光伏组件封装技术研究

合集下载

太阳能电池晶体硅光伏组件封装浅析(工艺控制篇)

太阳能电池晶体硅光伏组件封装浅析(工艺控制篇)

从工艺控制着手论述,找出组件封装过程中的关键点,从而进行重点控制,保证组件的各项性能及可靠度本人从事光伏组件封装多年,一路走来经历了无数的荆棘、坎坷、鲜花、掌声,蓦然回首还历历在目,从最初对太阳能光伏封装知识的朦胧无知,到一知半解,再到随心所欲,最后到每一步控制的谨小慎微。

每一步的变化都是经验教训,每一步的成长都付出了沉重的代价。

本篇将从工艺控制着手论述(下篇将从现场管理着手),找出组件封装过程中的关键点,从而进行重点控制,保证组件的各项性能及可靠度。

关键控制点总结归纳为:虚、胶、亏。

(一)“两虚”虚焊可能导致众多问题,如影响封装功率,产生热斑、断路、打弧,导致后期使用衰减过大等。

笔者认为判断虚焊有两种方式:“虚1”即电池片虚焊、汇流条虚接。

如何判断电池片虚焊呢?笔者认为方式有多种,介绍目前几种常用的方式。

对于电池片焊接质量,一般通过两种方式进行判断:第一,通过肉眼直接判断:虚焊外观表现为接触不到位,中间产生缝隙;第二,通过工具进行判断:将焊好的电池片放到拉力机上,观察拉力值大小。

一般厂家要求正面拉焊力大于1.5N/mm,背面拉焊力大于3N/mm(因厂而异),保证稳定性的前提是要在材料变更、温度监控和人员变化等方面做好记录和监控,以免造成批量波动,影响焊接质量。

而对于汇流条虚接判断,则一般通过肉眼判断,看接触是否牢固(焊接圆润、汇流条间无缝隙等)。

有的工厂在焊接时进行点焊操作,然后通过自互检检验进行控制。

笔者认为,最好的方式还是通过改变员工的动作手法进行改善(如按压焊接、捏压焊接、挂锡焊接等)。

“虚2”指接线盒接线端子间的虚接。

目前接线盒与汇流条有两种接线方式:嵌入式和焊接式。

在嵌入式接线盒操作时,如果员工操作不当(假性接触或接触面积过小),容易出现汇流条与插口不匹配的问题;或者组件在安装工地遭雨水浸泡、盒体进水,导致接线端子锈蚀。

这两种现象都会导致串联电阻变大,导致接线盒烧毁。

在焊接式接线盒中,部分接线盒厂家在端子处挂锡偏少,而员工为了贪图方便、高效,直接进行焊接,这对25年的产品质保期是非常大的挑战。

光伏组件封装工艺实习报告

光伏组件封装工艺实习报告

实习报告:光伏组件封装工艺实习一、实习背景随着我国能源结构的转型和可再生能源的推广,光伏产业得到了迅速发展。

作为光伏产业的核心环节,光伏组件的封装工艺对组件的性能和寿命具有重要意义。

此次实习,我有幸进入一家光伏组件生产企业,深入了解了光伏组件的封装工艺及流程。

二、实习内容1. 光伏组件封装工艺概述光伏组件封装工艺主要包括电池片检测、电池片单焊、电池片串焊、组件层叠、组件层压、安装边框和接线盒、成品测试和包装入库等工序。

各道工序环环相扣,直接影响产品的质量和档次。

2. 电池片检测电池片检测是光伏组件封装的第一道工序。

主要包括对电池片的外观、色差、电阻率以及输出电流、输出电压和稳定耐用性等参数进行检测。

检测过程主要通过专业仪器和设备完成。

3. 电池片单焊电池片单焊是光伏组件封装的第二道工序。

操作过程中,将焊带平放在电池片的主栅线上,焊带的另一端接触到电池片上的栅线上。

焊接时,要求烙铁头的起始点应在单片左边处,焊接中烙铁头的平面应始终紧贴焊带。

焊接应牢固、无毛刺、无虚焊及锡渣,表面光滑美观。

4. 电池片串焊电池片串焊是光伏组件封装的第三道工序。

将规定数量已焊好的电池片,背面向上排在模板上,用一只手轻压住2块电池片,确保焊接牢固。

5. 组件层叠组件层叠是光伏组件封装的第四道工序。

将电池片串焊好的组件进行层叠,层叠过程中要注意层与层之间的绝缘和电池片的对齐。

6. 组件层压组件层压是光伏组件封装的第五道工序。

将层叠好的组件放入层压机中,通过高温高压使EVA胶膜固化,形成光伏组件。

7. 安装边框和接线盒安装边框和接线盒是光伏组件封装的第六道工序。

在光伏组件的四周安装边框,以增加组件的稳定性和抗风能力。

同时在组件背面安装接线盒,用于连接光伏系统和负载。

8. 成品测试和包装入库成品测试和包装入库是光伏组件封装的最后一道工序。

对封装好的光伏组件进行性能测试,确保其满足国家标准和要求。

测试合格后,进行包装并放入库存管理。

基于不同胶膜封装的n型双玻TOPCon光伏组件的可靠性研究

基于不同胶膜封装的n型双玻TOPCon光伏组件的可靠性研究

:EV A为聚乙烯-聚醋酸乙烯酯共聚物图1 单玻晶体硅光伏组件的结构图Fig. 1 Structure diagram of c-Si PV module with single glass性、可粘接性、耐紫外线、低水汽透过率及高体积电阻率等性能特点。

虽然封装胶膜的成本较低,但却是决定光伏组件产品质量、寿命的关键因素。

目前,市场中常用的封装胶膜主要有胶膜和聚烯烃弹性体(POE)胶膜,有一些光伏组件生产厂商开始采用可发性聚乙烯EV A+POE)胶膜。

EV A材料因其优异的流动性、,女,硕士,主要从事太阳电池及光伏组件方面的研究。

图2 层压后6块光伏组件样品的EL 图像Fig. 2 EL images of six PV modules samples after laminationa.样品1b.样品2c.样品3d.样品4e.样品5f.样品6从图2可以看出,两组样品的EL 图像均正常,不存在隐裂、碎片、明暗片、过焊等现象。

对两组样品进行电性能测试,测试结果如表1所示。

从表1可以看出:样品1~样品3大功率平均值为556.861 W ,光电转换效率平均值为21.55%;样品4~样品6的最大功率平均值第2期为559.061 W,光电转换效率平均值为21.63%。

两组最大功率平均值相差2.2 W,光电转换效率平均值相差0.08%。

同时两组样品的开路电压相差在0.006 V之内,可忽略不计,但样品4~样品6的短路电流明显比样品1~样品3的高,且两者均值相差34 mA。

很明显正、背面均采用POE胶膜封装的光伏组件的电性能优于正面POE胶膜+背面EV A胶膜封装的光伏组件。

光伏组件的封装损失(CTM)是衡量光伏组件理论输出功率与实际输出功率差异的重要参数之一,其值越高,说明光伏组件封装损失程度越小。

样品1~样品3的CTM平均值为99.27%,样品4~样品6的CTM平均值为99.66%,由此可知,正、背面均采用POE胶膜封装的光伏组件的CTM值小于正面POE胶膜+背面EV A胶膜封装的光伏组件,说明双面均采用POE胶膜封装的光伏组件具有良好的性能,这归功于POE材料的优异性能。

光伏组件封装胶膜的种类及特性研究

光伏组件封装胶膜的种类及特性研究

光伏组件封装胶膜的种类及特性研究
一、封装胶膜种类及特性
1、EVA封装胶膜
EVA(乙烯-乙烯醇-醋酸乙烯)封装胶膜是目前太阳能光伏组件封装
胶膜中使用最广泛的一种,以其优异的光学性能而著称,具有抗氧化、防
水性能好、耐紫外线、耐放电性好,弹性好等优良性能。

2、PVE封装胶膜
PVE(聚氨酯-乙烯-乙烯醇-醋酸乙烯)封装胶膜具有良好的抗污染性能,耐老化,因此可有效地保护太阳能电池,防止光伏模块污染。

PVE是
一种溶剂型胶膜,除了具有EVA胶膜的基本性能之外,具有愈合性、耐温
度高、耐热性强、胶水稳定、抗水蒸汽性能优良等优点。

3、Fluoropolymer封装胶膜
Fluoropolymer(氟烯聚合物)封装胶膜具有极好的耐氧化、耐放电、耐紫外线、耐虫蛀、耐湿热、耐低温等性能,能够在高温环境中保护太阳
能电池,防止电池腐蚀而失效。

4、热收缩封装胶膜
热收缩封装胶膜是使用热化学制备的DSPT(低熔点聚合物)封装胶膜,具有热收缩性能好、抗氧化、耐腐蚀,防水等优良性能,在光伏组件
封装中,可以提供充足的热耗散,阻碍膜内的水分形成,从而避免室内的
腐蚀或者外部高温对太阳能电池的损害。

二、封装胶性能评价
1、透光性能。

太阳光伏组件封装技术创新与突破

太阳光伏组件封装技术创新与突破

太阳光伏组件封装技术创新与突破一、背景介绍太阳能作为清洁能源的重要组成部分,受到了全球范围内的广泛关注与重视。

而太阳光伏组件作为太阳能发电系统的核心部件,其封装技术的创新和突破对于提升光伏发电效率、延长组件寿命、降低成本具有重要意义。

因此,本文将就太阳光伏组件封装技术的创新和突破展开讨论。

二、太阳光伏组件封装技术现状分析随着太阳能技术的不断进步和市场需求的不断增长,太阳光伏组件封装技术也在不断发展。

目前,主流的太阳光伏组件封装技术包括玻璃-背板封装、双玻封装、背胶封装等。

这些传统封装技术在一定程度上满足了光伏组件的基本需求,但也存在着一些不足之处,比如封装材料的寿命短、光伏组件易受外界环境影响等。

三、太阳光伏组件封装技术创新方向为了克服传统封装技术存在的问题,太阳光伏组件封装技术的创新方向主要包括以下几个方面:1. 太阳光伏组件封装材料的创新:开发高耐候性、高温耐性、特种功能性封装材料,提高封装材料的寿命和稳定性。

2. 封装工艺的创新:引入先进的封装工艺,比如柔性封装技术、真空封装技术等,提高封装效率和质量。

3. 封装结构的优化:设计新型的封装结构,优化组件内部布局,降低光伏组件的热阻、电阻等损耗。

四、太阳光伏组件封装技术创新案例分析近年来,一些企业和研究机构在太阳光伏组件封装技术方面取得了一些突破性的进展。

比如,某公司利用纳米技术开发出了一种高温耐性、透明度高的封装胶,成功解决了光伏组件在高温环境下封装材料易老化的问题;某研究团队利用自动化设备开发出了一套高效率、低成本的柔性封装工艺,显著提高了光伏组件的生产效率和质量。

五、太阳光伏组件封装技术创新对光伏产业发展的影响太阳光伏组件封装技术的创新和突破将对光伏产业的发展产生深远的影响。

首先,新型封装技术的应用将大幅提升光伏组件的发电效率和稳定性,降低光伏发电成本,推动光伏产业向更高效、更可持续的方向发展。

其次,封装技术的创新将促进光伏产业的技术进步和产业升级,带动相关产业链的发展和扩展,推动光伏产业实现从规模化到智能化的转型。

光伏组件的封装方案

光伏组件的封装方案

光伏组件的封装方案一、引言随着清洁能源的日益重要,光伏能源已成为未来可持续发展的重要组成部分。

光伏组件作为光伏能源核心部件之一,其封装方案直接影响着光伏发电的效率和寿命。

光伏组件的封装方案至关重要。

本文旨在对光伏组件的封装方案进行详细介绍,包括封装材料、封装结构和封装工艺等内容。

二、封装材料1. 玻璃光伏组件的封装通常采用双层玻璃结构,其中夹层采用特殊的EVA(乙烯醋酸乙烯)材料,具有良好的透光性和保护性能。

玻璃的选择应考虑其耐候性、抗紫外线能力以及透光率等因素,以确保光伏组件长期稳定运行。

2. 背板背板是支撑光伏组件的重要部件,一般采用聚酯薄膜或者铝合金材料。

其主要功能是提供组件的结构支撑和保护作用,同时要具备一定的阻燃性能和电气绝缘性能,以确保光伏组件在各种恶劣环境下都能安全稳定运行。

3. 边框光伏组件的边框一般采用铝合金材料,主要用于固定玻璃和背板,同时也可以提供对组件的保护作用。

边框的连接处通常采用特殊的角码进行连接,以提高组件的结构强度和密封性。

4. 导线光伏组件的导线通常采用特殊的电气连接线,具有良好的耐高温、耐紫外线和抗老化能力。

导线的连接点应采用焊接或压接方式,确保连接稳固可靠。

5. 封装胶EVA(乙烯醋酸乙烯)是光伏组件封装中最重要的材料之一,主要用于夹层封装。

EVA 具有优良的光伏特性、机械性能和耐老化性能,能够有效地保护电池片不受外界环境的影响。

三、封装结构1. 电池片光伏组件的核心部件是电池片,一般采用硅片或薄膜电池片。

硅片电池一般采用多晶硅或单晶硅材料,其尺寸和电池布局将直接影响光伏组件的封装结构。

2. 夹层夹层是光伏组件封装的关键部位,主要由EVA封装胶材料构成。

夹层的主要功能是粘合和封装电池片,同时具备良好的光透过性和保护作用。

3. 玻璃光伏组件的面板采用双层玻璃结构,主要用于保护夹层和电池片,并提供光学透光性。

玻璃的选择应考虑其透光性、机械性能和耐候性等因素。

4. 背板背板主要用于支撑和保护光伏组件,同时通过边框固定在一起。

光伏建筑一体化系统中光伏组件封装工艺探讨

光伏建筑一体化系统中光伏组件封装工艺探讨

3 初步 结论
( )从焦 炉 煤气 的特性 和玻璃 熔 窑 的热量 传 1
递过程分析 ,底 烧式小炉可能更适合 焦炉煤 气 。 ( )底烧小炉 寿命 比侧烧 要长 。 2
( 维护简单方便 。 3)
外 ,让燃烧释放 的热量尽可 能的传给配合料 。
( 燃烧器数量 比侧烧要多 。 4) ( 综合效 益较好 。 5)
际化 料的效 果却会好很多 。
232 基 本 构 想 ..
实践可 以看 出 :①火焰 轮廓整 齐 ;② 火焰不发飘 、 刚性较好 ;③燃烧 比较 充分 ;④维护简单方便 。
( ) 烧 器安 装 在小 炉底 部 位 于喷 火 口的位 1 燃
置 ,如 图 2 示 ,将 燃 烧 火 焰 全 部 移 到 喷 火 口以 所
之一 。太 阳能 的利用 ,特别是 太 阳能 光伏发 电 ,在
顶 、外墙 阳面 ,又作 为能 发 电的电源 ,由于发 电成
本较 低 、对 环境破坏 小 、增 加建筑 功能等优 点 , 日
益得 到运用 ,这就需 要我们 将太 阳能 电池 组件制作
成 夹层和 中空产 品 ,通过 幕墙或 屋面直接 运用到建 筑 上 。 目前 在太 阳能光伏组 件上 广泛运用 的是单 晶 点 以及 池宽确定气体燃料 的矢 量角和流速 。
目前 大部 分组 件 封装 厂家 采用 传 统层 压机 生 产 ,不仅 效率 低 、产 品 品质差 ,还易 造 成破 损 。本 文结 合 汽车 和建 筑夹 层玻 璃工 艺对 该类 型组 件 封装 工艺 进行 探 讨 ,相对 于 传统 的封 装 工艺 ,新 型封 装 技术 不但 使 太 阳电池 组 件具 有 长寿命 ,不易 受损 等优点 而且 能实现 规模 化 、产 业化 制造 ,大 幅度降 低光伏 电池 组件 成本 。 关键 词 光 伏建 筑 一体 化 光伏 组件 封装 工 艺 .

光伏组件的封装方案

光伏组件的封装方案

光伏组件的封装方案
光伏组件(也称为太阳能组件或光伏板)的封装方案主要涉及两个方面:物理封装和电气封装。

1. 物理封装:
- 框架:光伏组件通常使用铝合金或不锈钢材料制作框架,以提供结构强度和支撑。

框架还可以用于连接不同的太阳能电池片。

- 表面玻璃:光伏组件的正面通常覆盖有高透明度的玻璃,以保护电池片并提高光吸收。

- 背板:背面通常有一个背板,用于保护电池片,并提供机械支撑和防潮保护。

- 导线和连接器:用于连接电池片和组件的电线和连接器,通常在背板上或框架周围。

2. 电气封装:
- 电池片:光伏组件使用太阳能电池片将太阳能转化为电能。

电池片通常由硅材料组成,并通过电气连接进行串联或并联。

- 焊接:电池片之间的电气连接通常使用焊接或印刷电路板(PCB)来实现。

焊接点或PCB上的电线用于连接电池片并传输电能。

- 封装材料:光伏组件使用封装材料来保护电池片和电气连接,并提供防水、防尘和耐候性能。

- 反射层:一些封装方案在电池片周围或背板上使用反射层,以提高光的利用率,减少能量损失。

封装方案的选择通常取决于应用场景、性能需求、成本和可靠性等因素。

对于不同的光伏组件制造商或项目,可能会有不同的封装方案。

此外,需要满足相关的行业标准和法规要求,如UL、IEC和CE等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏组件封装技术研究
光伏组件作为光伏系统中核心组成部件,其质量的优劣将严重影响到光伏系统的发电量和寿命。

只有原材料选择正确,原材料匹配最佳,封装技术良好,才能使晶硅电池片安全稳定,保证光伏组件良好的长期发电性能。

标签:玻璃;背板;EV A;边框
本文主要从玻璃、EV A、背板、边框四种关键原材料入手,对其选材、特点、作用、工艺、检测、发展趋势几方面进行阐述,以其对光伏组件的技术研究提供一定的参考。

1 玻璃
玻璃位于光伏组件正面的最外层,在户外环境下,直接接受阳光照射,并隔离水气、杂质等。

一般的光伏组件使用的玻璃为镀膜钢化玻璃。

钢化玻璃是将玻璃加热到接近融化的温度,一般在600℃-650℃时处于粘性流动状态,保温一定时间,然后经过快速冷却即淬火,使玻璃内部产生很大的张应力,尤其是玻璃表面。

张应力存在于玻璃内部,当玻璃破碎时,能使玻璃保持一体而不会碎裂,通常钢化玻璃很难被外力正面击碎,而由于张应力的原理,使得钢化玻璃在接触尖锐物理撞击或者磕碰边角时很容易碎裂。

这在生产和使用过程中要尤其注意。

1.1 钢化玻璃的优点
钢化玻璃的强度比普通玻璃高,抗冲击强度是普通玻璃8倍左右,抗弯的强度是普通玻璃的4倍左右;安全性能很好,即使破碎也无尖锐的小碎片,很大的降低了造成人身伤害的风险;耐急冷急热的性质有所提高,可承受上百摄氏度的温差变化,这对防止因为高热引起的炸裂有很好的效果。

1.2 钢化玻璃的缺点
不能再进行切割和加工。

钢化在生产前就需要对玻璃进行加工至需要的形状,再进行钢化处理。

这就造成一旦钢化玻璃成型就很难再加工,因此钢化玻璃对生产合格率的要求很高,否则将极大的增加这一重要原材料的生产成本,进而影响组件的售价。

钢化玻璃在温差变化大时会自爆,同时由于外界环境的因素,钢化玻璃自身存在一定的自爆概率。

自爆由两种基本类型,一种是“蝴蝶斑”式自爆,即沿碎裂纹路找到碎裂中心处有类似蝴蝶翅膀一样的结构;另一种就是结石自爆,形成内部向外爆裂开来的圆孔装中心结构。

给予以上两点外观特征,就可以判定钢化玻璃是自爆还是外力引起的。

1.3 玻璃镀膜
玻璃镀膜的增透原理为光在从一种物质进入另一种物质时,只要密度不同,就会产生折射和反射。

光从折射率较小的物质入射到折射率较大的物质表面时,反射光发生方向变化。

基于此可以增加光线的透射率。

钢化玻璃的镀膜工艺有浸泡法、喷涂法、蚀刻法、辊涂法等。

1.4 光伏玻璃的检测
光伏玻璃的检测内容包括外观、尺寸、弯曲度等一般性能;太阳光直接透射比、含铁量等光学性能;抗冲击性能、内应力、耐热性能等安全性能。

光伏组件的玻璃发展趋势是超薄玻璃,具备重量更轻,厚度可选、透光率略微上升的优势,但存在波形度变大、钢化颗粒数不达标的难题。

高增透玻璃,具备透光率更高的优势。

双绒面玻璃,具备透光率更高,美观的优势。

2 背板
光伏组件背板的结构由基材的两面加功能层组成。

光伏组件背板通过自身优良的物理性能、耐老化性能、隔绝空气和水分的性能,绝缘性能使组件成为一个有较好物理机械强度的整体并且内部结构长时间不受外界有害因素影响。

从而对太阳能电池组件提供保护和支撑。

此外,由于加工工艺的要求,背板还要在层压时与EV A牢固粘合,还要与粘结接线盒的硅胶牢固粘合,自身两层EV A融化要彻底交融。

2.1 背板不同结构的优缺点
(1)两面氟膜背板:绝缘性好,但与EV A粘结有好有坏,制造成本也毕竟高。

使用Tedlar,粘结氟膜的粘合剂老化后,氟膜分层、起泡、鼓包、黄变等。

(2)单面氟膜和PE背板:成本低、制造难度小、与EV A粘结力强。

但是此种背板正面绝缘性能差,正面PET基材直接暴露在日光下,耐老化性能差,容易出现黄变等问题。

(3)PET/PE背板:成本最低,与EV A粘结力强,制造容易。

但是此类背板不耐老化。

(4)双面氟涂层背板:成本较低,颜色较多,绝缘性也好,但与EV A粘结有好有坏,表面粘合性不稳定。

2.2 光伏背板检测
光伏背板检测内容包括物理性能(拉伸强度、伸长率、收缩率);绝缘阻隔
性能(局部放电、击穿电压、水分透过率);耐候性能(紫外老化、湿热老化);粘结性能(和背板的剥离强度);交联度(EV A之间的粘接强度)。

EV A虽然对PET基材和EV A胶膜粘合性好,但对PET保护差、抗紫外性能差。

PE膜也会有同样的问题。

在电池组件中硅片的空隙中,紫外线通过EV A 直接照在背板上,如果是PE或EV A下面直接PET,背板整体抗紫外老化的能力就会降低很多,进而导致鼓包、变黄的问题,并最终导致光伏组件失效。

背板发展趋势向是具备高可靠性、轻量化、分布式光伏配套性能、价格更低化等特点的方向发展。

3 EV A
光伏电池封装胶膜(EV A)是一种热固性有粘性的胶膜,用于放在夹胶玻璃中间(EV A是Ethylene乙烯Vinyl乙烯基Acetate醋酸盐的简称)。

由于EV A胶膜在粘着力、耐久性、光学特性等方面具有的优越性,使得它被越来越广泛的应用于电流组件以及各种光学产品。

固化后的EV A能承受大气变化且具有弹性,它将晶体硅片组“上盖下垫”,将硅晶片组包封,并和上层保护材料玻璃,下层保护材料。

EV A是一种热融胶粘剂,常温下无粘性而具抗粘性,以便操作,经过一定条件热压变发生熔融粘接与交联固化,此时几乎完全透明。

与玻璃粘合后能提高玻璃的透光率,起着增透的作用。

EV A检测内容:外观检验、厚度检验、透光率检验、交联度检验。

其中,交联度检测数据将直接反映组件封装的可靠性。

EV A发展趋势:国产化、低价、高增益性、多样性等。

4 边框
光伏组件边框能够起到固定、密封太阳能电池组件、增强组件强度,延长使用寿命,便于运输、安装的作用。

通常采用铝材制造。

吕边框表面有抗氧化处理,工艺有阳极氧化、电泳、粉末喷涂、PVDF、喷砂等几类。

边框的检测包括:抗拉强度、延展性、耐盐雾腐蚀性、耐氨气腐蚀性、弯曲度等。

边框未来发展的趋势包括塑料边框,具备更轻质化的优势。

异形边框,具备个性化定制、适应多种安装条件的优势。

5 组件质量的把控
以上分析了组成光伏组件的重要原材料的相关内容,那么对于整体组件在封装成后,如何把控质量与技术呢?这就会出现各种各样的问题。

目前,组件质量
的把控能力,主要通过样品的测试结果来反映。

组件的发电量会根据接受的辐照度呈现不规则线性变化。

通过低辐照度下电性能测试,可以有效了解产品是否适合在日照条件较差的地区使用。

由于组件老化、缺陷或者环境遮蔽会导致过热现象。

通过热斑测试,可以确定组件耐热斑热效应的能力。

在温度较高地区容易出现由于接地条件差异和电势差导致的性能衰减。

通过PID电致衰减测试,可以研究组件及系统电势对组件性能衰减的影响。

在保证零部件可靠性的同时,组件的密封性能将直接影响封装在组件的使用寿命。

通过EV A剥离强度测量,定量测量组件封装强度,可有效避免因封装工艺的缺陷导致的损失。

无论封装技术如何发展,都必须保证玻璃与EV A之间的剥离强度不能低于40N/CM。

否则,组件的可靠性将成为最大的问题。

6 结语
在以风能、光伏等为代表的新能源大潮到来之际,研发优质光伏技术、控制产品质量,在保证光伏发电量和使用寿命上,优质企业必将上升成为行业内的领导者。

届时,“光伏号”列车才能真正驶上良性发展的正轨。

参考文献
[1]王长贵,王斯成.太阳能光伏发电实用技术[M].北京:化学工业出版社,2005.
[2]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2005.
[3]赵朝会.光伏发电技术的研究现状和应用前景[J].上海电机学院学报,2008,11(2).
[4]闰士职,尹梅,李庆,等.太阳能光伏发电并网系统相关技术研究[J].技术前沿,2009,11(1).。

相关文档
最新文档