + x左边=右边,不等式成立。
(二)假设当 n = k(k ≥ 1,k ∈ N)时不等式成立,即(1 + x)ᵏ≥ 1 + kx(三)当 n = k + 1 时(1 + x)ᵏ⁺¹=(1 + x)ᵏ(1 + x)由假设可知(1 + x)ᵏ≥ 1 + kx,所以(1 + x)ᵏ(1 +x) ≥ (1 + kx)(1 + x)= 1 + kx + x + kx²= 1 +(k + 1)x + kx²因为 x >-1 且 k 为正整数,所以kx² ≥ 0所以 1 +(k + 1)x +kx² ≥ 1 +(k + 1)x即(1 + x)ᵏ⁺¹≥ 1 +(k + 1)x所以当 n = k + 1 时,不等式也成立。
综上,由(一)和(二)可知,对于任意实数 x >-1 和正整数 n,贝努利不等式(1 +x)ⁿ ≥ 1 + nx 成立。
数学归纳法、用数学归纳法证明不等式举例 课件

命题方向1 ⇨数学归纳法证明等式
典例试做 1
1),其中 n∈N+.
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-
● [分析] 用数学归纳法证明一个与正整数有关的命题,关键是第二步,要注意当n=k+1时, 等式两边的式子与n=k时等式两边的式子的联系.
● [解析] (1)当n=1时,左边=1+1=2,右边=21·1=2,等式成立. ● (2)假设当n=k时等式成立,即 ● (k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),
● 则当n=k+1时, ● (k+2)(k+3)…(k+1+k)(k+1+k+1)=(k+2)·(k+3)…+(k+k)(2k+1)(2k+2) ● =(k+1)(k+2)…(k+k)·2(2k+1) ● =2k·1·3·…·(2k-1)·2(2k+1) ● =2k+1·1·3…·(2k-1)(2k+1), ● 即当n=k+1时,等式也成立. ● 由(1)(2)可知,对一切n∈N+,等式成立.
n 都成立,求正整数 a 的最大值,并证明你的结论.
[分析] 用数学归纳法证明. 从n=k到n=k+1时,为利用假设需要增加因
式
1 k+1
,对于除含有n=k的因式外的其余的项需运用不等式的性质证明其大于
零即可.
[解析] 取n=1,1+1 1+1+1 2+3×11+1=2264,令2264>2a4⇒a<26,而a∈N+,
=(k+1 1+k+1 2+…+3k+1 1)+(3k+1 2+3k+1 3+3k+1 4-k+1 1)>2254+[3k+1 2+ 3k+1 4-3k+2 1].
∵3k+1 2+3k+1 4=9k26+k1+8k1+ 8>3k+2 1, ∴3k+1 2+3k+1 4-3k+2 1>0, ∴k+11+1+k+11+2+…+3k+11+1>2254,
第四讲数学归纳法证明不等式章末复习方案课件人教A选修4-5

(2)假设n=k时,即bk=a4k是3的倍数, 则n=k+1时, bk+1=a4(k+1)=a4k+4=a4k+3+a4k+2 =a4k+2+a4k+1+a4k+1+a4k =3a4k+1+2a4k. 由归纳假设,a4k是3的倍数,3a4k+1是3的倍数,故可知bk+1是 3的倍数,∴n=k+1时命题也正确. 综合(1)、(2)可知,对正整数n,数列{bn}的各项都是3的倍数.
1.分析综合法 用数学归纳法证明关于正整数n的不等式,从“P(k)”到 “P(k+1)”,常常可用分析综合法.
第四讲数学归纳法证明不 等式章末复习方案课件人
4.学会借用同一题中已证明过的结论 在从k到k+1的过程中,若仅仅利用已知条件,有时 还是没有证题思路,这时考查同一题中已证明过的结论, 看是否可借用,这种“借用”思想非常重要.
第四讲数学归纳法证明不 等式章末复习方案课件人
二、填空题
5.利用数学归纳法证明“(1+13)(1+15)…(1+
1 2n-1)>
2n2+1”时,n 的最小取值 n0 为________. 解析:n0=1 时,1+11不适合原式要求.
n0=2 时,1+13> 25,再用数学归纳法证明. 答案:2
第四讲数学归纳法证明不 等式章末复习方案课件人
第四讲数学归纳法证明不 等式章末复习方案课件人
三、解答题 9.在数列{an}中,a1=a2=1,当n∈N*时,满足an+2=
an+1+an,且设bn=a4n,求证:{bn}各项均为3的倍数. 证明:(1)∵a1=a2=1, 故a3=a1+a2=2,a4=a3+a2=3. ∴b1=a4=3,当n=1时,b1能被3整除.
第四讲数学归纳法证明不 等式章末复习方案课件人
人教A版选修4-5 用数学归纳法证明不等式举例 第1课时 教案

章节:课时:备课人;二次备课人课题名称第四讲用数学归纳法证明不等式举例(1)三维目标学习目标:1、会用数学归纳法证明简单的含任意正整数n的不等式;2、在“假设与递推”的步骤中发现具体问题中的递推关系;3、培养学生特殊化、一般化和转化的数学思想。
重点目标会用数学归纳法证明简单的含任意正整数n的不等式难点目标会用数学归纳法证明简单的含任意正整数n的不等式导入示标目标三导学做思一:自学探究问题1.用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是A2k-1B2k-1C2k D2k+1解:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k答案:C学做思二问题2.用数学归纳法证明(1+1)(1+)·…·(1+)>当n=1时,不等式①成立假设n=k时,不等式①成立,即(1+1)(1+)·…·(1+)>那么n=k+1时,(1+1)(1+)·…·(1+)(1+)>(1+)=又[]2-()2=>0,∴>=∴当n=k+1时①成立综上所述,n∈N*时①成立.学做思三技能提炼例1、在数列中,a n>0,且S n=1/2(a n+)(1)求a1、a2、a3;(2)猜测出a n的关系式并用数学归纳法证明。
例2、用数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是A2k-1B2k-1C2k D2k+1例3、设数列{a n}满足a1=2,a n+1=a n+(n=1,2,…)(1)证明a n>对一切正整数n都成立;(2)令b n=(n=1,2,…),判定b n与b n+1的大小,并说明理由达标检测变式反馈1、用数学归纳法证明第一步应验证()2、已知不等式左边增加的部分是()3、证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有a n+c n>2b n.反思总结1.知识建构2.能力提高3.课堂体验课后练习同步练习金考卷。
数列、极限、数学归纳法·用数学归纳法证明不等式8页word文档

数列、极限、数学归纳法·用数学归纳法证明不等式教学目标1.牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程.2.通过事例,学生掌握运用数学归纳法证明不等式的思想方法.3.培养学生的逻辑思维能力,运算能力,和分析问题、解决问题的能力.教学重点与难点重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.难点:应用数学归纳法证明的不同方法的选择及解题技巧.教学过程设计(一)复习回顾师:上次课我们已经学习了数学归纳法以及运用数学归纳法解题的步骤,请同学们联想“多米诺骨牌”游戏,说出数学归纳法的步骤?生:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P(n).(1)证明当n取第一个值n0时,结论正确,即验证P(n0)正确;(2)假设n=k(k∈N且k≥n0)时结论正确,证明当n=k+1时,结论也正确,即由P(k)正确推出P(k+1)正确,根据(1),(2),就可以判定命题P(n)对于从n0开始的所有自然数n都正确.师:演示小黑板或运用投影仪讲评作业.(讲评作业的目的是从错误中进一步强调恰当地运用归纳假设是数学归纳法的关键)作业中用数学归纳法证明:2+4+6+8+…+2n=n(n+1).如采用下面的证法,对吗?证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即2+4+6+…+2k=k(k+1).当n=k+1时,2+4+6+…+2k+(k+1)所以n=k+1时,等式也成立.根据(1)(2)可知,对于任意自然数n,原等式都能成立.生甲:证明过程正确.生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)(二)讲授新课师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.师:首先验证n=2时的情况.(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x ≠0获得,为下面证明做铺垫)(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑.生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)k+1=(1+x)k (1+x),因为x>-1(已知),所以1+x>0于是(1+x)k(1+x)>(1+kx)(1+x).师:现将命题转化成如何证明不等式(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.提问:证明不等式的基本方法有哪些?生甲:证明不等式的基本方法有比较法、综合法、分析法.(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)生乙:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.(1+kx)(1+x)-[1+(k+1)x]=1+x+kx+kx2-1-kx-x=kx2>0(因x≠0,则x2>0).所以,(1+kx)(1+x)>1+(k+1)x.生丙:也可采用综合法的放缩技巧.(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.生丁:……(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.(板书)将例1的格式完整规范.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+lx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.根据(1)和(2),原不等式对任何不小于2的自然数n都成立.(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)师:下面再举例子,来说明合理放缩的重要性.(板书)例2证明:2n+2>n2,n∈N+.师:(1)当 n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2.现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立.生:利用归纳假设2k+1+2=2.2k+2=2(2k+2)-2>2·k2-2.师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.生:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.师:不成立的条件是什么?生:当k=1,2时,不等式k-3≥0不成立.师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证?生:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书)(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立.师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.(板书)例3求证:当n≥2时,(由学生自行完成第一步的验证;第二步中的假设,教师应重点讲解n=k到n=k+1命题的转化过程)师:当n=k+1时,不等式的左边表达式是怎样的?生:当n=k+1时,k项,应是第2k项,数列各项分母是连续的自然数,最后一项是以3k在3k后面还有3k+1、3k+2.最后才为3k+3即3(k+1),所以正确(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)运算,应针对问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:(板书略)师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:要注意:这里 S′(k)不一定是一项,应根据题目情况确定.(三)课堂小结1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.3.数学归纳法也不是万能的,也有不能解决的问题.错误解法:(2)假设n=k时,不等式成立,即当n=k+1时,则n=k+1时,不等式也成立.根据(1)(2),原不等式对n∈N+都成立.(四)课后作业1.课本P121:5,P122:6.2.证明不等式:(提示:(1)当n=1时,不等式成立.(2)假设n=k时,不等式成立,即那么,这就是说,n=k+1时,不等式也成立.根据(1)(2)可知不等式对n∈N+都成立.)3.对于任意大于1的自然数n,求证:(提示:(2)假设n=k时,不等式成立,即这就是说,n=k+1时,原不等式成立.根据(1),(2)可知,对任意大于1的自然数n,原不等式都成立.)用数学归纳法证明①式:(1)当n=3时,①式成立.(2)假设 n=k(k≥3,k∈N)时,①式成立,即2k>2k+1.那么2k+1=2k·2>2(2k+1)=2(k+1)+1+(2k-1)>2(k+1)+1(因k≥3,则2k-1≥5>0).这就是说,当n=k+1时,①式也成立.根据(1)(2)可知,对一切n∈N,n≥3①式都成立,即f课堂教学设计说明1.数归法是以皮亚诺的归纳公理作为依据,把归纳法与演绎法结合起来的一种完全归纳法.数学归纳法证明中的两个步骤体现了递推思想.在教学中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依据,缺一不可,否则就会导致错误.为了取得良好的教学效果,不妨利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种情况:(1)推倒第一张,接着依次倒下直至最后一张;(2)推倒第一张,中途某处停止,最后一张不倒;(3)第一张不倒,后面不管能否推倒,都不会全部倒下.通过具体生动的模型,帮助学生理解数学归纳法的实质.2.用数学归纳法证明不等式,宜先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形,一般地只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.3.要注意:在证明的第二步中,必须利用“n=k时命题成立”这一归纳假设,并且由f(k)到 f(k+1),并不总是仅增加一项,如例2,4.要教会学生思维,离开研究解答问题的思维过程几乎是不可能的,因此在日常教学中,尤其是解题教学中,必须把教学集中在问题解答者解答问题的整个过程上,培养学生构作问题解答过程的框图,因为用文字、符号或图表简明地表达解答过程或结果的能力,叙述表达自己解题思路的能力,这也是问题解答所必需的.。
第3章 3.2 用数学归纳法证明不等式,贝努利不等式

3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式1.会用数学归纳法证明简单的不等式.2.会用数学归纳法证明贝努利不等式;理解贝努利不等式的应用条件.[根底·初探]教材整理1用数学归纳法证明不等式在不等关系的证明中,有多种多样的方法,其中数学归纳法是最常用的方法之一,在运用数学归纳法证不等式时,推导“k+1〞成立时其他的方法如比拟法、分析法、综合法、放缩法等常被灵敏地运用.教材整理2贝努利不等式1.定理1(贝努利不等式)设x>-1,且x≠0,n为大于1的自然数,那么(1+x)n>1+nx.2.定理2(选学)设α为有理数,x>-1,(1)假如0<α<1,那么(1+x)α≤1+αx;(2)假如α<0或者α>1,那么(1+x)α≥1+αx.当且仅当x=0时等号成立.事实上,当α是实数时,也是成立的.,那么2n与n的大小关系是()设n∈N+A.2n>nB.2n<nC.2n=nD.不确定【解析】2n=(1+1)n,根据贝努利不等式有(1+1)n≥1+n×1=1+n,上式右边舍去1,得(1+1)n>n,即2n>n.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们〞讨论交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]数学归纳法证明不等式S n =1+12+13+…+1n (n >1,n ∈N +),求证:S 2n >1+n2(n ≥2,n ∈N +). 【精彩点拨】 求S n 再证明比拟困难,可运用数学归纳法直接证明,注意S n 表示前n 项的和(n >1),首先验证n =2,然后证明归纳递推.【自主解答】 (1)当n =2时,S 22=1+12+13+14=2512>1+22,即n =2时命题成立.(2)假设n =k (k ≥2,k ∈N +)时命题成立,即S 2k =1+12+13+…+12k >1+k2. 当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12.故当n =k +1时,命题也成立.由(1)(2)知,对n ∈N +,n ≥2,S 2n >1+n2都成立.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为12k +1,实际上应为12k +1;二是12k +1+12k +2+…+12k +1共有多少项之和,实际上 2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k .[再练一题]1.假设在本例中,条件变为“设f (n )=1+12+13+…+1n (n ∈N +),由f (1)=1>12,f (3)>1,f (7)>32,f (15)>2,…〞 .试问:你能得到怎样的结论?并加以证明.【解】 数列1,3,7,15,…,通项公式为a n =2n -1,数列12,1,32,2,…,通项公式为a n =n2,∴猜测:f (2n -1)>n2.下面用数学归纳法证明:①当n =1时,f (21-1)=f (1)=1>12,不等式成立.②假设当n =k (k ≥1,k ∈N +)时不等式成立, 即f (2k -1)>k2, 那么f (2k +1-1)=f (2k-1)+12k +12k +1+…+12k +1-2+12k +1-1>f (2k-1)+=f (2k-1)+12>k 2+12=k +12.∴当n =k +1时不等式也成立.据①②知对任何n ∈N +原不等式均成立.利用数学归纳法比拟大小设P n =(1+x )n ,Q n =1+nx +n (n -1)2x 2,n ∈N +,x ∈(-1,+∞),试比拟P n 与Q n 的大小,并加以证明.【导学号:38000059】【精彩点拨】 此题考察数学归纳法的应用,解答此题需要先对n 取特殊值,猜测P n 与Q n 的大小关系,然后利用数学归纳法证明.【自主解答】 (1)当n =1,2时,P n =Q n .(2)当n ≥3时,(以下再对x 进展分类). ①假设x ∈(0,+∞),显然有P n >Q n . ②假设x =0,那么P n =Q n . ③假设x ∈(-1,0),那么P 3-Q 3=x 3<0,所以P 3<Q 3.P 4-Q 4=4x 3+x 4=x 3(4+x )<0,所以P 4<Q 4. 假设P k <Q k (k ≥3),那么P k +1=(1+x )P k <(1+x )Q k =Q k +xQ k =1+kx +k (k -1)x 22+x +kx 2+k (k -1)x 32=1+(k +1)x +k (k +1)2x 2+k (k -1)2x 3 =Q k +1+k (k -1)2x 3<Q k +1, 即当n =k +1时,不等式成立. 所以当n ≥3,且x ∈(-1,0)时,P n <Q n .1.利用数学归纳法比拟大小,关键是先用不完全归纳法归纳出两个量的大小关系,猜测出证明的方向,再用数学归纳法证明结论成立.2.此题除对n 的不同取值会有P n 与Q n 之间的大小变化,变量x 也影响P n 与Q n 的大小关系,这就要求我们在探究大小关系时,不能只顾“n 〞,而无视其他变量(参数)的作用.[再练一题]2.数列{a n },{b n }与函数f (x ),g (x ),x ∈R ,满足条件:b 1=b ,a n =f (b n )=g (b n+1)(n ∈N +),假设函数y =f (x )为R 上的增函数,g (x )=f -1(x ),b =1,f (1)<1,证明:对任意x ∈N +,a n +1<a n .【证明】 因为g (x )=f -1(x ),所以a n =g (b n +1)=f -1(b n +1),即b n +1=f (a n ).下面用数学归纳法证明a n +1<a n (n ∈N +). (1)当n =1时,由f (x )为增函数,且f (1)<1,得 a 1=f (b 1)=f (1)<1, b 2=f (a 1)<f (1)<1, a 2=f (b 2)<f (1)=a 1, 即a 2<a 1,结论成立.(2)假设n =k 时结论成立,即a k +1<a k .由f (x )为增函数,得f (a k +1)<f (a k ),即b k +2<b k +1. 进而得f (b k +2)<f (b k +1),即a k +2<a k +1. 这就是说当n =k +1时,结论也成立. 根据(1)和(2)可知,对任意的n ∈N +,a n +1<a n .利用贝努利不等式证明不等式设n 为正整数,记a n =⎝ ⎛⎭⎪⎫1+1n n +1,n =1,2,3,….求证:a n +1<a n .【精彩点拨】 用求商比拟法证明a n +1<a n ,其中要用贝努利不等式. 【自主解答】 由a n 的意义知对一切n =1,2,3,…都成立. ∴只需证明a na n +1>1,n =1,2,3,….由于a n a n +1=⎝ ⎛⎭⎪⎫1+1n n +1⎝ ⎛⎭⎪⎫1+1n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+1n 1+1n +1n +1×⎝ ⎛⎭⎪⎫1+1n +1-1 =⎣⎢⎢⎡⎦⎥⎥⎤(n +1)(n +1)n (n +2)n +1×n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+n (n +2)n (n +2)n +1×n +1n +2=⎣⎢⎡⎦⎥⎤1+1n (n +2)n +1×n +1n +2,因此,根据贝努利不等式, 有a na n +1>⎣⎢⎡⎦⎥⎤1+(n +1)×1n (n +2)×n +1n +2>⎝ ⎛⎭⎪⎪⎫1+n +1n 2+2n +1×n +1n +2 =⎝ ⎛⎭⎪⎫1+1n +1×n +1n +2=1. ∴a n >a n +1对于一切正整数n 都成立.此题在证明的过程中,综合运用了求商比拟法,放缩法,进而通过贝努利不等式证明不等式成立.[再练一题]3.设a 为有理数,x >-1.假如0<a <1,证明:(1+x )a ≤1+ax ,当且仅当x =0时等号成立.【证明】 0<a <1,令a =mn ,1≤m <n ,其中m ,n 为正整数,那么由平均值不等式,得(1+x )a=(1+x )mn≤m (1+x )+(n -m )n =mx +n n =1+m n x =1+ax ,当且仅当1+x =1,即x =0时,等号成立.[探究共研型]放缩法在数学归纳法证明不等式中的应用探究【提示】 放缩法是不等式证明中最重要的变形方法之一,放缩必须有目的.而且要恰到好处,目的往往要从证明的结论考虑.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用不等式、利用函数的性质进展放缩等.比方:舍去或加上一些项:⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122;将分子或分母放大(缩小):1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1(k ∈R ,k >1)等.证明:2n +2>n 2(n ∈N +). 【精彩点拨】验证n =1,2,3时不等式成立⇒假设n =k 成立,推证n =k +1⇒n =k +1成立,结论得证【自主解答】 (1)当n =1时,左边=21+2=4;右边=1,左边>右边; 当n =2时,左边=22+2=6,右边=22=4, 所以左边>右边;当n =3时,左边=23+2=10,右边=32=9,所以左边>右边. 因此当n =1,2,3时,不等式成立.(2)假设当n =k (k ≥3且k ∈N +)时,不等式成立,即2k +2>k 2(k ∈N +). 当n =k +1时,2k +1+2=2·2k +2 =2(2k +2)-2>2k 2-2 =k 2+2k +1+k 2-2k -3=(k 2+2k +1)+(k +1)(k -3)≥k 2+2k +1=(k +1)2.(因为k ≥3,那么k -3≥0,k +1>0)所以2k+1+2>(k+1)2,故当n=k+1时,原不等式也成立.根据(1)(2)知,原不等式对于任何n∈N+都成立.1.本例中,针对目的k2+2k+1,由于k的取值范围(k≥1)太大,不便于缩小.因此,用增加奠基步骤(把验证n=1扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,到达目的.2.利用数学归纳法证明数列型不等式的关键是由n=k到n=k+1的变形.为满足题目的要求,常常要采用“放〞与“缩〞等手段,但是放缩要有度,这是一个难点,解决这个难题一是要仔细观察题目构造,二是要靠经历积累.[再练一题]4.设x>-1,且x≠0,n为大于1的自然数,用数学归纳法证明(1+x)n>1+nx.【证明】(1)当n=2时,由x≠0,知(1+x)2=1+2x+x2>1+2x,因此n=2时命题成立.(2)假设n=k(k≥2为正整数)时命题成立,即(1+x)k>1+kx,那么当n=k+1时,(1+x)k+1=(1+x)k(1+x)>(1+kx)(1+x)=1+x+kx+kx2>1+(k+1)x.即n=k+1时,命题也成立.由(1)(2)及数学归纳法知原命题成立.不等式中的探究、猜测、证明探究2【提示】 利用数学归纳法解决探究型不等式的思路是先通过观察、判断,猜测出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探究型问题时.假设不等式1n +1+1n +2+1n +3+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明你的结论.【导学号:38000060】【精彩点拨】 先通过n 取值计算,求出a 的最大值,再用数学归纳法进展证明,证明时,根据不等式特征,在第二步,运用比差法较方便.【自主解答】 当n =1时,11+1+11+2+13×1+1>a 24,那么2624>a24,∴a <26. 又a ∈N +,∴取a =25. 下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)n =1时,已证.(2)假设当n =k 时(k ≥1,k ∈N +),1k +1+1k +2+…+13k +1>2524, ∴当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +1+13k +2+13k +3+13(k +1)+1=⎝⎛⎭⎪⎫1k +1+1k +2+…+13k +1+⎝ ⎛ 13k +2+13k +3+⎭⎪⎫13k +4-1k +1 >2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23(k +1). ∵13k +2+13k +4=6(k +1)9k 2+18k +8>23(k +1),∴13k +2+13k +4-23(k +1)>0,∴1(k +1)+1+1(k +1)+2+…+13(k +1)+1>2524也成立.由(1)(2)可知,对一切n ∈N +, 都有1n +1+1n +2+…+13n +1>2524,∴a 的最大值为25.1.不完全归纳的作用在于发现规律,探究结论,但结论必须证明.2.此题中从n =k 到n =k +1时,左边添加项是13k +2+13k +3+13k +4-1k +1,这一点必须清楚.[再练一题]5.设a n =1+12+13+…+1n (n ∈N +),是否存在n 的整式g (n ),使得等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)对大于1的一切正整数n 都成立?证明你的结论.【解】 假设g (n )存在,那么当n =2时, 由a 1=g (2)(a 2-1),即1=g (2)⎝ ⎛⎭⎪⎫1+12-1,∴g (2)=2; 当n =3时,由a 1+a 2=g (3)(a 3-1), 即1+⎝ ⎛⎭⎪⎫1+12=g (3)⎝ ⎛⎭⎪⎫1+12+13-1,∴g (3)=3,当n =4时,由a 1+a 2+a 3=g (4)(a 4-1), 即1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+13=g (4)⎝ ⎛⎭⎪⎫1+12+13+14-1,∴g (4)=4,由此猜测g (n )=n (n ≥2,n ∈N +).下面用数学归纳法证明:当n ≥2,n ∈N +时,等式a 1+a 2+a 3+…+a n -1=n (a n -1)成立.(1)当n =2时,a 1=1,g (2)(a 2-1)=2×⎝ ⎛⎭⎪⎫1+12-1=1, 结论成立.(2)假设当n =k (k ≥2,k ∈N +)时结论成立,即a 1+a 2+a 3+…+a k -1=k (a k -1)成立,那么当n =k +1时,a 1+a 2+…+a k -1+a k=k (a k -1)+a k =(k +1)a k -k=(k +1)a k -(k +1)+1=(k +1)⎝ ⎛⎭⎪⎫a k +1k +1-1=(k +1)(a k +1-1), 说明当n =k +1时,结论也成立,由(1)(2)可知,对一切大于1的正整数n ,存在g (n )=n 使等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)成立.[构建·体系]1.用数学归纳法证不等式:1+12+14+…+12n -1>12764成立,起始值至少取( )A.7B.8C.9D.10【解析】 左边等比数列求和S n =1-⎝ ⎛⎭⎪⎫12n 1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n >12764, 即1-⎝ ⎛⎭⎪⎫12n >127128,⎝ ⎛⎭⎪⎫12n<1128,∴⎝ ⎛⎭⎪⎫12n <⎝ ⎛⎭⎪⎫127,∴n >7, ∴n 取8,选B.【答案】 B2.用数学归纳法证明2n ≥n 2(n ≥5,n ∈N +)成立时第二步归纳假设的正确写法是( )A.假设n =k 时命题成立B.假设n =k (k ∈N +)时命题成立C.假设n =k (k ≥5)时命题成立D.假设n =k (k >5)时命题成立【解析】 由题意知n ≥5,n ∈N +,故应假设n =k (k ≥5)时命题成立.【答案】 C3.用数学归纳法证明不等式1n +1+1n +2+…+12n >1314(n ≥2,n ∈N +)的过程中,由n =k 递推到n =k +1时不等式左边( )【导学号:38000061】A.增加了一项12(k +1)B.增加了两项12k +1,12k +2 C.增加了两项12k +1,12k +2,但减少了一项1k +1D.以上各种情况均不对【解析】 ∵n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2, ∴增加了两项12k +1,12k +2,少了一项1k +1.【答案】 C4.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)〞时,第一步的验证为________.【解析】 当n =1时,21+1≥12+1+2,即4≥4成立.【答案】 21+1≥12+1+25.试证明:1+12+13+ (1)<2n (n ∈N +). 【证明】 (1)当n =1时,不等式成立.(2)假设n =k (k ≥1,k ∈N +)时,不等式成立,即1+12+13+ (1)<2k . 那么n =k +1时,⎝⎛⎭⎪⎫1+12+13+…+1k +1k +1 <2k +1k +1=2k (k +1)+1k +1< k +(k +1)+1k +1=2k +1. 这就是说,n =k +1时,不等式也成立.根据(1)(2)可知,不等式对n ∈N +成立.我还有这些缺乏:(1)(2) 我的课下提升方案:(1)(2)。
用数学归纳法证明不等式 课件

2k+2 ·2k+1
=
2
2k+2 2k+1
=
4k2+8k+4 2 2k+1 Nhomakorabea>
4k2+8k+3 2 2k+1
=
2k2+· 32·k+2k1+1=
2k+1+1
2
.
∴n=k+1 时,不等式也成立.
由①,②知,对一切大于 1 的自然数 n,不等式都成立.
方法二:①当 n=2 时,左边=1+13=43,右边= 25,左边 >右边,∴不等式成立.
② 假 设 当 n = k(k≥2 , k ∈ N*) 时 , 命 题 成 立 , 即 1+13
1+15 … 1+2k-1 1 >
2k+1 2
,
那
么
当
n=k+1
时 , 1+13
1+15…1+2k-1 11+2k+1 1> 2k2+11+2k+1 1= k2+k+1 1,要
证不等式成立,只需证明 k2+k+1 1> 2k+2 1+1,只要证明 4k2
用数学归纳法证明与数列有关的不等式问题,要注意用 到递推关系式 xn=38+12x2n-1,通过正确的放缩来达到目的.
1.使用数学归纳法证明不等式,难点在于由n=k时命题 成立推出n=k+1时命题成立,为完成这步证明,不仅要正确 使用归纳假设,还要灵活利用问题中的其他条件和相关知 识.其中,比较法、分析法、综合法、放缩法等常被灵活地应 用.
用数学归纳法证明不等式
1.贝努利不等式:如果x是实数且x>-1,x≠0,n为大于 1的自然数,则____(_1_+__x_)n_>__1_+__n_x.
2.设α为有理数,x>-1,如果0<α<1,则(1+x)α____1 + αx ≤; 如 果 α < 0 或 α > 1 , 则 (1 + x)α______1 + αx , 当≥且 仅 当 ____________时,等x=号0成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:用数学归纳法证明不等式
教学目标:
1、牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程。
2、通过事例,学生掌握运用数学归纳法,证明不等式的思想方法。
3、培养学生的逻辑思维能力,运算能力和分析问题,解决问题的能力。
重点、难点:
1、巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握用数学归纳法证明不等式的基本思路。
2、应用数学归纳法证明的不同方法的选择和解题技巧。
教学过程:
一、复习导入:
1、上节课学习了数学归纳法及运用数学归纳法解题的步骤,请同学们回顾,说出数学归纳法的步骤?
(1)数学归纳法是用于证明某些与自然数有关的命题的一种方法。
(2)步骤:1)归纳奠基;
2)归纳递推。
2、作业讲评:(出示小黑板)
习题:用数学归纳法证明:2+4+6+8+……+2n=n(n+1)
如采用下面的证法,对吗?
证明:①当n=1时,左边=2=右边,则等式成立。
②假设n=k时,(k∈N,k≥1)等式成立,
即2+4+6+8+……+2k=k(k+1)
当n=k+1时,
2+4+6+8+……+2k+2(k+1)
∴ n=k+1时,等式成立。
由①②可知,对于任意自然数n,原等式都成立。
(1)学生思考讨论。
(2)师生总结:1)不正确
2)因为在证明n=k+1时,未用到归纳假设,直接用等差数列求和公式,违背了数学归纳法本质:递推性。
二、新知探究
明确了数学归纳法本质,我们共同讨论如何用数学归纳法证明不等式。
(出示小黑板)
例1 观察下面两个数列,从第几项起a n始终小于b n?证明你的结论。
{a n=n2}:1,4,9,16,25,36,49,64,81, ……
{b n=2n}:2,4,8,16,32,64,128,256,512, ……
(1)学生观察思考
(2)师生分析
(3)解:从第5项起,a n<b n,即n²<2n,n∈N+(n≥5)
证明:(1)当 n=5时,有52<25,命题成立。
即k2<2k
当n=k+1时,因为
(k+1)2=k2+2k+1<k2+2k+k=k2+3k<k2+k2=2k2<2×2k=2
所以,(k+1)2<2k+1
即n=k+1时,命题成立。
由(1)(2)可知n²<2n(n∈N+,n≥5)
学生思考、小组讨论:①放缩技巧:k2+2k+1<k2+2k+k;k2+3k<k2+k2
②归纳假设:2k2<2×2k
例2证明不等式│Sin nθ│≤n│Sinθ│(n∈N+)
分析:这是一个涉及正整数n的三角函数问题,又与绝对值有关,在证明递推关
系时,应注意利用三角函数的性质及绝对值不等式。
证明:(1)当 n=1时,上式左边=│Sinθ│=右边,不等式成立。
(2)假设当n=k(k≥1)时命题成立,
即有│Sin kθ│≤k│Sinθ│
当n=k+1时,
│Sin (k+1)θ│=│Sin kθCosθ+Cos kθSin θ│
≤│Sin kθCosθ│+│Cos kθSin θ│
=│Sin kθ││Cosθ│+│Cos kθ││Sin θ│
≤│Sin kθ│+│Sin θ│
≤k│Sinθ│+│Sin θ│
=(k+1)│Sinθ│
所以当n=k+1时,不等式也成立。
由(1)(2)可知,不等式对一切正整数n 均成立。
学生思考、小组讨论:①绝对值不等式: │a+b│≤ │a│+│b│
②三角函数的有界性:│Sinθ│≤1,│Cosθ│≤1
③三角函数的两角和公式。
(板书)例3 证明贝努力(Bernoulli )不等式:
如果x 是实数且x >-1,x≠0,n 为大于1的自然数,那么有(1+x )n >1+nx 分析:①贝努力不等式中涉几个字母?(两个:x,n )
②哪个字母与自然数有关? (n 是大于1的自然是数)
(板书)证:(1)当n=2时,左边=(1+x )2=1+2x+x 2,右边=1+2x ,因x 2>0,则原不等式成立.
(在这里,一定要强调之所以左边>右边,关键在于x 2>0是由已知条件x≠0获得,为下面证明做铺垫)
(2)假设n=k 时(k≥2),不等式成立,即(1+x )k >1+kx .
师:现在要证的目标是(1+x )k+1>1+(k+1)x ,请同学考虑.
生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假
设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x )k+1=(1+x )
k (1+x ),因为x >-1(已知),所以1+x >0于是(1+x )k (1+x )>(1+kx )(1+x ).
师:现将命题转化成如何证明不等式
(1+kx )(1+x )≥1+(k+1)x .
显然,上式中“=”不成立.
故只需证:(1+kx )(1+x )>1+(k+1)x .
提问:证明不等式的基本方法有哪些?
生:证明不等式的基本方法有比较法、综合法、分析法.
(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)生:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.
(1+kx)(1+x)-[1+(k+1)x]
=1+x+kx+kx2-1-kx-x
=kx2>0(因x≠0,则x2>0).
所以,(1+kx)(1+x)>1+(k+1)x.
生:也可采用综合法的放缩技巧.
(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.
因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.
生:……
(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)
师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生用放缩技巧证明显然更简便,利于书写.
(板书)将例3的格式完整规.
证明:(1)当n=2时,由x≠0得(1+x)2=1+2x+x2>1+2x,不等式成立。
(2)假设n=k(k≥2)时,不等式成立,
即有(1+x)k>1+kx
当n=k+1时,
(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)
=1+x+kx+ kx2>1+x+kx=1+(k+1)x
所以当n=k+1时,不等式成立
由①②可知,贝努力不等式成立。
(通过例题的讲解,在第二步证明过程中,通常要进行合理放缩,以达到转化目的)
三、课堂小结
1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.
2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.四、课后作业
1.课本P53:1,3,5
2.证明不等式:。