偏振光的获得和检测
光的偏振实验方法

光的偏振实验方法光的偏振是光学中的重要现象,它涉及到光的传播方向和振动方向的关系。
为了研究和观察光的偏振现象,科学家们开发了许多实验方法。
本文将介绍一些常用的光的偏振实验方法。
一、马吕斯交叉法马吕斯交叉法是一种简单而直观的光的偏振实验方法。
所需装置包括一个偏振镜和一对交叉的光栅。
实验步骤:1. 将光栅放置在光路中,使光通过光栅后形成一对交叉的图案。
2. 调整偏振镜的角度,观察图案的变化。
3. 当偏振镜与光栅之间的角度达到一定条件时,图案将呈现出清晰的波纹状。
通过观察图案的变化,我们可以判断光的偏振性质以及偏振方向。
二、尼古拉斯法尼古拉斯法是一种利用偏振片的实验方法,可以用来测量光的振动方向。
实验步骤:1. 准备一对偏振片,将它们的传递轴垂直放置。
2. 将待测光线通过第一个偏振片,使其只能通过一个方向的振动。
3. 调整第二个偏振片的角度,观察透过第二个偏振片的光的强度变化。
4. 当第二个偏振片的传递轴与第一个偏振片之间的夹角为90°时,光的强度将最小。
通过调整第二个偏振片的角度,我们可以确定光的振动方向。
三、双折射和波片法双折射和波片法是一种通过使用双折射晶体和波片来产生和分析偏振光的实验方法。
实验步骤:1. 使用双折射晶体(如方解石)产生偏振光。
2. 将产生的偏振光通过波片(如四分之一波片或半波片)进行调整。
3. 观察光的传播方向和振动方向的变化,使用适当的检测器记录实验结果。
通过对偏振光的产生、调整和分析,我们可以研究光的偏振现象和性质。
总结:光的偏振实验方法有很多种,其中马吕斯交叉法、尼古拉斯法和双折射和波片法是常用的实验手段。
通过这些实验方法,科学家们能够观察和研究光的偏振现象,从而深入理解光的性质和行为。
对于光学研究和实际应用而言,光的偏振实验方法具有重要的意义。
注:本文介绍的实验方法仅为举例,实际实验操作应根据具体情况和实验要求进行调整。
光的偏振实验马吕斯定律

光的偏振实验马吕斯定律光的偏振实验马吕斯定律光的偏振是指光波振动方向的特性。
在物理学中,马吕斯定律是描述光的偏振性质的基本定律之一。
本文将介绍光的偏振实验以及马吕斯定律的原理与应用。
一、光的偏振实验光的偏振实验是通过一系列实验来观察和测量光波在通过偏振器材料时的偏振现象。
常用的偏振实验方法包括偏振片实验、旋光仪实验等。
1. 偏振片实验偏振片是一种特殊的光学材料,可以选择允许特定振动方向的光通过。
在偏振片实验中,我们可以通过两块偏振片的组合来观察光的偏振现象。
通常,将第一块偏振片设置为偏振器,通过旋转它的角度,可以改变光波通过的偏振方向。
随后,将第二块偏振片作为分析器,用于观察通过的光的强度。
根据分析器的角度,我们可以观察到光的透射光强度的变化。
2. 旋光仪实验旋光仪是一种常用的光学仪器,用于测量物质的旋光性质。
旋光性是指物质对偏振光的旋转效应。
在旋光仪实验中,通过旋转样品槽里的物质,可以观察到经过样品后偏振光旋转的现象。
二、马吕斯定律的原理马吕斯定律是法国科学家马吕斯在1808年提出的,该定律描述了光在通过各向同性材料(无论是吸收还是反射)时的偏振性质。
根据马吕斯定律,当一束不偏振光从一个均匀各向同性介质(例如空气、玻璃等)射入时,经过该介质后的光将成为线偏振光。
具体来说,假设光波的振动方向与入射面垂直,那么经过介质后,与入射面垂直的振动方向会被选择性地减弱,而平行于入射面的振动方向则会保持不变。
马吕斯定律的实质是光的振动方向在介质中受到选择性的吸收和减弱,从而导致光的偏振现象。
三、马吕斯定律的应用马吕斯定律在生活和科学研究中有着广泛的应用。
1. 偏振片根据马吕斯定律的原理,偏振片可以选择性地通过特定方向的光波,使其成为偏振光。
这种特性被广泛应用于摄影、光学仪器、偏振显微镜等领域。
2. 偏振光的产生与检测马吕斯定律的原理可以通过适当的实验装置来产生和检测偏振光。
例如,通过透镜和线性偏振片的组合,可以用于研究偏振光与物质的相互作用,有助于了解材料的光学性质。
偏振光的研究和检测

1,自然光通过检偏器 由于自然光具有轴对称性,将光强为Io的自然光中每一个光矢量都在x,y两个方向上分
解,因此有Ix=Iy=Io,这说明肉然光可以等效为等幅(Io/2) 、无确定相位关系、阻取向任意 的两个正交的线偏振光。
如图44-1所示,Ip- θ曲线应为一条直线。
2.线偏振光通过检偏器——马吕斯定律 马吕斯定律指出,一束如图44-2所示光强为Io的线偏振光,通过检偏器的透射光强为
人眼仅对光的强弱变化敏感,而无法直接感知光的各种偏振态,必须借助检偏器,研 声透射光强的孪化来判定光的偏振态。检偏器(或起偏器)是二种只允许某一振动方向光通 过的光学器件,当它用来产生线偏振光时称为起偏器,用来检验线偏振光时称为检偏器。 常用的检偏器有两类:一类是利用材料对不同方向的电磁振动具有选择吸收特性的原理制 成的,称为偏振片;另一类是用双折射晶体制成的特殊棱镜,如尼科耳棱镜,格兰棱镜等,这 类棱镜的透光率和偏振度远高于偏振片。在检偏器上能够让电矢量充分透过的方向称为透 振方向,记作P,与P正交的方向上的电矢量将被强烈吸收而无法透过,称为消光方向。
2.线偏振光的检验 将起偏器的起偏角定在偏振方向为0”的位置,然后旋转检偏器找到光强最大的位置,
记录功率计的读数,而后每隔30”记录一次透射光强的数值,直到旋转一周后出现两次极 大和两次“消光”。画出透射光强随角度变化的曲线与理论曲线相比较,验证马吕斯定律 。
3. 1/4波片的摆正 旋转检偏器使PA正交,在起偏器与检偏器之间放一1/4波片,调节波片使激光束通过
3.椭圆偏振光
角度 0 30 60 90 120 150 180 210 240 270 300 330 360 光强 0.08 0.34 0.99 1.30 1.02 0.42 0.08 0.34 0.95 1.26 0.99 0.34 0.08
偏振光的获得和检测

§17-10偏振光的获得和检测一、偏振光的获得1. 布儒斯特定律如果让自然光从折射率为n 1的介质射向折射率为n 2的介质而被界面反射,反射光中垂直于入射面的光振动成分将大于处于入射面内的光振动成分,当入射角等于某一特定角i 0时,反射光成为振动面垂直于入射面的线偏振光,并且i 0满足, (17-69)这个规律称为布儒斯特定律,i 0称为布儒斯特角或起偏角。
当入射角为i 0时,折射角为r 0,根据折射定律,应有. (17-70)将这个关系代入式(17-69),得,即,这表示,当入射角为起偏角时,反射光与折射光互相垂直,如图17-40所示。
如果自然光从空气射到折射率为1.50的玻璃片上,根据布儒斯特定律,可以求得起偏角为56.3︒,此时的折射角为33.7︒。
当自然光以起偏角从一种介质入射到第二种介质的表面上,反射光成为线偏振光,而如果第二种介质没有特殊的吸收作用,那么折射光将成为部分偏振光,并且在入射面内的光振动成分将大于垂直于入射面的光振动成分。
假如让这样的部分偏振光连续几次作同样的反射和折射, 最后获得的折射光也必定是线偏振光。
2. 晶体的双折射现象在§8-7中讨论固体的一般性质时,曾涉及过晶体具有的一种普遍性质,即各向异性。
这里我们所要说的各向异性,是在某些透明晶体中光沿不同的方向具有不同的传播速率,具有这种性质的晶体,称为双折射晶体。
我们设想在各向同性的均匀介质中有一点光源s ,在任意瞬间光波的波面总是球面。
而在均匀的双折射晶体中,点光源s 发出的光波波面却有两组,一组是球面,另一组是旋转椭球面,如图13-41所示。
这两组波面在某一方向上彼此相切,如图中qq '的方向,这个方向称为晶体的光轴。
图 17-41在一般情况下,当平行自然光垂直入射到晶体的表面时,根据惠更斯原理,被照射的晶体表面上各点都是发射子波的波源,而子波的波面有球面和椭球面两种,所以子波波面的包络面也应有两种,即球面的包络面和椭球面的包络面。
大学物理第六章 波动光学(3)

178第6章 波动光学(Ⅲ)——光的偏振一.基本要求1.理解光的偏振的概念,光的五种偏振态的获得和检测方法; 2.掌握马吕斯定律及其应用;3.掌握反射光和折射光的偏振,掌握布儒斯特定律及其应用; 4.了解光的双折射现象;5.了解偏振光的应用。
二.内容提要和学习指导(一)光的五种偏振状态:自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振光。
(二)线偏振光的获得和检验 1.线偏振光的获得:①利用晶体的选择性吸收,可以制造偏振片。
偏振片可用作起偏器,也可用作检偏器。
②利用反射和折射偏振。
布儒斯特定律:自然光在两种介质的界面发生反射和折射时,一般情况下,反射光和折射光都是部分偏振光,在反射光中,垂直入射面的光振动较强,在折射光中,平行入射面的光振动较强。
当自然光以布儒斯特角121tan b i n -=入射(或/2i γπ'+=,或反射光线垂直于折射光线)时,反射光是线偏振光,其光振动垂直于入射面,此时折射光仍然是部分偏振光。
③利用晶体的双折射。
一束光射入各向异性介质时,折射光分成两束。
其中一束光遵守折射定律,称为寻常光(o 光)。
另一束光不遵守折射定律,称为非常光(e 光)。
o 光和e 光均是线偏振光。
o 光的振动方向垂直于o 光的主平面,e 光的振动方向在e 光的主平面内。
光线沿光轴方向入射时,o 光和e 光的传播速度相同。
在晶体内,o 光的子波波面为球面波,e 光的子波波面为旋转椭球面,利用惠更斯原理作图,可确定o 光和e 光的传播方向。
利用晶体的双折射现象,可以制造偏振棱镜和波片。
2.线偏振光的检验:①利用偏振片:由马吕斯定律可得,线偏振光经过检偏器后,出射光强I 与入射光强0I 的关系为:α20cos I I =,其中α是入射线偏振光偏振方向和偏振片通光方向的夹角。
②利用反射和折射偏振。
③利用偏振棱镜。
(三)圆偏振光或椭圆偏振光的获得和检验:线偏振光经过四分之一波片后出射的为椭圆偏振光,当平面偏振光的振动方向与四分之一波片的光轴方向成450角时,出射的为圆偏振光。
光偏振物理实验报告

1. 观察光的偏振现象,加深对光的横波性的理解。
2. 学习并掌握产生和检验偏振光的光学元件及仪器的工作原理。
3. 通过实验验证马吕斯定律,探究偏振光的特性。
4. 掌握椭圆偏振光和圆偏振光的产生与检测方法。
二、实验原理光是一种电磁波,具有横波特性。
当光波在传播过程中,若光矢量保持在固定平面上振动,则称为线偏振光;若光矢量绕着传播方向旋转,其端点描绘的轨迹为一个圆,则称为圆偏振光;若光矢量端点旋转的轨迹为一椭圆,则称为椭圆偏振光。
偏振片是一种能够选择性地透过某一特定方向振动的光波的光学元件。
当自然光通过偏振片时,只有与偏振片偏振方向一致的光波分量能够通过,从而产生线偏振光。
马吕斯定律指出,当线偏振光通过一个偏振片时,透射光的强度与入射光的强度成正比,且透射光的强度与入射光的偏振方向和偏振片的偏振方向之间的夹角θ满足以下关系:\[ I = I_0 \cdot \cos^2(\theta) \]其中,\( I \)为透射光的强度,\( I_0 \)为入射光的强度,θ为入射光的偏振方向和偏振片的偏振方向之间的夹角。
三、实验仪器1. 光具座2. 半导体激光器3. 偏振片4. 1/4波片5. 激光功率计6. 光电倍增管探头及电源7. 中央调节平台和两臂调节机构1. 将半导体激光器固定在光具座上,调整激光器使其发出的光束平行于光具座。
2. 将偏振片放置在激光器与光电倍增管探头之间,调整偏振片的偏振方向,观察光电倍增管探头的输出信号。
3. 记录偏振片偏振方向与激光器光束方向之间的夹角θ,以及光电倍增管探头的输出信号强度。
4. 重复步骤2和3,改变偏振片的偏振方向,记录相应的θ和输出信号强度。
5. 将1/4波片放置在偏振片与光电倍增管探头之间,调整1/4波片的光轴方向,观察光电倍增管探头的输出信号。
6. 记录1/4波片光轴方向与偏振片偏振方向之间的夹角θ,以及光电倍增管探头的输出信号强度。
7. 重复步骤5,改变1/4波片的光轴方向,记录相应的θ和输出信号强度。
旋光仪测旋光液体的浓度实验报告

实验19 旋光仪测旋光液体的浓度林一仙1实验目的1) 观察光的偏振现象,加深对光偏振的认识; 2) 了解旋光仪的结构及测量原理;3) 掌握旋光仪测定旋光液体浓度的方法。
2 实验仪器WXG-4圆盘旋光仪、葡萄糖溶液样品试管3 实验原理3.1偏振光的获得与检测 1)偏振光的获得:使自然光通过偏振片就形成只有一个振动方向的线偏振光(平面偏振光)。
2)偏振光的检测:用偏振片观察偏振光时,转动偏振片,当偏振片的偏振化方向与偏振光的振动方向一致时可看到最大的光强度,当偏振片的偏振化方向与偏振光的振动方垂直时,光强度为零。
用偏振片来观察自然光,转动偏振片观察时光强度保持不变。
3)物质的旋光性质:平面光通过旋物质时振动面相对入射光的振动面旋转了一定的角度,角度的大小(称旋光度)φ与偏振光通过旋光物质的路程l 成正比,对于旋光溶液,旋光度还与液体的浓度C 成正比。
()()对于旋光溶液对于旋光晶体lC ,l αϕαϕ==其中а为旋光率。
3.2 旋光溶液旋光率及浓度的测定方法①用旋光仪测量一组不同浓度(浓度已知)的葡萄糖溶液的旋光度φ,用作图法处理数据,并求得旋光率а,lk=α②用旋光仪测量未知浓度的旋光度x ϕ,可求得浓度l C xx αϕ=;也可利用旋光关系曲线直接确定对应的浓度。
4 旋光仪的结构4.1光学原理从图1旋光仪的光路图可以看出,钠光灯射出的光线通过毛玻璃后,经聚光透镜成平行光,再经滤色镜变成波长为m 710893.5-⨯的单色光。
这单色光通过起偏镜后成为平面偏振光,中间部分的偏振光再通过竖条状旋光晶片,其振动面相对两旁部分转过一个小角度,形成三分视场。
仪器出厂时把三分场均匀暗作为零度视场并调在度盘零度位置,三分场均匀暗的形成原理如图2所示。
图1 旋光仪的光路图图2三分场均匀暗视场的形成原理4.2 度盘双游标读数①读取左右两游标的读数并求平均得:2BA +=θ ②0θθϕ-=(注意:如果0θ为170多度时,那么θ读数应当加上180度)。
光的偏振研究实验报告

一、实验目的1. 观察光的偏振现象,加深对光的波动性质的认识。
2. 掌握产生和检验偏振光的方法和原理。
3. 学习使用偏振片、波片等光学元件,了解其工作原理。
4. 验证马吕斯定律,研究偏振光透过两个偏振器后的光强与夹角的关系。
二、实验原理光是一种电磁波,其电场矢量E的振动方向决定了光的偏振状态。
自然光中的电场矢量在垂直于光传播方向的平面内振动方向是随机的,而偏振光则具有特定的振动方向。
偏振光可以通过以下几种方法产生:1. 利用起偏器(如偏振片)将自然光变为线偏振光。
2. 利用双折射现象将一束光分解为两束具有不同振动方向的偏振光。
3. 利用反射、折射等光学现象使自然光部分偏振。
检验偏振光的方法有:1. 利用检偏器(如偏振片)观察光强变化。
2. 利用光电池、光电倍增管等光电探测器检测偏振光。
马吕斯定律指出,当完全线偏振光通过检偏器时,光强I与入射光强I0、检偏器透光轴与入射线偏振光的光矢量振动方向的夹角θ的关系为:I = I0 cos²θ。
三、实验仪器与用具1. 中央调节平台和两臂调节机构2. 半导体激光器和电源3. 偏振片(两块)4. 1/4波片(两块)5. 光电倍增管探头及电源6. 光电流放大器7. 光具座8. 白屏9. 刻度盘四、实验步骤1. 将激光器、偏振片、1/4波片和光电倍增管探头依次放置在光具座上,调整光路,使激光束通过偏振片后成为线偏振光。
2. 将线偏振光通过1/4波片,观察光强变化,记录数据。
3. 将1/4波片旋转一定角度,观察光强变化,记录数据。
4. 将线偏振光通过第二个偏振片,观察光强变化,记录数据。
5. 将第二个偏振片旋转一定角度,观察光强变化,记录数据。
6. 根据记录的数据,验证马吕斯定律。
五、实验结果与分析1. 观察到线偏振光通过1/4波片后,光强发生变化,说明1/4波片具有改变光偏振状态的作用。
2. 当1/4波片旋转一定角度时,光强也随之变化,说明光强与偏振片透光轴与入射线偏振光的光矢量振动方向的夹角θ有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§17-10偏振光的获得和检测
一、偏振光的获得
1. 布儒斯特定律
如果让自然光从折射率为n 1的介质射向折射率为n 2的介质而被界面反射,反射光中垂直于入射面的光振动成分将大于处于入射面内的光振动成分,当入射角等于某一特定角i 0时,反射光成为振动面垂直于入射面的线偏振光,并且i 0
满足
, (17-69)
这个规律称为布儒斯特定律,i 0称为布儒斯特角或起偏角。
当入射角为i 0时,折射角为r 0,根据折射定律,应有
. (17-70)
将这个关系代入式(17-69),得
,
即
,
这表示,当入射角为起偏角时,反射光与折射光互相垂直,如图17-40
所示。
如果自然光从空气射到折射率为1.50的玻璃片上,根据布儒斯特定律,
可以求得起偏角为56.3︒,此时的折射角为33.7︒。
当自然光以起偏角从一种介质入射到第二种介质的表面上,反射光成为
线偏振光,而如果第二种介质没有特殊的吸收作用,那么折射光将成为部分偏振光,并且在入射面内的光振动成分将大于垂直于入射面的光振动成分。
假如让这样的部分偏振光连续几次作同样的反射和折射, 最后获得的折射光也必定是线偏振光。
2. 晶体的双折射现象
在§8-7中讨论固体的一般性质时,曾涉及过晶体具有的一种普遍性质,即各向异性。
这里我们所要说的各向异性,是在某些透明晶体中光沿不同的方向具有不同的传播速率,具有这种性质的晶体,称为双折射晶体。
我们设想在各向同性的均匀介质中有一点光源s ,在任意瞬间光波的波面总是球面。
而在均匀的双折射晶体中,点光源s 发出的光波波面却有两组,一组是球面,另一组是旋转椭球面,如图13-41所示。
这两组波面在某一方向上彼此相切,如图中qq '的方向,这个方向称为晶体的光轴。
图 17-41
在一般情况下,当平行自然光垂直入射到晶体的表面时,根据惠更斯原理,被照射的晶体表面上各点都是
发射子波的波源,而子波的波面有球面和椭球面两种,所以子波波面的包络面也应有两种,即球面的包络
面和椭球面的包络面。
于是折射光将分成两束,如图13-42(a)所示。
由球面的包络面形成的折射光,称为寻
常光,用o 表示;由椭球面的包络面形成的折射光,称为非常光,用e 表示。
寻常光o 是遵从折射定律的,
而非常光e 不遵从折射定律。
如果晶体表面的法线恰好与光轴重合, 使垂直入射的自然光正好沿着光轴方
向,这时两种波面的包络面相重合,o 光和e 光相重合,即不发生双折射现象,如图13-42(b)所示。
(a) (b)
图 13-42
实验表明,当自然光射入双折射晶体时,两束折射光o 和e 都是线偏振光,并且它们的振动面通常接近于互相垂直。
所以,如果能将寻常光与非常光分开,那么就可以利用双折射晶体由自然光获得线偏振光。
通常采用的一种方法是使寻常光或非常光经过全反射而偏转到一侧,另一束光则无偏转地由晶体出射。
尼科耳棱镜就是利用这个道理获得线偏振光的。
图17-43表示了一个尼科耳棱镜的示意图。
它是由两块方解石(双折射晶体)直角棱镜(图中abd 和acd )用加拿大胶粘合而成的。
光轴qq ¢与端面成48︒角。
当自然光沿平行于棱ac 的方向入射到端面ab 后, 折射成两束,即寻常光o 和非常光e 。
寻常光o 的振动面与截面abcd 垂直,而非常光e 的振动面与截面abcd 平行。
对于寻常光o ,方解石的折射率为1.658,加拿大胶的折射率为1.550,因此在方解石与加拿大胶的界面上发生全反射(入射角为76°,全反射的临界角为69︒)。
对于非常光e ,在此入射方向上方解石的折射率为1.516,加拿大胶的折射率仍为1.550,不会发生全反射,而进入第二个直角棱镜,并从端面cd 出射。
这样就得到了线偏振光,光矢量的振动方向如图17-43(b)箭头所示。
(a)(b)
图17-43
3. 二向色性晶体
有些透明晶体不仅具有双折射现象,而且对o光或e光有不同的吸收作用,这种晶体称为二向色性晶体。
利用二向色性晶体的这种特性,可以将自然光转变为线偏振光。
例如,电气石晶体就具有很强的二向色性,当自然光射入这种晶体时,发生双折射现象,并对寻常光o有强烈的吸收作用,而对非常光e却吸收很少,所以大部分非常光能够透过。
天然单晶体的体积都是很有限的,一般不容易达到使用的要求。
人们发现硫酸碘奎宁晶体也具有二向色性,若在被拉伸的塑料基片上淀积一层硫酸碘奎宁薄膜,片基的应力将使这种物质晶粒的光轴沿一定方向排列。
当入射光照射在硫酸碘奎宁晶粒上时,与光轴垂直的电矢量被强列吸收,极少通过,而与光轴平行的电矢量却吸收很少,较多地通过。
将这种薄膜敷在玻璃片上可以制成偏振片。
光振动能通过的方向,就是偏振片的透振方向。
偏振片已广泛用作起偏器或检偏器,并在各种偏振光仪器中普遍使用。
4. 波片
波片也称波晶片或相位延迟片。
它是从双折射晶体切割下来的平行平面板,其光轴与表面平行。
当平行光垂直射到波片上,将被分解为寻常光o和非常光e两种振动,它们的振动方向分别垂直于光轴和平行于光轴,虽然它们在波片中传播方向相同,但传播速率却不同,因此彼此产生了附加的相位差φ。
显然,由波片所分解的两种振动的相位差f取决于入射光的波长和波片的厚度。
如果波片的厚度正好使某一波长的光产生p/2的相位差, 这样的波片称为1/4波片,椭圆偏振光和圆偏振光都可以利用1/4波片获得。
除1/4波片外,还有半波片,它能使两种振动产生π的附加相位差。
图17-44
如果让线偏振光垂直入射到1/4波片上,那么从波片另一表面出射的光是椭圆偏振光;如果线偏振光的振动面与1/4波片的光轴成45︒角,那么分
解后的o光和e光振幅相等,从晶片的另一表面出射的光则是圆偏振光,如图13-44所示。