纳米二氧化钛结构与光催化性能关系

合集下载

纳米TiO2材料的制备及其光催化性能研究

纳米TiO2材料的制备及其光催化性能研究

纳米TiO2材料的制备及其光催化性能研究随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。

环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。

纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。

本文就纳米TiO2材料的制备及其光催化性能展开探讨。

标签:纳米TiO2;光催化;制备方法;光催化效能引言半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。

以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。

科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。

1、TiO2材料简介TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。

在三种晶型中光催化活性最好的为锐钛矿型TiO2。

锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。

所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。

只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。

改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。

光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。

粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。

光催化纳米二氧化钛 与光照的关系

光催化纳米二氧化钛 与光照的关系

光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛与光照的关系光催化纳米二氧化钛是一种应用广泛的光催化材料,其性质与光照密切相关。

光照可以提供能量激发纳米二氧化钛中的电子和空穴,从而促进催化反应的进行。

本文将从纳米二氧化钛的结构和性质入手,探讨光照对其催化效果的影响。

我们来了解一下纳米二氧化钛的基本特性。

纳米二氧化钛是一种具有高度结晶性的半导体材料,具有优良的光催化性能。

其晶体结构为四方晶系,晶格中的氧原子围绕着钛原子排列形成三维网状结构。

而纳米二氧化钛的晶粒尺寸通常在1-100纳米之间,具有较大的比表面积和较高的光吸收率。

这使得纳米二氧化钛能够有效地吸收光能并产生电子空穴对。

在光照条件下,纳米二氧化钛表面被吸收的光子能量可以激发其原子或分子中的电子从价带跃迁到导带,形成电子空穴对。

这些电子和空穴对具有高度的活性,可以参与催化反应。

光照可以提供足够的能量,使得纳米二氧化钛中的电子和空穴得以激发,从而促进光催化反应的进行。

光照还可以改变纳米二氧化钛的表面状态,进一步影响其催化性能。

光照下,纳米二氧化钛表面的电荷状态和氧含量会发生变化,从而改变其表面活性位点的密度和分布。

这些表面活性位点可以吸附反应物分子,提供催化反应所需的活化能。

因此,光照可以调控纳米二氧化钛的表面性质,从而影响其催化效果。

光照条件下的纳米二氧化钛还可以发生光生电化学反应。

在光照条件下,纳米二氧化钛表面吸附的水分子可以被光激发产生电子和空穴。

这些电子和空穴可以在纳米二氧化钛表面发生氧化还原反应,从而促进水的分解或有机物的降解。

光生电化学反应是光催化过程中的一个重要环节,光照的强度和波长对其效果有着重要影响。

需要注意的是,光照强度和波长对光催化纳米二氧化钛的影响是复杂的。

过强的光照会导致电子和空穴的复合速率增加,从而降低光催化反应的效率。

而不同波长的光照对纳米二氧化钛的激发效果也有差异,不同催化反应所需的光照条件也不尽相同。

因此,合理选择光照条件对于光催化纳米二氧化钛的催化效果至关重要。

光催化课件:第五章 纳米氧化钛光催化活性

光催化课件:第五章 纳米氧化钛光催化活性
有重要影响,而且一般认为吸附量大, 底物的吸附量对光催化反应有重要影响,而且一般认为吸附量大, 降解快;但也不全是如此。 降解快;但也不全是如此。 另外,由于光催化反应,催化剂表面及底物、中间产物浓度的变化, 另外,由于光催化反应,催化剂表面及底物、中间产物浓度的变化, 使光照前后的吸附量有变化,但似乎还未发现较好的规律。 使光照前后的吸附量有变化,但似乎还未发现较好的规律。 粒径减少,吸附量明显增大。 粒径减少,吸附量明显增大。 (3)晶粒尺寸对能隙的影响 ) 半导体TiO2的能隙,随晶粒尺寸减少而增大的程度不如 的能隙,随晶粒尺寸减少而增大的程度不如CdS、CdSe 半导体 、 那样显著。 胶体的紫外-可见吸收光谱, 或ZnS那样显著。通过测定 那样显著 通过测定TiO2胶体的紫外-可见吸收光谱,可以测定 吸收带边界;对于粉体样品,则要测定漫反射光谱。 吸收带边界;对于粉体样品,则要测定漫反射光谱。 同尺寸的锐钛矿相和金红石相氧化钛纳米晶相比, 同尺寸的锐钛矿相和金红石相氧化钛纳米晶相比,金红石的纳米晶 尺寸效应更加明显,可能与介电常数有关。 尺寸效应更加明显,可能与介电常数有关。 晶粒尺寸小于10nm的TiO2纳米晶显示尺寸效应,其能隙随着晶粒尺 纳米晶显示尺寸效应, 晶粒尺寸小于 的 寸的减少而增大。因此可通过调控晶粒尺寸得到不同能隙的光催化剂。 寸的减少而增大。因此可通过调控晶粒尺寸得到不同能隙的光催化剂。 但能隙增大后, 但能隙增大后,常用的 中压或高压汞灯就不足以激发这种超细氧化钛纳 米晶了。 米晶了。
用锐钛矿催化剂时,苯醌浓度在 ~ 内达到最大值, 用锐钛矿催化剂时,苯醌浓度在30~60min内达到最大值,随后 内达到最大值 浓度基本不变。 浓度基本不变。 而金红石和混晶时,苯醌浓度随反应时间的延长而增大。 而金红石和混晶时,苯醌浓度随反应时间的延长而增大。

纳米二氧化钛光催化原理

纳米二氧化钛光催化原理

纳米二氧化钛光催化原理
纳米二氧化钛光催化是一种通过利用纳米二氧化钛作为催化剂,利用光照下光生电荷的特性来促进光化学反应的过程。

纳米二氧化钛催化的原理主要涉及到两个关键步骤:光吸收和电子传输。

首先是光吸收过程。

纳米二氧化钛具有广阔的能带结构,光能可以在其表面被吸收。

当光能与纳米二氧化钛相互作用时,电子将被激发至较高的能级,并产生电荷分离。

其次是电子传输过程。

激发后的电荷(电子空穴对)会被分离并迁移到纳米二氧化钛的表面。

电子通常会迁移到导电带上,而空穴则会迁移到价带上。

这种电子与空穴分离产生的电荷极化会使纳米二氧化钛具有催化活性。

纳米二氧化钛表面的催化活性可用于促进光化学反应。

光照下,纳米二氧化钛表面的电荷分离状态会引发一系列反应,例如光解水、光催化氧化有机物等。

电子和空穴分别参与氧化还原反应,从而促进了催化反应的进行。

总的来说,纳米二氧化钛光催化利用了纳米二氧化钛催化剂的特殊性质,通过光生电荷的产生和传输,促进了光化学反应的发生。

这种技术在环境净化、能源转换和有机合成等领域有着广泛的应用前景。

二氧化钛纳米管在光催化的介绍和特点中的应用

二氧化钛纳米管在光催化的介绍和特点中的应用

二氧化钛纳米管在光催化的介绍和特点中的应用二氧化钛纳米管在光催化的应用,哎呀,这可真是一个有趣的主题!二氧化钛,咱们就叫它TiO2吧,大家都比较熟悉。

这东西在我们生活中其实很常见,比如说白色颜料、太阳能电池等。

而这些纳米管,可谓是小小的奇迹,表面上看起来不起眼,实际上却有着不一般的能力。

想象一下,微小的TiO2纳米管在阳光照射下,活像一位超级英雄,瞬间变得强大无比,开始处理那些污染物,真是让人感到惊叹。

光催化,听起来好像高大上,其实就是利用光的能量来推动化学反应。

TiO2在这个过程中可是个主力军,阳光一来,它就开始发挥自己的光辉作用。

这个过程就像是一场精彩的表演,TiO2把太阳光变成了能量,随后开始分解空气中的有害物质,嘿,真是环保小能手!想象一下,如果我们的城市都用上这种材料,空气质量可得多好多啊,简直就是让人忍不住想要为它打call!TiO2纳米管的特点也很吸引人,首先是它的表面积大,能和更多的污染物接触。

就像一个大网,能捕捉到那些小小的坏分子。

这玩意儿不仅稳定,耐高温,甚至可以在酸碱环境中保持自己的“酷”。

不管是雨打风吹,它都能安然无恙,继续工作,这点真是让人佩服得五体投地。

更有趣的是,TiO2的光催化过程是自发的,换句话说,太阳一照,它就自动工作,不需要我们再去添油加醋。

这种省心省力的特性,真是让人觉得,哎,这科技真是给力。

想想我们在家里用的那些清洁剂、消毒剂,很多时候都是化学反应的结果。

而TiO2的光催化,简直就像是给环境“洗澡”,不仅干净,还不怕伤害生态,真的是环保的小帮手。

TiO2纳米管的应用可不止于此。

在水处理方面,它也大显身手。

比如说,利用它来处理污水,污染物一碰到TiO2,咻的一声,就被分解得干干净净。

水清了,鱼也快乐了,整个生态系统都得到了保护。

想象一下,能喝到这么干净的水,生活的质量一下子就上去了,真是美滋滋。

说到这里,大家可能会问,TiO2有没有什么缺点呢?当然也有,毕竟没有完美的东西。

改性纳米二氧化钛的光催化性能研究

改性纳米二氧化钛的光催化性能研究

改性纳米二氧化钛的光催化性能研究一、本文概述随着全球环境问题的日益严峻,光催化技术以其独特的优势在环境保护和能源转换领域受到了广泛关注。

作为光催化领域的重要研究对象,纳米二氧化钛(TiO₂)因其优良的光催化性能、稳定性以及低廉的成本,被广泛应用于太阳能光解水制氢、空气净化、污水处理等领域。

然而,传统的纳米二氧化钛存在光生电子-空穴对复合速率快、可见光响应范围窄等问题,限制了其在实际应用中的性能。

因此,对纳米二氧化钛进行改性,提高其光催化性能,具有重要的研究意义和应用价值。

本文旨在研究改性纳米二氧化钛的光催化性能,通过对其改性方法的探索,以期提高其在可见光下的光催化活性,拓宽其应用范围。

文章将介绍纳米二氧化钛的基本性质、光催化原理以及改性方法的研究进展。

将详细阐述本文所采用的改性方法,包括掺杂、负载贵金属、构建异质结等,以及改性后的纳米二氧化钛的表征手段。

通过对比实验,分析改性前后纳米二氧化钛在光催化性能上的差异,探讨改性方法对光催化性能的影响机制。

通过本文的研究,期望能为纳米二氧化钛的光催化性能改性提供新的思路和方法,推动其在环境保护和能源转换领域的应用发展。

也希望为相关领域的研究人员提供有益的参考和借鉴。

二、改性纳米二氧化钛的制备方法改性纳米二氧化钛的制备方法众多,各有其独特的优势和应用场景。

以下是几种常见的改性纳米二氧化钛制备方法:溶胶-凝胶法:溶胶-凝胶法是一种通过无机物或金属醇盐的水解和缩聚反应制备纳米材料的方法。

在这种方法中,通过控制水解和缩聚的条件,可以得到均匀稳定的溶胶,进一步通过热处理,溶胶转化为凝胶,最终得到改性纳米二氧化钛。

水热法:水热法是一种在高温高压下进行化学反应的方法。

通过将反应物置于特制的高压反应釜中,加热至一定温度,使反应物在水热条件下进行反应,从而制备出改性纳米二氧化钛。

微乳液法:微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成微乳液,然后在微乳液中进行化学反应的方法。

纳米二氧化钛的制备及其光催化活性的测试分析

纳米二氧化钛的制备及其光催化活性的测试分析

第 页(共 页)课 程 ___________ 实验日期:年 月曰专业班号 _____ 别 ______________ 交报告日期: 年 月 日姓名__学号报告退发:(订正、重做)同组者 _____________ 次仁塔吉 __________ 教师审批签字:实验名称 _________________ 纳米二氧化钛粉的制备及其光催化活性的测试、实验目的1. 了解制备纳米材料的常用方法,测定晶体结构的方法。

2. 了解XRD 方法,了解X-射线衍射仪的使用,高温电炉的使用3. 了解光催化剂的(一种)评价方法、实验原理1.纳米TiO 2的制备① 纳米材料的定义:纳米材料指的是组成相或者晶相在任意一维度上尺寸小于 100nm 的材料。

纳米材料由于其组成粒子尺寸小, 有效表面积大,从而呈现出小尺寸效应, 表面与界面效应等。

② 纳米TiO 2的制备方法:溶胶凝胶法,水热法,火焰淬火掺杂法,阳极氧化法,电泳沉积 再阳极氧化法,高温雾化法,溅射法,光沉积法,共沉淀法。

本实验采取最基本的,利用金属醇盐水解的方法制备纳米 TiO 2,主要利用金属有机醇盐能溶于有机溶剂,且可以水解产生氢氧化物或氧化物沉淀。

该方法的优点:①粉体的纯度高,②可制备化学计量的复合金属氧化物粉末。

西安交通大学化学实验报告③制备原理:利用钛酸四丁酯的水解,反应方程如下Ti OC4H9 4 4出0 =Ti OH 4 4C4H9OHTi OH 4 Ti OC4H9 4=TiO2 4C4H9OHTi OH 4 Ti OH 4=TiO2 4H2O2. TiO 2的结构及表征我们通过实验得到的TiO 2是无定形的,二氧化钛通常有如下图上所示的三种晶状结构:A:板钛矿B:锐钛矿C:金红石无定形的TiO2在经过一定温度的热处理后,会向锐钛矿型转变,温度更高会变成金红石型。

我们可以通过X-射线衍射仪测定其晶体结构。

纳米TiO 2的景行对其催化活性影响较大,由于锐钛矿型TiO 2晶格中含有较多的缺陷和缺位,能产生较多的氧空位来捕获电子,所以具有较高的活性;而具有最稳定晶型结构的金红石型TiO2,晶化态较好,所以几乎没有光催化活性。

纳米二氧化钛的光催化性及其应用研究进展

纳米二氧化钛的光催化性及其应用研究进展

纳米二氧化钛的光催化性及其应用研究进展作者:刁润丽来源:《佛山陶瓷》2021年第06期关键词:纳米二氧化鈦;光催化性;应用;进展1前言纳米材料是一类超细材料,粒径在0.1nm—100nm结构范围内,具有表面效应、小尺寸效应、宏观量子隧道效应等一些特殊性能[1,2]。

纳米二氧化钛是目前使用的最为广泛的新型无机纳米材料之一,又被称为纳米钛白粉。

纳米二氧化钛价格低廉,资源丰富[3]。

纳米二氧化钛有很多优异的物理、化学性质及光电等性能,如光催化性、屏蔽紫外线功能及颜色效应等,高的热导性、磁性,良好的透明性,优异的抗菌性,是新型光催化无极功能材料,且纳米二氧化钛在使用期间不会有自身损耗情况出现,因此应用非常广泛。

随着技术的发展,其应用领域还会进一步拓展。

2纳米二氧化钛的光催化机理TiO2半导体催化剂是建立在光化学和光物理基础上的,半导体由空的高能导带和低能价带两者构成,中间区域是禁带。

照射到表面的光能(A<400nm)等于或大于Ti02带隙(通常金红石3.0eV,锐钛矿3.2eV)的能量时,瞬间内可激发孤电子到Ti02导带,电子一空穴对形成。

由于光子、吸附物质和催化剂三者之间作用形式的不同,致使电荷向不同的方向转移,由此将催化反应分为催化光反应和敏化光反应,催化光反应中电荷的转移方向是由吸附物质到催化剂,敏化光反应中电荷的转移方向与此相反。

3纳米二氧化钛光催化性能的应用3.1空气净化随着社会经济的发展,大气污染不断加剧以及家用电器的过度使用,环境污染问题也越来越严重。

因此,如何净化空气、优化环境引起人们的高度重视,而TiO2光催化降解技术能有效解决这些问题,光催化技术是在常温、常压条件下,利用大气中的氧气,将其作为氧化剂,以便使空气得到净化的一种常用的空气净化方法。

此外,我们还应遏制住有害气体的主要来源,通过改善源头也能有效使空气质量得到改善,而关于这个来源主要有两个方面:室内空气污染和大气污染,大气污染主要是来自工业处理时所排放的废气、氮氧化物等,而我们可利用纳米TiO2进行氧化反应合成硝酸,从而在降雨的过程中被去除,有效降低污染;室内的有害气体主要来自于室内装潢、生活排污所产生的如甲醛、氨气等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米二氧化钛结构与光催化性能关系
XXX
XXX
摘要纳米级二氧化钛由于具有无毒、化学稳定性好、比表面积大、成本低等优异性能深受科研工作者的关注。

其所具有的光催化性能使其在降解大气及水体中污染物领域具有广阔前景。

本文从纳米二氧化钛结构出发,阐述纳米二氧化钛光催化机理,并简要说明不同元素掺杂纳米二氧化钛后对其光催化性能的影响。

关键词纳米二氧化钛; 光催化; 结构; 掺杂
自1972年FuJiShima和HonclaIIJ发现TiO2单晶电极在紫外光照射下可分解水及Bard将光电化学理论扩展到半导体微粒光催化后,TiO2作为一种半导体光催化剂吸引诸多学者的研究。

由于TiO2具有良好的化学稳定性、抗磨损性、较大的比表面积、无毒、成本低以及可以直接利用自然光等优点,利用TiO2光催化氧化法处理水中有机污染物等方面有广阔的应用前景。

然而TiO2半导体光催化剂在实际应用中存在一些缺陷如:带隙较宽(E =3.2eV),只有在λ小于387.5 nm的紫外光激发下价带电子才能跃迁到导带上形成光生电子和空穴分离,而紫外光在自然光中仅占3%~5%,因此对自然光的利用率不高。

另外半导体载流子的复合率很高,导致光量子效率很低,提高TiO2纳米粒子的光催化效率是利用TiO2光催化剂的关键。

为了改善TiO2的光催化性能,研究工作者关于TiO2的制备方法、掺杂、催化剂载体、热处理等方面做了许多研究,其中掺杂因其容易实现、效果明显、应用范围广泛,而成为研究热点。

[1]
1、纳米二氧化钛结构及其光催化机理
1.1 二氧化钛晶型
纳米二氧化钛具有锐钛矿,板钛矿及金红石型结构,其中以锐钛矿型光催化性能最好。

其晶胞结构如下(其中红色为O,白色为Ti):
锐钛矿型:
板钛矿型:
金红石型:
1.2纳米二氧化钛催化机理
当阳光尤其是紫外光照射到半导体TiO2微粒上时,形成光生电子--空穴对。

在电场的作用下,电子与空穴有效分离并迁移到TiO2微粒表面的不同位置。

光生空穴有很强的获得电子能力,可夺取吸附于半导体微粒表面的有机物或溶剂中的电子,使原本不吸收入射光的物质活化而被氧化;电子受体则通过接受TiO2微粒表面的电子被还原,水溶液中的光催化氧化还原反应就在TiO2微粒表面进行。

吸附于TiO2微粒表面的水分子被光生空穴氧化后,生成氧化能力和反应活性极强的氢氧自由基(·OH),上述机理表示如下:
TiO2 + hv → h+ + e+ (1)
H2 O + h+ →·OH + H+ (2)
光生电子还原水中的溶解氧, 通过反应(3)~(7)生成过氧化氢自由基(H2O·)和过氧化氢( H2O2 )。

过氧化氢借助反应(8)~(11),依次生成氢氧自由基。

H+ + e- → H· (3)
O2 + e- →·O-2 (4)
·O-2 + H·→ HO-2 (5)
HO-2 + h+ → HO2· (6)
2HO2·→ O2 + H2O2 (7)
H2O2 + ·O-2 →·OH+ OH-+ O2 (8)
H2 O2 + hv →2·OH (9)
H2 O2 + e- →·OH+ OH-(10)
OH- + h+ →·OH (11)
·OH是水中存在的反应活性最强的氧化剂, 对作用物无选择性, 其对细胞的DNA复制和细胞膜代谢带来有害的影响。

TiO2 微粒膜本身对微生物细胞无毒性和杀灭作用, 只有在太阳光尤其是紫外光照射下,才具有杀灭细菌的作用。

TiO2 微粒光催化杀菌有直接和间接反应两种不同的机理。

光激发TiO2 和细胞间的直接反应是光生电子和光生空穴直接和细胞壁、细胞膜或细胞的组成成分反应,导致功能单元失活而令细胞死亡。

例如在大肠杆菌被光激发的TiO2 微粒完全杀死时, 细胞内辅酶A的含量下降而二聚体辅酶A的含量上升。

这是因为光激发TiO2 产生电子空穴对, 导带中的光生电子转移给O2 等电子受体,价带中的光生空穴则接受辅酶A的电子,从而使辅酶A通过双硫键键合形成二聚体而导致辅酶A失活。

另一机理则是光激发TiO2与细胞的间接反应,即光生电子或光生空穴与水或水中的溶解氧反应,形成氢氧自由基(·OH)和过氧化氢自由基(HO2·)等活性氧类,这些活性自由基的反应活性和氧化能力最强。

它们可与细胞壁、细胞膜或细胞内的组成成分发生生化反应,这已被许多实验研究所证实。

因此,TiO2微粒膜光催化杀菌机理是光生电子和光生空穴及形成于水中的·OH,·O+2,HO2·和H2O2与细胞壁、细胞膜或细胞内的组成成分反应而杀死细菌。

其机理总结如图1所示。

[2]
2、掺杂型纳米二氧化钛
纳米TiO2的杀菌功能在紫外线照射下才具有光催化作用,亦即表现出抗菌、杀菌作用,
且在空气中极易氧化、吸湿、团聚、性能不稳定。

通过掺杂贵金属可以防止电子-空穴对的复合,促进电子-空穴对的有效分离,从而使二氧化钛抗菌性能更加稳定,这些金属中以银的抗菌能力最强。

Leo M.Sudnik等应用表面增强Raman光谱检测了沉积于TiO2表面的多晶型银,发现了银离子的光学诱导还原作用,Ag可作为TiO2光化学活性剂。

其特征是该材料不仅在光照下能产生良好功效,在微弱光甚至无光照条件下同样能产生抗菌效果。

[3]因此,若将纳米二氧化钛与Ag+复合,所得的载银纳米二氧化钛由于Ag掺杂效应,其光吸收带隙变窄,吸收光移向长波方向,以至具有可见光催化活性。

在无光条件下,可利用Ag+的杀菌效果,由此大大拓宽了材料的应用范围。

过渡金属掺杂的机理主要是通过引入过渡金属离子在本征半导体中形成间隙、空位、占据本征离子亚晶格等方式形成杂质缺陷,扩展光吸收范围。

同时这些缺陷可能成为光生电子或空穴的捕获中心使电子与空穴有效分离。

卢安贤等用溶胶一凝胶法制备了Fe—TiO2光催化薄膜,认为[Fe]/[TiO2](摩尔比)为0.005时薄膜对敌敌畏的降解率最大。

肖美群等应用电化学阳极氧化法制备不同Fe掺杂量的TiO2薄膜,发现掺Fe后TiO2薄膜吸收带边明显向长波方向移动,Fe的浓度为1.08%的TiO2薄膜红移现象明显,归因于Fe的3d轨道电子激发到导带上。

不同掺铁方式对TiO2薄膜光催化活性影响不同,梁园园等以化学纯的钛酸正四丁酯为主要原料采用溶胶凝胶工艺在普通玻璃表面制备表面掺铁与体相掺铁的TiO2薄膜,光催化降解甲基橙溶液时,体相掺铁的最佳剂量为n(Fe)/n(Ti)=O.12%,表面掺铁的最佳剂量为n(Fe)/n(Ti)=1.5%,而表面掺铁薄膜的最佳光催化表观速率常数比体相掺铁的最佳值要高1.5倍,根据AES的谱图分析其原因是表面掺铁薄膜的铁集中于薄膜外层,与体相掺杂的薄膜相比增加了TiO2的表面缺陷,使电子与空穴有效分离,有效地转移了电荷,光催化活性得到增强,因而表面掺杂优于体相掺杂。

[1]另外,利用阴离子掺杂,多离子掺杂的实验均有报道,其结果表明多种掺杂元素均对纳米二氧化钛光催化性能有所提高,其更深入的研究及理论仍有待发展。

结语
二氧化钛光催化活性在经过不同离子掺杂后得到很大改善,一般认为掺杂其他元素后使二氧化钛表面产生更多缺陷能,缩小了光吸收能隙并且有效地阻止光生电子与空穴的复合,从而提高了光催化活性。

同时由于纳米二氧化钛具有巨大比表面积,利用其纳米效应,在抗菌防腐应用方面具有很大优势。

在科学家的努力下,纳米二氧化钛的各种优越性能不断被发掘出来。

可以推测,在今后一段时间里,纳米二氧化钛材料将在光催化以至更广的领域内发挥重要的作用。

参考文献
[1] 沈毅, 任富建, 刘红娟. 掺杂TiO2的光催化性能研究(稀有金属材料与工程), 2006, 35(11)
[2] 李娟红, 雷闫盈, 王小刚. 半导体TiO2纳米微粒膜光催化杀菌机理与性能的研究,材料工程,2006
[3] 郑露, 许欣, 陈昭斌,杨慧萍, 张梦妍. 载银纳米二氧化钛水溶液对噬菌体和细菌杀灭效果的比较研究,现代预防医学2010,37(5)。

相关文档
最新文档