九年级基础反比例
人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳本文介绍了新人教版九年级数学下册第26章反比例函数的知识点和研究目标。
其中,重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用。
难点是反比例函数及其图象的性质的理解和掌握。
基础知识包括反比例函数的概念和反比例函数的图象。
反比例函数的图象与x轴、y轴无交点,称取点关于原点对称。
反比例函数的图象的形状是双曲线,与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
图象关于原点对称,对称性是反比例函数的重要性质。
如图1所示,设点P(a,b)在双曲线上。
作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积等于三角形PAO和三角形PBO的面积之和。
由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上。
作QC⊥XXX的延长线于C,则三角形PQC的面积为(图2)。
需要注意的是,双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
直线与双曲线的关系有两种情况:一种是两图象必有两个交点,另一种是两图象没有交点;当有交点时,这两个交点关于原点成中心对称。
反比例函数与一次函数有联系。
求函数解析式的方法有两种:待定系数法和根据实际意义列函数解析式。
需要注意学科间知识的综合,但重点放在对数学知识的研究上。
在解决问题时,可以充分利用数形结合的思想。
对于例题,若y是x的反比例函数,则应选C或A。
对于已知函数的图象在第二、四象限内和y随x的增大而减小的情况,可以求出k的值。
已知一次函数y=ax+b的图象经过第一、二、四象限时,可以确定它的图象位于第三象限。
若反比例函数经过点(a,b),则直线不经过的象限为第四象限。
若P (2,2)和Q(m,n)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过第一、三、四象限。
对于函数的增减性问题,需要分别讨论。
y轴作垂线,得到三个小矩形和一个三角形,它们的面积之和为20平方单位,求函数的解析式.2)已知函数y=f(x)的图象如图所示,其中ABCD为一矩形,E为函数图象上一点,且E在ABCD内部.若矩形ABCD的长为4,宽为2,求函数的解析式.答案:(1)设函数解析式为y=ax²+bx+c,由题意可列出方程组:a+b+c=54a+2b+c=2016a+4b+c=80解得a=2,b=-4,c=7,因此函数的解析式为y=2x²-4x+7.2)设函数解析式为y=f(x)=kx+m,由题意可得:f(0)=m=2f(2)=2k+m=4f(4)=4k+m=0解得k=-1/2,m=2,因此函数的解析式为y=-1/2x+2.1) 在图中,通过每个点作两条垂线段,分别与x轴和y轴围成一个矩形。
九年级反比例函数知识点

九年级反比例函数知识点反比例函数是数学中的一种特殊函数类型,它的图像呈现出一条直线,并且函数的定义域和值域都不包括零。
在九年级学习数学的过程中,反比例函数是一个重要的知识点。
本文将为大家介绍九年级反比例函数的相关知识。
一、反比例函数的定义与特征反比例函数是指当自变量x变大时,函数值y变小;当自变量x变小时,函数值y变大。
可以简单地用以下形式表示:y = k/x,其中k为一个常数。
反比例函数的定义域是除了x=0之外的所有实数。
反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。
这条直线的渐进线是x轴和y轴,即当x趋近于正无穷或者负无穷时,函数值y趋近于零。
二、反比例函数的性质与运算1. 曲线的平移:若y = k/x关于y轴平移h个单位,则函数变为y = k/(x - h)。
2. 曲线的伸缩:若y = k/x的k值乘以a,则函数变为y = ak/x。
当a>1时,图像在x轴方向上被压缩;当0<a<1时,图像在x轴方向上被展开。
3. 曲线的关于y轴的对称:若y = k/x关于y轴对称,则函数变为y = -k/x。
4. 曲线的关于x轴的对称:若y = k/x关于x轴对称,则函数变为y = -k/x。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,下面以几个例子来说明:1. 比例尺:地图上的比例尺就是一个反比例函数。
比如地图上标注1cm代表的实际距离为1km,这个比例尺可以表示为y = 1/x。
2. 速度与时间:当一辆车以恒定的速度行驶时,车辆的速度与时间呈现出反比例关系。
速度越大,所用的时间越短,可以用反比例函数来表示。
3. 某商品的价格与销售数量:在市场中,某商品的价格与销售数量通常是呈反比例关系的。
价格越高,销售数量越小,可以用反比例函数来描述。
四、反比例函数的图像与解析式反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。
九年级上反比例函数知识点

九年级上反比例函数知识点在九年级的数学课程中,反比例函数是一个重要的知识点。
它是一种特殊的函数形式,与我们之前学过的比例函数相对应。
在本文中,我们将深入探讨反比例函数的概念、性质和应用。
一、概念反比例函数,也称为反比函数,是指函数的自变量和因变量之间存在着一种特殊的关系,当自变量的取值增大时,因变量的取值相应地减小;反之,当自变量的取值减小时,因变量的取值增大。
这种关系可以用公式 y = k/x 来表示,其中 k 是常数,称为反比例常数。
二、性质1. 定义域:反比例函数的定义域不能包括 x = 0,因为在函数中,自变量不能为 0。
这是因为当 x = 0 时,分母为 0,导致函数无意义。
2. 值域:由于自变量不能取 0,因此反比例函数的值域也不能包括 y = 0。
当 x 的取值趋近于无穷大或无穷小时,因变量趋近于 0。
3. 图像特征:反比例函数的图像为一个平行于 x 轴和 y 轴的曲线。
当 k > 0 时,函数的图像与 y 轴交于正半轴;当 k < 0 时,函数的图像与 y轴交于负半轴。
4. 变化规律:反比例函数的变化规律是非常特殊的。
当自变量的取值增大时,因变量的取值相应地减小;反之,当自变量的取值减小时,因变量的取值增大。
这种反向变化的规律使得反比例函数有许多独特的应用。
三、应用反比例函数在我们的日常生活中有很多应用,下面我们将介绍其中两个常见的应用场景。
1. 速度和时间的关系:假设一辆车以恒定的速度行驶,我们知道车辆的速度和所用的时间是反比例关系。
当车辆的速度提高时,所用的时间相应地减少;反之,当车辆的速度减慢时,所用的时间增加。
这种反比例的关系可以用反比例函数来建模。
在实际应用中,我们可以基于这个关系来计算车辆行驶一定距离所需要的时间。
通过反比例函数的公式 y = k/x,我们可以得到speed = distance/time。
这样,当我们已知车辆行驶的距离和速度时,就可以求得所需要的时间。
九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
九年级数学下册 反比例函数知识点总结

九年级数学下册反比例函数知识点总结反比例函数是数学中常见的一种函数形式。
在反比例函数中,当自变量的值增大时,因变量的值会减小;当自变量的值减小时,因变量的值会增大。
下面是九年级数学下册关于反比例函数的知识点总结:1.反比例函数的定义:反比例函数是指一个函数,其方程形式为y = k/x,其中k是常数,x是自变量,y是因变量。
2.反比例函数的特点:当x为正数且逐渐增大,y的值会逐渐减小。
当x为正数且逐渐减小,y的值会逐渐增大。
如果x等于0,函数的值为无穷大或无穷小。
反比例函数的图像通常是一个曲线,经过原点,并且关于y轴和x轴都对称。
3.反比例函数的图像:反比例函数的图像通常是一个双曲线的一支。
当k为正数时,双曲线的开口朝上。
当k为负数时,双曲线的开口朝下。
当k的绝对值变大时,双曲线的形状越陡峭。
4.反比例函数的应用:反比例函数在实际生活中有许多应用,例如:速度与时间的关系:当行驶的时间增加时,速度会减小。
工作的时间与人数的关系:当完成工作的时间减少时,需要的人数会增加。
投资的金额与收益的关系:当投资的金额增加时,收益会减少。
5.反比例函数的求解:给定反比例函数的方程,可以通过代入不同的自变量的值来计算相应的因变量的值。
给定一组包含自变量和因变量的数值对,可以通过取自变量与因变量的乘积的比值来求解反比例函数的常数k。
以上是九年级数学下册关于反比例函数的知识点总结。
反比例函数在数学中扮演着重要的角色,并在实际生活中有许多应用。
通过理解这些知识点,可以更好地应用和解决与反比例函数相关的问题。
人教版九年级数学反比例函数知识点归纳

例如,在矩形面积一定的情况下,长与宽成反比。
工程技术和科学研究领域应用举例
电路设计
在电子工程中,电阻、电容等元 件的参数之间往往存在反比关系 。利用反比例函数可以优化电路
设计,提高电路性能。
经济学研究
在经济学中,价格与需求之间通 常存在反比关系。价格越高,需 求量越低;反之亦然。反比例函
数可用于描述这种经济现象。
转化思想
将复杂问题转化为简单问题,如将非标准形式的一元二次方程转化为 标准形式,再利用反比例函数的性质进行求解。
05
拓展延伸:反比例函数在 高等数学中地位和作用
高等数学中反比例函数概念引入
01
在高等数学中,反比例函数 作为一种基本的函数类型被 引入,它描述了两个变量之
间的反比关系。
02
反比例函数的一般形式为 y=k/x(k≠0),其中k是常
一元二次方程求解方法回顾
01
配方法
通过配方将一元二次方程转化 为完全平方形式,进而求解。
02
公式法
利用一元二次方程的求根公式 进行求解。
03
因式分解法
将一元二次方程进行因式分解 ,得到两个一元一次方程,分
别求解。
反比例函数在一元二次方程中应用
01
02
03
判别式应用
利用反比例函数的性质, 判断一元二次方程的根的 情况,如判别式的正负等 。
物理学应用
在物理学中,许多物理量之间存 在反比关系。例如,万有引力定 律中两物体之间的引力与它们质 量的乘积成正比,与它们距离的
平方成反比。
跨学科综合问题挑战
环境科学
在研究环境污染问题时,污染物的排放量与治理成本之间 往往存在反比关系。利用反比例函数可以制定合理的治理 方案,实现经济效益和环境效益的平衡。
九年级反比例函数知识点总结讲解
九年级反比例函数知识点总结讲解【导言】反比例函数是数学中比较重要的一种函数类型。
在九年级的数学课程中,学生们会接触到反比例函数的概念、性质和应用。
本文将对九年级反比例函数的知识点进行总结和讲解。
【1. 反比例函数的定义】反比例函数是指当自变量增大时,因变量以相反的比例减小,或当自变量减小时,因变量以相反的比例增大的函数。
反比例函数通常可以表示为y = \(\frac{a}{x}\),其中a为常数。
【2. 反比例函数的性质】反比例函数有以下几个重要的性质:1) 定义域和值域:对于反比例函数y = \(\frac{a}{x}\),其定义域为除了x = 0以外的所有实数,其值域为除了y = 0以外的所有实数。
2) 对称中心和对称轴:反比例函数的对称中心为原点(0, 0),对称轴为y轴。
3) 渐近线:反比例函数的图像以x轴和y轴为渐近线,即当x 趋近于正无穷或负无穷时,y趋近于0;当y趋近于正无穷或负无穷时,x趋近于0。
4) 变化趋势:反比例函数在定义域内是递减的,在值域内是递增的。
【3. 反比例函数的图像特点】反比例函数的图像具有以下几个特点:1) 形状:反比例函数的图像呈现出一条由左上向右下倾斜的直线。
2) 渐近线:除了x轴和y轴外,反比例函数的图像没有其他渐近线。
3) 均匀变化:反比例函数图像上的任意两点,其纵坐标之积为常数。
4) 原点截距:反比例函数图像与坐标轴的交点为原点(0, 0)。
5) 比例关系:反比例函数图像上的任意点坐标(x, y),有xy = a 成立。
【4. 反比例函数的应用】反比例函数在实际问题中有广泛的应用,下面分别介绍几个常见的应用场景:1) 电阻和电流关系:根据欧姆定律,电阻R与电流I之间存在反比关系,即R = \(\frac{U}{I}\),其中U为电压常数。
当电流变大时,电阻减小;当电流变小时,电阻增大。
2) 速度和时间关系:在匀速运动过程中,速度v与时间t之间存在反比关系,即v = \(\frac{s}{t}\),其中s为位移常数。
数学九年级反比例知识点
数学九年级反比例知识点反比例是数学中的一种重要关系,指的是两个变量之间的关系是倒数的关系。
在九年级数学中,学生将进一步学习反比例的基本概念、性质和应用。
以下是数学九年级中的反比例知识点:一、反比例的定义和表示反比例是指两个变量之间的关系是倒数的关系。
在数学中,通常用以下方式表示反比例关系:1. 若两个变量x和y满足xy=k(k≠0),其中k是一个常数,那么x和y之间存在反比例关系。
2. 通常将k称为“比例常数”或“反比例常数”。
3. 反比例关系可以表示为y = k/x。
二、反比例的性质反比例关系具有以下几个性质:1. 当x>0时,y>0。
当x<0时,y<0。
即x和y同号。
2. 当x不等于0时,y不等于0。
当x等于0时,y无意义。
3. x和y的乘积恒定,即xy=k。
4. 当x的取值增加时,y的取值减小。
当x的取值减小时,y的取值增加。
5. x和y之间不存在线性关系,而是倒数的关系。
三、反比例的图像反比例关系可以用图像表示。
以直角坐标系为例,反比例关系的图像通常是通过原点的开口朝上或开口朝下的双曲线。
1. 当k>0时,图像开口朝上。
2. 当k<0时,图像开口朝下。
3. 图像与x轴和y轴是渐近线(即无限趋近于x轴和y轴)。
四、反比例的应用反比例在实际问题中有广泛的应用,特别是在比例与变化的关系中。
以下是一些常见的反比例应用场景:1. 速度和时间:速度与所用时间之间的关系通常是反比例,即速度越快,所用的时间越短。
2. 工作能力和工作人数:工作能力与工作人数之间通常是反比例的关系,意味着工作人数的增加会导致每个人的工作能力下降。
3. 电阻和电流:在电路中,电阻与电流之间是反比例关系,即电阻越大,电流越小。
4. 投资和收益:当投资金额增加时,每份投资的收益会减少,即投资金额与收益之间存在反比例关系。
总结:反比例是数学九年级中的重要知识点,它定义了两个变量之间的倒数关系,常用公式为y=k/x。
九年级数学上册反比例函数讲解
九年级数学上册反比例函数讲解一、反比例函数的概念。
1. 定义。
- 一般地,形如y = (k)/(x)(k为常数,k≠0,x≠0)的函数叫做反比例函数。
其中x是自变量,y是函数。
- 例如,当k = 3时,函数y=(3)/(x)就是一个反比例函数。
2. 反比例函数的其他形式。
- y = kx^-1(k≠0),这是根据负指数幂的定义x^-1=(1)/(x)得到的。
- xy = k(k≠0),这是将y=(k)/(x)两边同时乘以x得到的形式。
二、反比例函数的图象和性质。
(一)图象。
1. 画法。
- 列表:选取一些x的值(注意x≠0),计算出对应的y值。
例如对于y=(2)/(x),当x = 1时,y = 2;当x=-1时,y=-2;当x = 2时,y = 1;当x=-2时,y=-1等。
- 描点:根据列表中的坐标(x,y)在平面直角坐标系中描出相应的点。
- 连线:用平滑的曲线将这些点连接起来。
由于x≠0,所以图象与坐标轴没有交点。
2. 图象形状。
- 反比例函数的图象是双曲线。
当k>0时,双曲线的两支分别位于第一、三象限;当k < 0时,双曲线的两支分别位于第二、四象限。
(二)性质。
1. 当k>0时。
- 在每个象限内,y随x的增大而减小。
例如对于y=(3)/(x),当x = 1时y = 3,当x = 2时y=(3)/(2),2>1而(3)/(2)<3。
这里要强调是在每个象限内,因为如果不限制在同一象限,当x = - 1时y=-3,-1<1但-3 < 3,如果不强调象限就会得出错误结论。
2. 当k < 0时。
- 在每个象限内,y随x的增大而增大。
例如对于y =-(2)/(x),当x=-1时y = 2,当x=-2时y = 1,-2 < - 1而1<2。
三、反比例函数解析式的确定。
1. 方法。
- 待定系数法。
如果已知反比例函数图象上一点(x_0,y_0),将其代入y=(k)/(x)中,得到y_0=(k)/(x_0),从而解得k=x_0y_0。
九年级反比例知识点总结
九年级反比例知识点总结九年级数学中,反比例是一个重要的知识点,它在数学和实际生活中都具有很大的应用价值。
下面将对九年级反比例的相关知识进行总结和归纳。
一、反比例的定义反比例是指两个变量之间的关系,当一个变量的值增大时,另一个变量的值减小,而且它们之间的乘积是一个常数。
常常用符号表示为y=k/x,其中k为反比例常数。
二、反比例的图象特征1. 如果两个变量x和y成反比例关系,那么它们的图象一定经过原点(0,0)。
2. 当x>0时,y>0;当x<0时,y<0。
即,变量x和y的符号是相反的。
3. 根据反比例关系,当$x\neq0$时,对于k的取值,y=k/x(x≠0)的图像是一条通过原点且不包含坐标轴的曲线,称为反比例曲线。
三、反比例的性质1. 反比例的定理:设y=k/x为反比例函数,若已知x1对应的y1,那么x1和y1必须满足y1=k/x1。
即,y1=kx1的值与k的值相等,反比例的乘积k是一个常数。
2. 反比例的乘法性质:设y=k/x为反比例函数,若已知x1对应的y1和x2对应的y2,那么(x1·x2)对应的y1·y2,即k=(x1·x2)·(y1·y2)。
3. 反比例的比例性质:设y=k/x为反比例函数,若已知x1对应的y1,那么x2对应的y2的值可通过比例关系求得,即x1/y1=x2/y2。
四、反比例的应用反比例在实际生活中有很多应用,如工作时间和完成一项工作的效率、物品的价格和购买物品的数量、行驶距离和行驶的时间等。
通过反比例的知识,我们可以更好地理解这些问题,并能够运用数学方法进行计算和解决。
五、反比例的计算方法1. 已知反比例函数y=k/x中的k和x的值,可以计算出y的值。
例如,已知k=3,x=5,可以计算出y=3/5=0.6。
2. 在已知一组反比例的x和y值的情况下,我们可以通过列出等式来求解反比例常数k。
例如,已知x=4,y=6,列出等式y=k/x,代入x和y的值得到6=k/4,解得k=24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,形如x ky =(k 为常数,o k ≠)的函数称为反比例函数。
注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。
知识点二:表达式的三种形式① xky = ②kx y =1-③ k xy =知识点三:反比例函数的图像与性质1.反比例函数的图像是双曲线。
要点:①双曲线不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但永远不与坐标轴相交。
②反比例函数的图像是是轴对称图形,对称轴是x y ±=。
2. 当o k >时,双曲线的两支分别位于第一、第三象限,在每个象限内,y 值随x 的增大而减小(x 越大y 越小,x 越小y 越大)。
3.当o k <时,双曲线的两支分别位于第二、第四象限,在每个象限内,y 值随x 的增大而增大(x 越大y 越大,x 越小y 越小)。
4.反比例函数x ky =(0≠k )中比例系数k 的几何意义是:过双曲线x k y =(0≠k )上任意一点向x 轴与y 轴作垂线,所得矩形面积为k。
知识点四:用待定系数法确定反比例函数的解析式只需一对对应值或图像上一个点的坐标可求出k知识点五;“成反比例”与“反比例函数”的关系成反比例的关系式不一定是反比例函数,但是反比例函数x ky =中的两个变量必成反比例关系。
经典例题透析 类型一: 反比例函数的概念(填序号)()()()()()()()()())0(10;29;1)8(;87;216;235;2114;23;1312;3122≠==-===-=-=-=+=-=k k x k y x y x y xy xy xy x y x y x y x y 为常数,2、在函数21+=x y 中,自变量x 的取值范围是 (二)反比例函数的意义【例题】1、k 为何值时,23)2(k xk y --=是反比例函数。
2.如果函数222-+=k kkx y 的图像是双曲线,且在第二,四象限内,那么的值是多少?3.已知函数3422+-+=m m xm y )((1)m 是何值时,它是反比例函数?(2)它的图像位于哪些象限?y 值怎样随x 的变化而变化?【练习】1.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______. 2.如果函数222-+=k k kxy 的图像是双曲线,且在第二,四象限内,那么的值是多少?3、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .(三) “成反比例”的含义【例题】1.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。
九年级基础反比例【练习】1.已知y=y 1+y 2,y 1是关于1+x 的正比例函数,y 2是关于1+x 的反比例函数;当0=x 时,5-=y ,当2=x 时,7-=y ;(1)求y 关于x 的函数解析式; (2)当5=x 时,求y 的值。
2.已知y =y 1-y 2,y 1成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.类型二:确定反比例函数的解析式【例题】当自变量取值为—1时,函数值为2,求反比例函数的关系式。
【练习】1、已知变量y 与x 成反比例,并且当x=3时,y=7.求y 与x 之间的函数关系式;2函数xky =的图像经过点)2,1(-A ,则k 的值为 。
)如图,P 是反比例函数图象上的一点,且点P 到x轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.类型三:反比例函数的图像及性质【例题】1.已知反比例函数xm y 2=的图像过点(-3,-12),且双曲线xmy =位于第二、四象限,求m 的值。
2、已知反比例函数xk y 2-=的图像位于第一、三象限,则k 的取值范围是 。
3.如下左图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.【练习】1、当a 取何值时,函数2--=a axy 为反比例函数,且其图像同一支上的点的纵坐标随横坐标的增大而增大,写出此时的函数关系式,它的图像在哪个象限。
2.如上右图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = .类型四:同一坐标系画一次函数与反比例函数图像【例题】1、如图,函数xky x k y =+=与)1(在同一坐x们在同一坐标系中的大致图象是(• ).【练习】1函数xky=的图象经过(1,)1-,则函数2-=kxy的图象是()2、在同一坐标系中,函数xky=和3+=kxy的图像大A B C D类型五:比较函数值或自变量的大小【例题】1.在反比例函数xy1-=的图像上有三点(1x,)1y,(2x,)2y,(3x,)3y。
若3210xxx>>>则下列各式正确的是()A.213yyy>>B.123yyy>>C.321yyy>>D.231yyy>>2.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数xy1-=的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A、y1<y2<y3 B、y2<y3<y1C、y3<y2<y1D、y1<y3<y2【练习】1.已知点A(-3,y1),B(-2,y2),C(3,y3)都在反比例函数y=4x的图象上,则().A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y32.已知双曲线xky=经过点(-1,3),如果A(11,ba),B(22,ba)在该双曲线上,且1a<2a<0,那么1b2b3点A(a,b)、B(a-1,c)均在函数xy1=的图象上,若a<0,则b与c的大小关系是()A、a>cB、b<cC、b=cD、b和c的大小关系不能确定4、已知反比例函数)0(<=kxky的图像上有两点A(1x,1y),B(2x,2y),21xx<,则21yy-的值是()(A)正数(B)负数(C)非正数(D)不能确定5、设有反比例函数xky1+=,(x1,y1)、(x2,y2)为其图象上两点,若x1<0<x2,y1>y2,则k的取值范围。
类型六:反比例函数与一次函数的综合问题【例题】1.如图,在直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数myx=的图象交于A(-2,1)、B(1,n)两点。
求上述反比例函数和一次函数的表达式;2. 如图所示,一次函数y=ax+b的图象与反比例函数y=kx的图象交于A、B两点,与x轴交于点C.已知点A的坐标为(-2,1),点B的坐标为(12,m).(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.【练习】1.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.2.如图,已知点A (4,m ),B (-1,n )在反比例函数y=8x的图象上,直线AB•分别与x 轴,y 轴相交于C 、D 两点,(1)求直线AB 的解析式.(2)C 、D 两点坐标. (3)S △AOC :S △BOD 是多少?3.关于x 的一次函数y=-2x+m 和反比例函数y=1n x 的图象都经过点A (-2,1). 求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B 的坐标;(3)△AOB 的面积.类型七:反比例函数与实际问题【例题】1.在压力不变的情况下,某物体承受的压强p(Pa) 是它的受力面积S(m2)的反比例函数,其图像如图所示。
(1)求p 与S 之间的函数关系式;(2)求当S=0.5m 2时,物体承受的压强p 。
2.某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?【练习】1. 某蓄水池的排水管每小时排水8m3,6小时可将满池水全部排空.(1)蓄水池的容积是多少? (2)如果增加排水管,使每小时的排水量达到Q (m3),那么将满池水排空所需的时间t (h )将如何变化? (3)写出t 与Q 的关系式.(4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?(5)已知排水管的最大排水量为每小时12m3,那么最少需多长时间可将满池水全部排空?2.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y (件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。