概率论数学期望
概率论 数学期望

0 . 0779
E ( Y ) 2732 . 15 , 即平均一台收费
2732 . 15 .
13
例4 为普查某种疾病, n 个人需验血. 验血方 案有如下两种: (1) 分别化验每个人的血, 共需化验 n 次; (2) 分组化验, k 个人的血混在一起化验, 若 结果为阴性, 则只需化验一次; 若为阳性, 则 对 k 个人的血逐个化验, 找出有病者, 此时 k 个人的血需化验 k + 1 次. 设每人血液化验呈阳性的概率为 p, 且 每人化验结果是相互独立的.试说明选择哪 一方案较经济.
xf ( x)dx
绝对收敛, 则称此积分为 X 的数学期望
记作 E( X ), 即
E( X )
xf ( x)dx
数学期望的本质 —— 加权平均 它是一个数不再是随机变量
6
例1 甲、乙两选手进行打靶,击中环数 为X1,X2,它们的分布律为
X1 pk X2 pk 7 0.2 7 0.3 8 0.3 8 0.5 9 0.4 9 0.1 10 0.1 10 0.1
数学期望的概念源于此
4
数学期望的定义
设 X 为离散 随机变量. 其分布律为
P( X xk ) pk ,
k 1
k 1,2,
若无穷级数 xk pk 绝对收敛, 则称
其和为 X 的数学期望 记作 E( X ), 即
E ( X ) xk p k
k 1
5
定义
设连续型随机变量X 的密度为 f (x) 若广义积分
20
E 例9 设 X 服从参数为 的泊松分布,求 X 。
解:已知泊松分布律为:
PX k
数学期望的原理及应用

数学期望的原理及应用数学期望是概率论中的一个基本概念,它描述了一个随机变量的平均水平或预期值。
具体地说,数学期望通过将随机变量的可能取值与相应的概率加权求和来计算。
数学期望的原理可以简单地表示为:对于一个离散型随机变量X,它的数学期望E(X)等于X每个可能取值xi乘以对应的概率p(xi)的累加和。
数学期望的计算公式可以表示为:E(X) = x1*p(x1) + x2*p(x2) + ... + xn*p(xn)其中,x1, x2, ..., xn为随机变量X所有可能的取值,p(x1), p(x2), ..., p(xn)为对应的概率。
对于连续型随机变量,数学期望的计算方法类似,只是将求和换成了求积分。
具体地说,对于一个连续型随机变量X,它的数学期望E(X)等于X在整个取值范围上的每个取值x乘以对应的概率密度函数f(x)的乘积的积分。
数学期望的计算公式可以表示为:E(X) = ∫x*f(x)dx数学期望的应用非常广泛,以下列举了一些常见的应用场景:1. 风险评估:数学期望可以用于评估风险,通过计算损失的数学期望来衡量风险的大小。
例如,在金融领域中,投资者可以通过计算股票的预期收益来评估投资的风险和回报。
2. 制定决策:数学期望可以帮助人们在面临多个选择时做出决策。
通过计算不同选择的数学期望,可以找出最具有潜在利益的选择。
3. 设计优化:数学期望可以帮助优化设计过程。
例如,在工程领域中,可以通过计算产品的预期性能来指导设计参数的选择和调整。
4. 分析:数学期望被广泛应用于分析中。
游戏参与者可以通过计算不同下注策略的数学期望来制定最终的下注策略。
5. 统计推断:数学期望是许多重要的统计量的基础,如方差、标准差等。
通过计算数学期望,可以进行更深入的统计分析和推断。
6. 优化调度:在运输和调度问题中,数学期望可以用来优化资源的分配和调度。
通过计算任务完成时间的数学期望,可以制定最优的任务调度策略。
总之,数学期望是概率论中一个重要的工具和概念,它可以帮助我们理解和分析随机现象,并在很多实际问题中发挥重要作用。
《概率论与数理统计》数学期望

§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题
概率论第三章

一、数学期望的概念 二、数学期望的性质 三、应用实例
回
停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .
数学期望, 记为EX, 即
E X
xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为
1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.
《数学期望》课件

在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策
概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论课件--3-1 数学期望17p

若
g ( x , y ) f ( x , y ) dxdy
绝对收敛,
则 Z g ( X , Y ) 的数学期望存在, 且有
E ( Z ) E ( g ( X , Y ))
g ( x , y ) f ( x , y ) dxdy
(6)
特例 E ( X )
定义1 设离散型随机变量 X 的分布律为
P{ X = x i } = p i , i = 1, 2,...
NORTH UNIVERSITY OF CHINA
若级数 xi p i 绝对收敛, 则称级数 xi p i 的和
i i
为 X 的数学期望, 简称期望或均值. 记为: E ( X ) = xi p i
的数学期望存在, 且有
E ( Z ) E ( g ( X , Y ))
g(x , y
i i j
j
) p ij
(5)
NORTH UNIVERSITY OF CHINA
2. 二维连续型随机变量函数的数学期望 设二维连续型随机变量 ( X , Y ) 的联合概率密度函数为
f ( x , y ),
NORTH UNIVERSITY OF CHINA
1. 二维离散型随机变量函数的数学期望 设二维离散型随机变量( X , Y ) 的联合分布律为
P X x i , Y y i p ij
( i , j 1, 2, )
若
g(x , y
i i j
j
) p ij 绝对收敛, 则 Z g ( X , Y )
NORTH UNIVERSITY OF CHINA
概率论第四章总结-精品文档

XY
=
数.
Cov ( X ,Y ) D( X ) D(Y)
称为随机变量X与Y的相关系
2.基本性质
7)| |=1的充要条件是,存在常数 a,b使得 P{Y=a+bX}=1
XY
1)Cov(X,Y)=Cov(Y,X) , Cov(X,X)=D(X).
5)Cov(X1+X2,Y)=Cov(X1,Y)+Cov (X2,Y). 6)| |≤1. *当=0时,称X与Y不 相关.
XY
2)D(X+Y)=D(X)+D(Y)+2Cov(X,Y) 3)Cov(X+Y)=E(XY)-E(X)E(Y).
4)Cov(aX,bY)=abCov(X,Y),a,b是常数.
3.例题 • 设随机变量X ~ N( , ),Y ~ N( , ),且设X,Y相互独立,试求 • Z1=aX+bY和Z2=aX-bY的相关系数(其中a,b是不为零的常数).
The key
解:E[(X-C)2]=E(X2-2CX+C2)=E(X2)-2CE(X)+C2=E(X2) -[E(X)]2+{[E(X)]2-2CE(X)+C2}=D(X)-[E(X)-C]2 ≥ D(X),等 号当且仅当C=E(X)时成立.
三、协方差及相关系数
1.定义
量E{(X-E(X))(Y-E(Y))}称为随机变量X与Y的协方差. 记为Cov(X,Y),即 Cov(X,Y)=E{(X-E(X))(Y-E(Y))}
,
j=1,2,····,说明X的 数学期望不存在. 例2.将n只球(1—n号)随 机的放进n个盒子(1—n号) 中,一个盒子装一只球.若
3j j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章数字特征4.1 数学期望
4.2 方差
4.3 协方差与相关系数
4.4 矩与协方差矩阵
P85例4.1.2:某种产品次品率为 0.1。
检验员每天检验 4 次,每次随机抽取10件产品进行检验,如发现次品数大于 1, 就调整设备。
若各件产品是否为次品相互独立, 求一天中调整设备次数的期望。
用X 表示检验抽取10件产品中的次品数,则=}{备每次检验后需要调整设P X ~B (10, 0.1),
{1}P X >=}
1{}0{1=−=−=X P X P 9.01.0109.019
10
××−−=. 2639.0 =则Y ~B (4, 0.2639),
=)(Y E =np .
1.0556 2639.0 4=×1{1}P X −≤9
11101000109
.01.09.01.01C C −−=解:用 Y 表示一天中调整设备的次数,
检验员每天检验 4 次,用p 表示每次检验后需要调整设备的概率,
则Y ~B(4, p ),现在求p .{1}
P 每次检验发现的次品数大于p =1(;10,0.1)(;100,0.1)1b b =−−E(E(Y
Y )=np=4 p ,
的概率密度函数为⎪⎩
⎪⎨
⎧∉∈=].4000 2000[ 0 ]4000 2000[ 20001)(,,,,,x x x f 4000
2000
1
()2000
g x dx ∫)]=()()g x f x dx ∞
−∞
=∫4000)3t dx tdx ⎤+⎥⎦∫261(214000810)2000t t =−+−×4X t
=−4140000,t −+=有:可算得当 t = 3500 时,多余的库存
1。