2020高考物理:磁场专题练习题
高中物理《磁场》练习题(附答案解析)

高中物理《磁场》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是()A.瞬时速度B.交流电的有效值C.电场强度D.磁通量2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。
不计重力,则()A.若电子以相同的速率从右向左飞入,电子也沿直线运动B.若电子以相同的速率从右向左飞入,电子将向下偏转C.若电子以相同的速率从左向右飞入,电子将向下偏转D.若电子以相同的速率从左向右飞入,电子也沿直线运动3.下列物理学史材料中,描述正确的是()A.卡文迪什通过扭秤实验测量出静电引力常量的数值B.为了增强奥斯特的电流磁效应实验效果,应该在静止的小磁针上方通以自西向东的电流C.法拉第提出了“电场”的概念,并制造出第一台电动机D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。
原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为()A.水平向左B.水平向右C.垂直纸面向外D.垂直纸面向里5.一根通有电流的直铜棒用软导线挂在如图所示的匀强磁场中,此时悬线的拉力等于零,要使两悬线的总拉力大于2倍棒的重力,可采用的方法有()A.适当减弱磁场,磁场方向反向B.适当增强磁场,磁场方向不变C.适当减小电流。
电流方向不变D.适当增大电流。
电流方向反向6.下列装置中,利用到离心运动的物理原理的是()A.磁流体发电机B.回旋加速器C.洗衣机D.电视机7.如图所示,在真空中坐标xOy平面的x>0区域内,有磁感应强度B=1.0×10-2T的匀强磁场,方向与xOy 平面垂直,在x轴上的P(10cm,0)点,有一放射源,在xOy平面内向各个方向发射速率v=1.0×104m/s 的带正电的粒子,粒子的质量为m=1.6×10-25kg,电荷量为q=1.6×10-18C,带电粒子能打到y轴上的范围为()A .10cm 10cm y -≤≤B .10cm y -≤≤C .10cm y -≤≤D .y -≤≤8.如图所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总重量M ,B 为铁片,质量为m ,整个装置用轻绳悬于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力( )A .F mg =B .()F m M g >+C .()F m M g =+D .()Mg F m M g <<+二、多选题9.下列关于洛伦兹力的说法中,正确的是( )A .洛伦兹力的方向总是垂直于运动电荷的速度方向和磁场方向共同确定的平面,所以洛伦兹力只改变速度的方向,不改变速度的大小,即洛伦兹力永不做功B .只要速度大小相同,所受洛伦兹力就相同C .用左手定则判断电荷在磁场中运动所受的洛伦兹力时,要注意负电荷与正电荷所受力的方向相反D .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直10.全球新冠肺炎疫情持续至今,医院需要用到血流量计检查患者身体情况。
考点十一 磁场--2020年高考物理分类题库

考点十一磁场1.(2020·全国Ⅰ卷)一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,为半圆,ac、bd 与直径ab 共线,ac 间的距离等于半圆的半径。
一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c 点垂直于ac 射入磁场,这些粒子具有各种速率。
不计粒子之间的相互作用,在磁场中运动时间最长的粒子,其运动时间为()A.76m qBπ B.54m qBπ C.43m qBπ D.32m qBπ【解析】选C。
粒子在磁场中做匀速圆周运动有qBv=2mv r ,T=2r vπ,可得粒子在磁场中的周期T=2m qBπ,粒子在磁场中运动的时间2mt T qB θθπ=⋅=,则轨迹对应的圆心角越大,运动时间越长。
设半圆ab 的半径为R,如图,粒子垂直ca 射入磁场,则轨迹圆心必在ca 直线上,当半径r≤0.5R 和r≥1.5R 时,粒子分别从ac、bd 区域射出,磁场中的轨迹为半圆,运动时间等于半个周期。
当0.5R<r<1.5R 时,粒子从半圆边界射出,将轨迹半径从0.5R 逐渐增大,粒子射出位置从半圆顶端向下移动,轨迹圆心角从π逐渐增大,当ce 与半圆ab 相切时,轨迹圆心角最大,此时轨迹半径r=R,如图,则轨迹对应的最大圆心角θ=π+3π=43π,粒子运动最长时间4243223m m t T qB qBπθππππ==⨯=,故选项C 正确。
【方法技巧】“放缩圆”法适用条件速度方向一定、大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP'上界定方法以入射点P 为定点,圆心位于PP'直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法2.(2020·全国Ⅱ卷)CT 扫描是计算机X 射线断层扫描技术的简称,CT 扫描机可用于对多种病情的探测。
2020高考物理精品习题:磁场(全套含解析)高中物理(20200818125802)

【答案】A5.电饭锅工作时有两种状态:一种是锅内水烧开前的加热状态,另一种是锅内 水烧开后的保温状态,如下图10-1-9是一学生设计的电饭锅电路原理示意图,S 是用感温材料制造的开关•以下讲法中正确的选项是〔 〕A .加热状态时是用 R 1、R 2同时加热的. B. 当开关S 接通时电饭锅为加热状态, S 断开时为保温状态2020高考物理精品习题:磁场(全套含解析 )高中物理第I 课时 部分电路?电功和电功率 i •关于电阻率,以下讲法中不正确的选项是 〔 〕 A •电阻率是表征材料导电性能好坏的物理量,电阻率越大,其导电性能越好 B •各种材料的电阻率都与温度有关,金属的电阻率随温度的升高而增大 C .所谓超导体,当其温度降低到接近绝对零度的某个临界温度时,它的电阻率突然变为零 D •某些合金的电阻率几乎不受温度变化的阻碍,通常用它们制作标准电阻【解析】电阻率表示导体的导电好坏,电阻率越小,导体的导电性能越好. 【答案】 A 2•一个标有” 220V A .接近于807 Q C .明显大于807 Q60W 〃的白炽灯泡,当用多用电表的欧姆挡去测量它的电阻时,其阻值〔 B 接近于0Q D .明显小于807 Q 【解析】 用多用电表的欧姆挡去测量灯泡的电阻时, 应把灯泡从电路中断开, 由于金属的电阻率随温度的升高而增大,现在它的电阻明显小于正常发光时的电阻 【答案】 D 测出的是其不发光时电阻,807 Q 3•如下图10-1-7,一幢居民楼里住着生活水平各不相同的 24户居民,因此整幢居民楼里有各种不同的电 器,例如电炉、电视机、微波炉、电脑等等•停电时,用多用电表测得 A 、B 间的电阻为R ;供电后,各 家电器同时使用,测得 A 、B 间电压为U ,进线电流为I ,那么运算该幢居民楼用电的总功率能够用的公 式是〔 〕c c U 2A . P = I 2R B.P = R C.P = IU D.以上公式都能够 【解析】 因居民楼内各种电器都有,因此不是纯电阻电路, 因此A 、B 、D 不对. 【答案】 CA 居 U 民楼 B A 图 10-1-7 4•如下图10-1-8 ,厚薄平均的矩形金属薄片边长 ab=10 cm , bc=5 cm ,当将A 与B 接入电压为U 的电路中时, 电流强度为1 A ,假设将C 与D 接入电压为U 的电路中,那么电流为 A.4A B.2A 1C. — A 21 D. —A 4 【解析】由电阻定律R = L ,当A 与B 接入电路中时,S ab »亠 R 1= R ,其中 图 10-1-8d 表示金属片的厚度•当 D 接入电路中时, bc R 2= ab d可知R 1= 4,由欧姆定律得 互=4,应选 AR 2I 1图 10-1-9C .要使R 2在保温状态时的功率为加热状态时的1/8 , R 1/R 2 应为 7 : 1当 S 断开,R 1 与 R 2 串联,P'= 2202/〔 R 1 + R 2〕; P > P'A 不正确B 正确.由于电路中总电压 U 不变,D .要使R 2在保温状态时的功率为加热状态时的 1/8, R 1/R 2 应为〔2 . 2 — 1〕:1 应选择功率公式 P =—,可知R 2 2 2202 2202 R 2 R 2 R 1 R 2 R 1 R 28 得兰 —LJ 即D 正确 R 2 1 【答案】BD 6•电子绕核运动可等效为一环形电流,设氢原子中的电子以速度 子的电量,那么其等效电流的电流强度等于 ________________ . 【解析】由电流的定义式I = q/t,那么电子的电流强度的大小应为v 在半径为r 的轨道上运动,用 e 表示电I = e/T,而电子运动的周期 ev T = 2 n /r ,得 I =2 r 【答案】 ev T7 7.—直流电源给蓄电池充电如下图 10-1-10,假设蓄电池内阻 电流表的读数为I ,那么输入蓄电池的电功率为 为 ________ ,电能转化为化学能的功率为 _ 【答案】UI,I 2r,UI-I 2r r ,电压表读数 ,蓄电池的发热功率 &某一直流电动机提升重物的装置,如下图 10-1-11 ,重物的质量 m=50kg ,电源提供给电动机的电压为 U=110V ,不计各种摩擦,当电动机以 v=0.9m/s 的恒定速率向上提升重物时,电路中的电流强度 I=5.0A , g=10m/s 2〕. 求电动机的线圈电阻大小〔取 【解析】电动机的输入功率 P = UI ,电动机的输出功率 P 1=mgv ,电动机发热功率P 2=I 2r 而 P 2=P — P i ,即卩 I 2r= UI — mgv图 10-1-11 代入数据解得电动机的线圈电阻大小为 r=4 Q 【答案】 r=4 Q 9•在图10-1-12中,AB 和A'B'是长度均为L = 2km ,每km 电阻值为p= 1Q 的两根输电线.假设发觉在 距离A 和A'等远的两点C 和C'间发生漏电,相当于在两点间连接了一个电阻•接入电动势 E = 90V 、内 阻不计的电源:当电源接在 A 、A'间时,测得 A'间电压为 U A = 45V.求A 与C 相距 多远? 【解析】在测量过程中的等效电路如 下图〔甲〕、〔乙〕所示•当电源接 在A 、A'时,能够认为电流仅在 A'C'CA 中流,现在U B = 72V 为漏电 阻R 上的电压.设 AC 和BC 间每根 输电线的电阻为 R AC 和R BC .那么有: 芈 R …①同理,当电源接在 E 2R AC R 图 10-1-12B 、B'间时,那么有:U AER…②2R BC R由①②两式可得:【解析】当S 闭合时, 那么可知S 闭合时为加热状态, R 1 被短路,P = 2202 /R 2;S 断开时为保温状态;即【答案】0.4km1R AC = — R BC4依照电阻定律 R = L %L ,可得A 、C 间相距为:SL AC =2km0.4km10.如下图 10-1-13 是- -种悬球式加速度仪 .它能够用来测定沿水平轨道做匀加速直线运动的列车的加速 度.m 是一个金属球,它系在细金属丝的下端,金属丝的上端悬挂在 O 点,AB 是一根长为L 的电阻丝,其阻值为R.金属丝与电阻丝接触良好, 摩擦不计.电阻丝的中点 C 焊接一根导线.从O 点也引出一根导线,两线 之间接入一个电压表 ①〔金属丝和导线电阻不计〕.图中虚线OC 与AB 相垂直,且 OC=h ,电阻丝AB 接在电压恒为 U 的直流稳压电源上.整个 装置固定在列车中使 AB 沿着车前进的方向.列车静止时金属丝呈竖直 状态•当列车加速或减速前进时,金属线将偏离竖直方向 0,从电压表的 读数变化能够测出加速度的大小 〔1〕当列车向右做匀加速直线运动时,试写出加速度 a 与0角的关系 及加速度a 与电压表读数 U'的对应关系. 图 10-1-13〔2〕那个装置能测得的最大加速度是多少 ? 【解析】〔1〕小球受力如下图,由牛顿定律得:a=F 合=mgta ^ =gtan 0 . m m设细金属丝与竖直方向夹角为 0时,其与电阻丝交点为 D , CD 间的电压为U ;U R CD CD CD CD L U 那么 CD,故得 a=gtan 0 =g • g. U R AB AB L h hU 〔2〕因CD 间的电压最大值为 U/2,即U max -U/2,因此a max = — g.2h F E【答案】〔1〕a=gtan0.〔 2〕a max = — g2h 第H 课时 电路分析•滑动变阻器1. 如下图10-2-14,在A 、B 两端加一恒定不变的电压 U ,电阻R 1为 60 Q,假设将R 1短路,R 2中的电流增大到原先的 4倍;那么R 2为〔 〕 A . 40 Q B . 20 Q C . 120 Q D . 6 Q 【答案】B 2. 如下图10-2-15 , D 为一插头,可接入电压恒定的照明电路中, a 、b 、c 为三只 R 1R 2A vBU图 10-2-14相同且功率较大的电炉, a 靠近电源,b 、c 离电源较远,而离用户电灯 炉接入电路后对电灯的阻碍,以下讲法中正确的选项是 A •使用电炉a 时对电灯的阻碍最大 L 专门近,输电线有电阻•关于电 图 10-2-15B •使用电炉b 时对电灯的阻碍比使用电炉 a 时大 C. 使用电炉c 时对电灯几乎没有阻碍 D •使用电炉b 或c 时对电灯阻碍几乎一样【解析】输电线有一定电阻, 在输电线上会产生电压缺失. 使用电炉c 或b 时,对输电线中电流阻碍较大, 使线路上的电压缺失较大, 从而对用户电灯产生较大的阻碍, 而使用电炉a 对线路上的电压缺失阻碍甚微, 能够忽略不计. 【答案】BD3•如图10-2-16 〔甲〕所示电路,电源电动势为 E ,内阻不计,滑动变阻器的最大阻值为 R ,负载电阻为 R o .当滑动变阻器的滑动端S 在某位置时,R o 两端电压为E/2,滑动变阻器上消耗的功率为P .假设将R oA . R o 两端的电压将小于 E/2B . R o 两端的电压将等于 E/2C .滑动变阻器上消耗的功率一定小于 PD .滑动变阻器上消耗的功率可能大于P【解析】在甲图中,设变阻器 R 滑动头以上、以下的电阻 分不为R上、R 下,那么R o //R 下=R 上,有R o > R 上;当接成乙图 电路时,由于R o >R 上,那么R o 两端的电压必大于 E/2,故A 、 而滑动变阻器上消耗的功率能够大于 P .应选D .【答案】D4•如下图io-2-17是一电路板的示意图,a 、b 、c 、d 为接线柱,a 、d 与22oV 的交流电源连接, 间、cd 间分不连接一个电阻.现发觉电路中没有电流,为检查电路故障,用一交流电压表分不测得 两点间以及a 、c 两点间的电压均为 22oV ,由此可知〔 A . ab 间电路通, cd 间电路不通 B . ab 间电路不通,bc 间电路通 C . ab 间电路通, bc 间电路不通 D . bc 间电路不通,cd 间电路通【解析】第一应明确两点:〔 1〕电路中无电流即l=o 时,任何电阻两端均无电压;〔 2〕假设电路中仅有一处断路,那么电路中哪里断路,横跨断路处任意两点间的电压均是电源电压.由题可知, bd 间电压为22oV ,讲明断路点必在 bd 之间;ac 间电压为22oV ,讲明断点又必在 ac 间;两者共同区间是 bc ,故bc 断路,其余各段均完好. 【答案】CD5•传感器可将非电学量转化为电学量,起自动操纵作用.如运算机鼠标中有位移传感器,电熨斗、电饭煲中有温度传感器,电视机、录象机、影碟机、空调机中有光电传感器 ……演示位移传感器的工作原理如下图 io-2-17,物体M 在导 轨上平移时,带动滑动变阻器的金属滑杆 P ,通过电压表显示的数据, 来反映物 体位移的大小 X ,假设电压表是理想的, 那么以下讲法中正确的选项是 〔 〕A .物体M 运动时,电源内的电流会产生变化B .物体M 运动时,电压表的示数会发生变化C .物体M 不动时,电路中没有电流D .物体M 不动时,电压表没有示数【解析】滑动变阻器与电流构成闭合回路,因此回路中总是有电流的,这与与电源位置互换,接成图〔乙〕所示电路时,滑动触头 S 的位置不变,那么〔〔甲〕 〔乙〕ab 间、bc b 、d M 运动与否无关,C 错误.图〕E图 io-2-17中的滑动变阻器实际上是一个分压器,电压表测量的是滑动变阻器左边部分的电压,在图中假设杆 P 右移那么示数增大,左移那么示数减小•因表是理想的,因此 P 点的移动对回路中的电流是无阻碍的•综上所 述,只有B 正确. 【答案】 6.如下图 R 1、R 2、 P'1: P'2: 【解析】 P 1: R 1、 =6 : P 2 : R 2、 B 10-2-18的电路中,电阻 R i =1 Q, R 2=2 Q, R B =3 Q,在A 、B 间接电源,S i 、S 2都打开,现在电阻 R B 消耗的功率之比 P 1: P 2: _______ P 3= ;当S 1、S 2都闭合时,电阻 R 1、R 2、R 3消耗的功率之比 P'3= ________. 当S 1、S 2都打开时, P 3= R 1 : R 2: R 3= 1 R 3相互并联, R 1、R 2、R 3相互串联,那么 :2: 3•当S 1、S 2都闭合时,A P'1: P'2: P'3=1/R 1: 1/R 2: 1/R 3 Si- R 2 RB 3: 2. 【答案】1 : 2 : 3, 6: S 2 图 10-2-18 7•在图 10-2-19 B 间的总电阻为 【解析】用等效替代法,可把除 R 1 与等效电阻R 为并联关系,那么R AB =RR 1〔R+R 1〕=12R 〔 12+R 〕=4,解得R=6Q , 假设 R‘1=6 Q 时,那么 R'AB =RR'1/〔 R+R'1〕=6 ⑹〔6+6〕=3 Q.【答案】3 8.如下图 10-2-20 的电路中,R 1=4 Q, R 2=10 Q, R B =6 Q, R 4=3 Q, a 、b 为接线柱,电路两端所加电压为 24V ,当a 、b 间接入一理想电流表时, - 它的示数应是多少? 【解析】如图乙所示,从图能够看出,接入理想电流表后, 再与R 2串联;而R 2+ R 34与R 1又是并联关系.电流表测的是 的电流之和. R 34 = R 3R 4/〔 R 3+R 4〕=2 Q R 234=R 34 + R 2=12 Q|2=U/R 234 =2A l 1=U/R 1=6A【答案】6.67A 8个不同的电阻组成,R 1=12 Q,其余电阻值未知, 测得A 、 4 Q,今将R 1换成6 Q 的电阻,A 、B 间总电阻变成 ____________ Q. R 1外的其他电阻等效为一个电阻 R ,在AB 间 所示的 旦_ _a bR 3R 2l 3/|4=R 4/R 3=1/2 ••• l 3=|2/3=2/3A ,••• I A =I 1 + I 3=6.67AR 3与R 4并联, R i 与 R 3 —R 4R 2-------- 0 ——_. R4R U --------------图 10-2-20其总电阻为 电路两端加上恒定电压 U ,移动R 的滑动触片,求电流表的示数变化范畴.【解析】设滑动变阻器滑动触头左边部分的电阻为R x . 电路连接为R 0与R x 并联,再与滑动变阻器右边部分的电阻 R - R x 串联, 9.如下图10-2-21,电路中R 0为定值电阻,R 为滑动变阻器, U -乙 R ,当在U 图 10-2-21那么干路中的电流 R 并 + R — R x R 0R xR R xR o R x因此电流表示数| R 0 R xUR °R x R 0R 0 R x "、0、xR RR 0 R xXUR 。
2020年高考物理电磁场压轴精选14道(答案和解析)

物理电磁场压轴精炼14道(有答案和精细解析)1.(16分)如图所示,直角坐标系xoy位于竖直平面内,在-3m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。
一质量m = 6.4×10-27kg、电荷量q =--3.2×10-19C的带电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。
求:⑴带电粒子在磁场中运动时间;⑵当电场左边界与y轴重合时Q点的横坐标;⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。
2.(18分)如图a所示,水平直线MN下方有竖直向上的匀强电场,现将一重力不计、比荷qm=106 C/kg的正电荷置于电场中的O点由静止释放,经过15π×10-5 s后,电荷以v0=1.5×104 m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻).求:(1)匀强电场的电场强度E的大小;(保留2位有效数字)(2)图b中t=45π×10-5 s时刻电荷与O点的水平距离;(3)如果在O点右方d=68 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80) (保留2位有效数字)3.(20分)一个质量m =0.1kg的正方形金属框,其电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AB重合),由静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边CD平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与CD重合)。
高中物理-专题 电磁感应-2020高考真题(解析版)

2020年高考物理100考点最新模拟题千题精练(选修3-2)第四部分电磁感应专题4.电磁感应-2020高考真题一.选择题1.(2020高考全国理综I)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。
ab、dc足够长,整个金属框电阻可忽略。
一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。
经过一段时间后A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值【参考答案】BC【命题意图】本题考查法拉第电磁感应定律、闭合电路欧姆定律、安培力及其相关知识点,考查的核心素养是运动和力的物理观念、科学思维。
【解题思路】用水平恒力F向右拉动金属框,bc边切割磁感线产生感应电动势,回路中有感应电流i,bc 边受到水平向左的安培力作用,设金属框的质量为M,加速度为a1,由牛顿第二定律,F-BiL=Ma1;导体棒MN受到向右的安培力向右加速运动,设导体棒的质量为m,加速度为a2,由牛顿第二定律,BiL=ma2,二者运动的速度图像如图所示。
设金属框bc边的速度为v时,导体棒的速度为v’,则回路中产生的感应电动势为E=BL(v-v’),由闭合电路欧姆定律I=E/R=()'BL v vR-,F安=BIL可得金属框ab边所受的安培力和导体棒MN所受的安培力都是F安=B 2L 2(v-v’)/R ,即金属框所受的安培力随着速度的增大而增大。
对金属框,由牛顿运动定律,F - F 安=Ma 1,对导体棒MN ,由牛顿运动定律, F 安=ma 2,二者加速度之差△a= a 1- a 2=(F - F 安)/M- F 安/m=F/M- F安(1/M+1/m ),随着所受安培力的增大,二者加速度之差△a 减小,当△a 减小到零时,即F/M=()22'B L v v R-(1/M+1/m ),所以金属框和导体棒的速度之差△v=(v-v’)=()22FRmB L m M +保持不变。
2020高考物理名师练习卷:专题九《磁场》含答案

2020衡水名师原创物理专题卷专题九 磁场考点25 电流的磁场 安培力考点26 洛伦兹力 带电粒子在匀强磁场中的运动考点27 带电粒子在复合场中的运动考点28 现代科技中的电磁场问题一、选择题(本题共17个小题,每题4分,共68分。
每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1、某空间存在匀强磁场和匀强电场。
一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是( )A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度2、如图所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为1N ,现在磁铁正上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为2N ,则以下说法正确的是( )A.弹簧长度将变长,12N N >B.弹簧长度将变短,12N N >C.弹簧长度将变长,12N N <D.弹簧长度将变短,12N N <3、如图所示,两根相互平行的长直导线过纸面上的M N 、两点,且与纸面垂直,导线中通有大小相等、方向相反的电流.a O b 、、在M N 、的连线上,O 为MN 的中点,c d 、位于MN 的中垂线上,且a b c d 、、、到O 点的距离均相等.关于以上几点处的磁场,下列说法正确的是( )A.O 点处的磁感应强度为零B.a b 、两点处的磁感应强度大小相等,方向相反C.c d 、两点处的磁感应强度大小相等,方向相同D.a c 、两点处磁感应强度的方向不同4、如图所示,半径为R 的光滑半圆弧绝缘轨道固定在竖直面内,磁感应强度为B 的匀强磁场方向垂直轨道平面向里.一可视为质点,质量为m ,电荷量为()0q q >的小球由轨道左端A 处无初速度滑下,当小球滑至轨道最低点C 时,给小球再施加一始终水平向右的外力F ,使小球能保持不变的速率滑过轨道右侧的D 点,若小球始终与轨道接触,重力加速度为g ,则下列判断正确的是( )A.小球在C 点受到的洛伦兹力大小为gRB.小球在C 点对轨道的压力大小为32mg qB gR -C.小球从C 到D 的过程中,外力F 大小保持不变D.小球从C 到D 的过程中,外力F 的功率不变5、图示是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E ,平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片12A A ,平板S 下方有强度为0B 的匀强磁场.不计粒子重力.下列表述加速电场正确的是( )A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向里C.能通过狭缝P 的带电粒子的速率等于E BD.粒子打在胶片上的位置越靠近狭缝P ,粒子的荷质比越小6、如图所示,在足够长的荧光屏MN 上方分布着水平方向的匀强磁场,磁感应强度的大小B =0.1T 、方向垂直纸面向里。
高考物理《磁场、磁感线、磁场的叠加》真题练习含答案

高考物理《磁场、磁感线、磁场的叠加》真题练习含答案1.[2024·浙江省湖州市月考]奥斯特通过实验证实了电流的周围存在着磁场.如图所示,闭合开关S后,位于螺线管右侧的小磁针和位于螺线管正上方的小磁针N极指向将分别是()A.向右,向左B.向左,向左C.向左,向右D.向右,向右答案:A解析:将通电螺线管等效成一条形磁铁,根据右手螺旋定则可知螺线管右侧为N极,左侧为S极,则位于螺线管右侧的小磁针N极指向右,位于螺线管正上方的小磁针N极指向左,A正确.2.安培曾经提出分子环形电流的假说来解释为什么磁体具有磁性,他认为在物质微粒的内部存在着一种环形的分子电流,分子电流会形成磁场,使分子相当于一个小磁体(如图甲所示).以下说法正确的是()A.这一假说能够说明磁可以生电B.这一假说能够说明磁现象产生的电本质C.用该假设解释地球的磁性,引起地磁场的环形电流方向如图乙所示D.用该假设解释地球的磁性,引起地磁场的环形电流方向如图丙所示答案:B解析:这一假说能够说明磁现象产生的电本质,即磁场都是由运动的电荷产生的,故B 正确,A错误;由右手螺旋定则可知,引起地磁场的环形电流方向应是与赤道平面平行的顺时针方向(俯视),C、D错误.3.[2024·江苏省无锡市、江阴市等四校联考]科考队进入某一磁矿区域后,发现指南针静止时,N 极指向为北偏东60°,如图虚线所示.设该位置地磁场磁感应强度的水平分量为B ,磁矿所产生的磁感应强度水平分量最小值为( )A .B 2 B .3B 2C .BD . 3 B 答案:B解析:磁矿所产生的磁场水平分量与地磁场水平分量垂直时,磁矿所产生的磁感应强度水平分量最小,为B′min =B cos 60°=32B ,B 正确.4.[2024·河北省邯郸市多校联考]如图所示为某磁场中部分磁感线的分布图,P 、Q 为磁场中的两点,下列说法正确的是( )A .P 点的磁感应强度小于Q 点的磁感应强度B .同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力C .同一线圈在P 点的磁通量一定大于在Q 点的磁通量D .同一线圈在P 点的磁通量一定小于在Q 点的磁通量 答案:B解析:磁感线的疏密程度表示磁感应强度的大小,由图可知,P 点的磁感应强度大于Q 点的磁感应强度,A 错误;电流元在磁场中的受力与放置方式有关,同一电流元在P 点受到的磁场力可能小于在Q 点受到的磁场力,B 正确;磁通量大小不只与磁感应强度大小有关,还与线圈的放置方式有关,故同一线圈在P 、Q 两点的磁通量无法比较,C 、D 错误.5.[2024·陕西省西安市质检]在匀强磁场中,一根长为0.4 m 的通电导线中的电流为20 A ,这条导线与磁场方向垂直时,所受的磁场力为0.015 N ,则磁感应强度的大小为( )A .7.2×10-4 TB .3.75×10-3 TC .1.875×10-3 TD .1.5×10-3 T答案:C解析:根据安培力公式F =ILB ,代入数据求得B =F IL =0.0150.4×20 T =1.875×10-3 T ,C 正确.6.在磁感应强度为B 的匀强磁场中有一顺时针的环形电流,当环形电流所在平面平行于匀强磁场方向时,环心O 处的磁感应强度为B 1,如图甲所示;当环形电流所在平面垂直于匀强磁场方向时,环心O 处的磁感应强度为B 2,如图乙所示.已知B 1=22B 2,则环形电流在环心O 处产生的磁感应强度大小为( )A .12B B .BC .32 B D .2B答案:B解析:设环形电流中心轴线的磁感应强度大小为B′,根据安培定则可知其方向为垂直纸面向内,则有B 21 =B′2+B 2,B 2=B′+B ,解得环形电流在环心O 处产生的磁感应强度大小为B′=B ,B 项正确.7.如图所示,直角三角形abc 中,∠abc =30°,将一电流为I 、方向垂直纸面向外的长直导线放置在顶点a 处,则顶点c 处的磁感应强度大小为B 0.现再将一电流大小为4I 、方向垂直纸面向里的长直导线放置在顶点b 处.已知长直通电导线产生的磁场在其周围空间某点的磁感应强度大小B =k Ir ,其中I 表示电流大小,r 表示该点到导线的距离,k 为常量.则顶点c 处的磁感应强度( )A .大小为 3B 0,方向沿ac 向上 B .大小为B 0,方向垂直纸面向里C .大小为3B 0,方向沿∠abc 平分线向下D .大小为2B 0,方向垂直bc 向上 答案:A解析:令ac 间距为r ,根据几何知识可知bc 间距为2r ,由安培定则可知,a 点处电流产生的磁场在c 点处的磁感应强度方向垂直ac 向左,大小为B 0=k Ir .用安培定则判断通电直导线b 在c 点上所产生的磁场方向垂直于bc 斜向右上,大小为B b =k 4I 2r =2k Ir =2B 0.如图所示由几何知识可得θ=60°,根据矢量的合成法则,则有各通电导线在c 点的合磁感应强度,在水平方向上的分矢量B x =2B 0cos 60°-B 0=0在竖直方向上的分矢量B y =2B 0sin 60°= 3 B 0所以在c 点处的磁感应强度大小为 3 B 0,方向沿ac 向上.。
2020届新高考物理专题复习《磁场》冲刺提升三(Word版附答案)

磁场1.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B和B、方向均垂直于纸面向外的匀强磁场.一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm6qB B.7πm6qBC.11πm6qBD.13πm6qB2.如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.3.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,电场强度大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘核12H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场,11H的质量为m,电荷量为q,不计重力.求(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强度大小;(3)12H第一次离开磁场的位置到原点O的距离.4.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行,一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π,求该粒子的比荷及其从M点运动6到N点的时间.5.如图所示,直角坐标系中的第Ⅰ象限中存在沿y轴负方向的匀强电场,在第Ⅱ象限中存在垂直纸面向外的匀强磁场.一电荷量为q、质量为m的带正电粒子,在x轴上的a点以速度v0与x轴负方向成60°角射入磁场,从y=L处的b点沿垂直于y轴方向进入电场,并经过x轴上x=2L处的c点.不计粒子重力.求:(1)磁感应强度B的大小;(2)电场强度E的大小;(3)带电粒子在磁场和电场中的运动时间之比.6.如图所示,在坐标系xOy的第一象限有沿x轴正方向的匀强电场,第二象限充满方向垂直坐标平面=5.0×1010 C/kg的带负电粒子从a(6,0)沿y轴正方向射入,速度大小为向外的匀强磁场.有一比荷qmv a=8.0×106 m/s,粒子通过y轴上的b(0,16)点后进入磁场.不计粒子的重力.求:(1)电场强度E的大小,粒子通过b点时速度v b的大小及方向;(2)为使粒子不再进入电场,匀强磁场磁感应强度B应满足什么条件.7.如图,在真空室内的P点,能沿纸面向各个方向不断发射电荷量为+q,质量为m的粒子(不计重力),粒子的速率都相同.ab为P点附近的一条水平直线,P到直线ab的距离PC=L,Q为直线ab上一点, L.当直线ab以上区域只存在垂直纸面向里、磁感应强度为B的匀强磁场时,它与P点相距PQ=√52水平向左射出的粒子恰到达Q点;当ab以上区域只存在平行该平面的匀强电场时,所有粒子都能到达ab直线,且它们到达ab直线时动能都相等,其中水平向左射出的粒子也恰好到达Q点.已知sin 37°=0.6,cos 37°=0.8,求:(1)粒子的发射速率;(2)匀强电场的场强大小和方向;(3)仅有磁场时,能到达直线ab的粒子所用最长时间和最短时间的比值.8.如图所示,在坐标系xOy平面内,区域xOO1a中存在与x轴正方向成60°斜向上的匀强电场,电场强度大小为E1(未知),区域aO1bc内存在一个边界与y轴平行的矩形匀强磁场(图中没画出)区域,方向垂.一质量为m、电荷量为q的直纸面向里,y轴左侧存在竖直向下的匀强电场,电场强度大小E2=mv02qd的A点沿y轴右侧的电场方向以初速度v0射入,粒子刚射入磁带正电粒子从x轴上距直线O1a为d2场时速度为2v0,粒子经磁场偏转后恰好从b点垂直y轴进入y轴左侧匀强电场,最后击中x轴上的C 点,已知OO1=O1b=d,O1a、bc均与x轴平行,粒子重力不计.(1)求y轴右侧匀强电场的电场强度E1的大小;(2)求匀强磁场磁感应强度B的大小及矩形匀强磁场区域的最小面积;(3)求粒子在y轴右侧和左侧电场中的电势能分别变化多少;(4)求粒子从A点运动到C点过程所用的时间.9.如图所示,边长为3L的正方形区域分成相等的三部分,左右两侧为匀强磁场,中间区域为匀强电场.,方向垂直纸面向外;右侧磁场的磁感应强度大小为左侧磁场的磁感应强度大小为B1=√6mqU2qL,方向垂直于纸面向里;中间区域电场方向与正方形区域的上下边界平行.一质量为m、电荷B2=√6mqUqL量为+q的带电粒子,从平行金属板的正极板开始由静止被加速,加速电压为U,加速后粒子从a点进入左侧磁场,又从距正方形上下边界等间距的b点沿与电场平行的方向进入电场,不计粒子重力.求:(1)粒子经过平行金属板加速后的速度大小;(2)粒子在左侧磁场区域内运动时的半径及运动时间;(3)电场强度的取值在什么范围内时,粒子能从右侧磁场的上边缘cd间离开.10.如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界线,OM与x轴负方向成45°夹角.在+y轴与直线OM的左侧空间存在沿x轴负方向的匀强电场,场强大小为E,在+x轴下方与直线OM的右侧空间存在垂直纸面向里的匀强磁场,磁感应强度大小为B.一带负电微粒从坐标原点O 沿y轴负方向进入磁场,第一次经过磁场边界时的位置坐标是(-L,-L).已知微粒的电荷量大小为q,质量为m,不计微粒所受重力,微粒最后从+y轴上某点飞出场区(图中未画出),求:(1)带电微粒从坐标原点O进入磁场时的初速度.(2)带电微粒在电场和磁场区域运动的总时间.11.如图所示,PQ为一竖直放置的荧光屏,一半径为R的圆形磁场区域与荧光屏相切于O点,磁场的方向垂直纸面向里且磁感应强度大小为B,图中的虚线与磁场区域相切,在虚线的上方存在水平向左的匀强电场,电场强度大小为E.在O点放置一粒子发射源,能向右侧180°角的范围发射一系列的带正电的粒子,粒子的质量为m、电荷量为q,经测可知粒子在磁场中的轨道半径为R,忽略粒子的重力及粒子间的相互作用.求:(1)如图,当粒子的发射速度方向与荧光屏成60°角时,该带电粒子从发射到达到荧光屏上所用的时间为多少?粒子到达荧光屏的位置距O点的距离为多大?(2)从粒子源发射出的带电粒子到达荧光屏时,距离发射源的最远距离应为多少?参考答案1.如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为1B和B、方向均垂直于纸面向外的2匀强磁场.一质量为m、电荷量为q(q>0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm6qB B.7πm6qBC.11πm6qBD.13πm6qB答案B2.如图,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.答案(1)4UB2d2(2)Bd24Uπ2+√333.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,电场强度大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘核12H先后从y轴上y=h点以相同的动能射出,速度方向沿x 轴正方向.已知 11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场,11H 的质量为m,电荷量为q,不计重力.求 (1) 11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)12H 第一次离开磁场的位置到原点O 的距离.答案(1)2√33h (2)√6mE qh (3)2√33(√2-1)h4.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行,一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.答案(1)见解析图(2)2El′Bl (3)4√3El′B2l2BlE(1+√3πl18l′)⑧5.如图所示,直角坐标系中的第Ⅰ象限中存在沿y轴负方向的匀强电场,在第Ⅱ象限中存在垂直纸面向外的匀强磁场.一电荷量为q、质量为m的带正电粒子,在x轴上的a点以速度v0与x轴负方向成60°角射入磁场,从y=L处的b点沿垂直于y轴方向进入电场,并经过x轴上x=2L处的c点.不计粒子重力.求:(1)磁感应强度B的大小;(2)电场强度E的大小;(3)带电粒子在磁场和电场中的运动时间之比.答案(1)3mv02qL (2)mv022qL(3)2π96.如图所示,在坐标系xOy的第一象限有沿x轴正方向的匀强电场,第二象限充满方向垂直坐标平面=5.0×1010 C/kg的带负电粒子从a(6,0)沿y轴正方向射入,速度大小为向外的匀强磁场.有一比荷qmv a=8.0×106 m/s,粒子通过y轴上的b(0,16)点后进入磁场.不计粒子的重力.求:(1)电场强度E的大小,粒子通过b点时速度v b的大小及方向;(2)为使粒子不再进入电场,匀强磁场磁感应强度B应满足什么条件.(2)B<2.0×10-3 T答案(1)6.0×103 N/C 1×107 m/s,与竖直方向夹角的余弦cos θ=457.如图,在真空室内的P点,能沿纸面向各个方向不断发射电荷量为+q,质量为m的粒子(不计重力),粒子的速率都相同.ab为P点附近的一条水平直线,P到直线ab的距离PC=L,Q为直线ab上一点, L.当直线ab以上区域只存在垂直纸面向里、磁感应强度为B的匀强磁场时,它与P点相距PQ=√52水平向左射出的粒子恰到达Q点;当ab以上区域只存在平行该平面的匀强电场时,所有粒子都能到达ab直线,且它们到达ab直线时动能都相等,其中水平向左射出的粒子也恰好到达Q点.已知sin 37°=0.6,cos 37°=0.8,求:(1)粒子的发射速率;(2)匀强电场的场强大小和方向;(3)仅有磁场时,能到达直线ab的粒子所用最长时间和最短时间的比值.答案(1)5BqL8m (2)25qLB28m(3)2.208.如图所示,在坐标系xOy平面内,区域xOO1a中存在与x轴正方向成60°斜向上的匀强电场,电场强度大小为E1(未知),区域aO1bc内存在一个边界与y轴平行的矩形匀强磁场(图中没画出)区域,方向垂直纸面向里,y轴左侧存在竖直向下的匀强电场,电场强度大小E2=mv02qd.一质量为m、电荷量为q的带正电粒子从x轴上距直线O1a为d2的A点沿y轴右侧的电场方向以初速度v0射入,粒子刚射入磁场时速度为2v0,粒子经磁场偏转后恰好从b点垂直y轴进入y轴左侧匀强电场,最后击中x轴上的C 点,已知OO1=O1b=d,O1a、bc均与x轴平行,粒子重力不计.(1)求y轴右侧匀强电场的电场强度E1的大小;(2)求匀强磁场磁感应强度B的大小及矩形匀强磁场区域的最小面积;(3)求粒子在y轴右侧和左侧电场中的电势能分别变化多少;(4)求粒子从A点运动到C点过程所用的时间.答案(1)3√3mv024qd (2)3mv0qd23d2(3)32mv022m v02(4)(81+16√3+8π)d36v09.如图所示,边长为3L的正方形区域分成相等的三部分,左右两侧为匀强磁场,中间区域为匀强电场.左侧磁场的磁感应强度大小为B1=√6mqU2qL,方向垂直纸面向外;右侧磁场的磁感应强度大小为B2=√6mqUqL,方向垂直于纸面向里;中间区域电场方向与正方形区域的上下边界平行.一质量为m、电荷量为+q的带电粒子,从平行金属板的正极板开始由静止被加速,加速电压为U,加速后粒子从a点进入左侧磁场,又从距正方形上下边界等间距的b点沿与电场平行的方向进入电场,不计粒子重力.求: (1)粒子经过平行金属板加速后的速度大小;(2)粒子在左侧磁场区域内运动时的半径及运动时间;(3)电场强度的取值在什么范围内时,粒子能从右侧磁场的上边缘cd间离开.答案(1)√2qUm (2)√3πL3√2m3qU(3)11U16L≤E≤2UL10.如图所示,在xOy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界线,OM与x轴负方向成45°夹角.在+y轴与直线OM的左侧空间存在沿x轴负方向的匀强电场,场强大小为E,在+x轴下方与直线OM的右侧空间存在垂直纸面向里的匀强磁场,磁感应强度大小为B.一带负电微粒从坐标原点O 沿y轴负方向进入磁场,第一次经过磁场边界时的位置坐标是(-L,-L).已知微粒的电荷量大小为q,质量为m,不计微粒所受重力,微粒最后从+y轴上某点飞出场区(图中未画出),求:(1)带电微粒从坐标原点O进入磁场时的初速度.(2)带电微粒在电场和磁场区域运动的总时间.答案(1)qBLm,方向沿y 轴负方向 (2)2πm qB+BL E +√mL qE11.如图所示,PQ 为一竖直放置的荧光屏,一半径为R 的圆形磁场区域与荧光屏相切于O 点,磁场的方向垂直纸面向里且磁感应强度大小为B,图中的虚线与磁场区域相切,在虚线的上方存在水平向左的匀强电场,电场强度大小为E.在O 点放置一粒子发射源,能向右侧180°角的范围发射一系列的带正电的粒子,粒子的质量为m 、电荷量为q,经测可知粒子在磁场中的轨道半径为R,忽略粒子的重力及粒子间的相互作用.求:(1)如图,当粒子的发射速度方向与荧光屏成60°角时,该带电粒子从发射到达到荧光屏上所用的时间为多少?粒子到达荧光屏的位置距O 点的距离为多大?(2)从粒子源发射出的带电粒子到达荧光屏时,距离发射源的最远距离应为多少? 答案(1)2πm3qB +2-√32qB m+√qE R+BR √3qRmE (2)R+2BR √qR mE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考物理磁场专题练习(含答案)
1.如图1所示,a和b是一条磁感线上的两点,关于这两点磁感应强度大小的判断,正确的是()
图1
A.一定是a点的磁感应强度大
B.一定是b点的磁感应强度大
C.一定是两点的磁感应强度一样大
D.无法判断
答案D
2.磁场中某区域的磁感线如图2所示,则()
图2
A.a、b两处的磁感应强度的大小不等,B a>B b
B.a、b两处的磁感应强度的大小不等,B a<B b
C.同一通电导线放在a处受力一定比放在b处受力大
D.同一通电导线放在a处受力一定比放在b处受力小
答案A
3.(多选)把一根不计重力的、通电的硬直导线ab放在磁场中,导线所在区域的磁感线呈弧形,如图3所示.导线可以在空中自由移动和转动,导线中的电流方向由a向b,关于导线的受力和运动情况,下述说法正确的是()
图3
A.硬直导线先转动,然后边转动边下移
B.硬直导线只能转动,不会向下移动
C.硬直导线各段所受安培力的方向都与导线垂直
D.在图示位置,a端受力垂直纸面向内,b端受力垂直纸面向外
答案AC
4.三根平行的长直导线,分别垂直地通过一个等腰直角三角形的三个顶点,三导线中电流方向相同,A、B两导线中的电流大小相同,如图4所示,已知导线A在斜边中点O处所产生的磁场的磁感应强度大小为B,导线C在斜边中点O处所产生的磁场的磁感应强度大小为2B,则O处的磁感应强度的大小和方向为()
图4
A.大小为B,方向沿OA方向
B.大小为22B,方向竖直向下
C.大小为2B,方向沿OB方向
D.大小为2B,方向沿OA方向
答案D
5.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图5所示.当两线圈中通以图示方向的电流时,从左向右看,则线圈L1将()
图5
A.不动
B.顺时针转动
C.逆时针转动
D.在纸面内平动
答案B
6.(多选)某同学自制的简易电动机示意图如图6所示.矩形线圈由一根漆包线绕制而成,漆包线的两端分别从线圈的一组对边的中间位置引出,并作为线圈的转轴.将线圈架在两个金属支架之间,线圈平面位于竖直面内,永磁铁置于线圈下方.为了使电池与两金属支架连接后线圈能连续转动起来,该同学应将()
图6
A.左、右转轴下侧的绝缘漆都刮掉
B.左、右转轴上下两侧的绝缘漆都刮掉
C.左转轴上侧的绝缘漆刮掉,右转轴下侧的绝缘漆刮掉
D.左转轴上下两侧的绝缘漆都刮掉,右转轴下侧的绝缘漆刮掉
答案AD
7.如图7所示,将一个半径为R的金属圆环串联接入电路中,电路中的电流为I,接入点a、b是圆环直径上的两个端点,流过圆弧acb和adb的电流相等.金属圆环处在磁感应强度为B、方向如图所示的匀强磁场中,磁场方向与圆环所在的平面垂直,则金属圆环受到的安培力为()
图7
A.0
B.πBIR
C.2BIR
D.4BIR
答案C
8.如图8所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,∠MOP =60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1.若将M处长直导线移至P处,则O点的磁感应强度大小为B2,那么B2与B1之比为()
图8
A.3∶1
B.3∶2
C.1∶1
D.1∶2
答案B
9.(多选)如图9所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,水平放置一根长
直通电导线,电流的方向垂直纸面向里,以直导线为中心的同一圆周上有a、b、c、d四个点,连线ac和bd是相互垂直的两条直径,且b、d在同一竖直线上,则()
图9
A.c点的磁感应强度的值最小
B.b点的磁感应强度的值最大
C.b、d两点的磁感应强度不同
D.a、b两点的磁感应强度相同
答案AC
10.如图10所示,长为L的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B的匀强磁场中,弹簧伸长x,棒处于静止状态.则()
图10
A.导体棒中的电流方向从b流向a
B.导体棒中的电流大小为kx
BL
C.若只将磁场方向缓慢顺时针转过一小角度,x变大
D.若只将磁场方向缓慢逆时针转过一小角度,x变大
答案B
11.图11中a、b、c为三根与纸面垂直的固定长直导线,其截面位于等边三角形的三个顶点上,bc沿水平方向,导线中均通有大小相等的电流,方向如图所示.O点为三角形的中心(O到三个顶点的距离相等),则()
图11
A.O点的磁感应强度为零
B.O点的磁场方向垂直Oc向下
C.导线a受到的安培力方向竖直向上
D.导线b受到的安培力方向沿bc连线方向指向c
答案B
12.如图12所示,两平行的粗糙金属导轨水平固定在匀强磁场中,磁感应强度为B,导轨宽度为L,一端与电源连接.一质量为m的金属棒ab垂直于平行导轨放置并接触良好,金属棒
与导轨间的动摩擦因数为μ=
3
3,在安培力的作用下,金属棒以v0的速度向右匀速运动,通
过改变磁感应强度的方向,可使流过导体棒的电流最小,此时磁感应强度的方向与竖直方向的夹角为()
图12
A.37°
B.30°
C.45°
D.60°
答案B
13.如图13,一长为10 cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘.金属棒通过开关与一电动势为12 V的电池相连,电路总电阻为2 Ω.已知开关断开时两弹簧的伸长量均为0.5 cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm,重力加速度大小取10 m/s2.判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量.
图13
答案方向竖直向下0.01 kg
14. 音圈电机是一种应用于硬盘、光驱等系统的特殊电动机,如图16是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为L,匝数为n,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为B,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等,某时刻线圈中电流从P流向Q,大小为I.
图16
(1)求此时线圈所受安培力的大小和方向;
(2)若此时线圈水平向右运动的速度大小为v,求安培力的功率.
答案(1)nBIL方向水平向右(2)nBIL v
解析(1)线圈前后两边所受安培力的合力为零,线圈所受的安培力即为右边所受的安培力,由安培力公式得
F=nBIL①
由左手定则知方向水平向右
(2)安培力的功率为P=F·v ②
联立①②式解得P=nBIL v
15. 如图13所示,长为L、质量为m的导体棒ab,置于倾角为θ的光滑斜面上.导体棒与斜面的水平底边始终平行.已知导体棒通以从b向a的电流,电流为I,重力加速度为g.
图13
(1)若匀强磁场方向竖直向上,为使导体棒静止在斜面上,求磁感应强度B 的大小;
(2)若匀强磁场的大小、方向都可以改变,要使导体棒能静止在斜面上,求磁感应强度的最小值和对应的方向.
答案 (1)mg IL tan θ (2)mg IL
sin θ 方向垂直斜面向上 解析 (1)导体棒受力如图甲所示,由平衡条件得:
mg sin θ=BIL cos θ,
解得B =mg IL
tan θ.
(2)如图乙所示,当安培力平行斜面向上,安培力和重力沿斜面的分力平衡时,安培力最小,有
mg sin θ=B min IL ,
2020高考物理:磁场专题练习题
11 / 11 解得B min =mg IL
sin θ. 由左手定则可知磁感应强度的方向垂直斜面向上.。