人教版数学七年级下册第三次月考试卷及答案

合集下载

人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。

七年级数学第三次月考试卷

七年级数学第三次月考试卷

七年级数学第三次月考试卷姓名: 班级: 座号: 分数:一、精心选一选(每题3分,共24分)1:不等式组 11x ->⎧⎨ 的解集在数轴上表示应是( )A B、C、2、代数式k -1的值大于- 1而又不大于3,则k 的范围是( )A 、31≤-kB 、13 k ≤-C 、22 k ≤-D 、22≤-k3、下列式子: ①()336x=x ; ②6424a .a =a ; ③()()2332-a =-a ;④()()()322236a +a =a ,其中正确的有( )A 、0个B 、1个C 、2个D 、3个4、在下列各式中计算正确的是( )A 、(5a+3b)2=25a 2+9b 2B 、(7x-2y)2=49x 2-14xy+4y 2C 、(4y-3)2=16y 2+24y+9D 、22211111m+n =m +mn+n 32934⎛⎫ ⎪⎝⎭5、下列各式从左到右的变形属于因式分解的是( )A 、(m-2)(m-1)=(2-m)(1-m)B 、1-a 2=(1-a)(1+a)C 、(2x+1)(x-2)=2x 2-3x-2D 、4a 2+4ab+b 2=4a(a+b)+b 26.不等式组⎪⎩⎪⎨⎧≤-->84332x x 的最小整数解为 ( )(A)–1 (B) 0 (C)1 (D) 47、下列各式中,能用平方差公式a 2-b 2=(a+b)(a-b)分解因式的是( )A 、x 2+y 2B 、xy 2-m 2C 、-a 2-b 2D 、-1+x 28、某市科学知识竞赛的预赛共择题,答对一道得10分,答错或不答扣5分,总分不少于80分者就通过了预赛而进入决赛,若小王通过了预赛,那么他至少答对了( )A 、10道题B 、12道题C 、14道题D 、16道题二、细心填一填(每题4分,共24分)1、分解因式:9x 2-4y 2=( )2-( )2=____________; 2、x 的12与4的差不大于x 的5倍,用不等式表示为_________;a 与b 的和的平方是一个非负数,用不等式表示为_________。

人教版七年下第三次月考数学试卷

人教版七年下第三次月考数学试卷

七年下第三次月考数学试卷一、选择题(每小题2分,共12分)1.根据下列表述,能确定位置的是( )A.电影院2排B.北京四环路C.北偏东30°D.东经118°,北纬40°2.下列各方程组中,属于二元一次方程组的是( )A. ⎩⎨⎧==+5723xy y xB. ⎩⎨⎧=+=+212z x y xC. ⎪⎩⎪⎨⎧=+=-243123y x y xD. ⎪⎩⎪⎨⎧=+=+322135y x y x 3.小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒.如果要求第三根木棒的长度是整数,第三根木棒的长度可以是( )A.3mB.6mC.13mD.5.5m4.下列各式中是一元一次不等式的有( )①x +3<-7; ②xy <3 ③12++x x >0 ④621+x ≤5x ⑤x -3≠0. A.1个 B.2个 C.3个 D.4个5.在正三角形、正方形、正五边形、正六边形中不能单独镶嵌平面的是( )A.正三角形B.正方形C.正五边形D.正六边形6.已知m <n ,则下列结论正确的是( )A. m <n -1B.-3m >-3nC. m +5>n +5D. m -n ≥0二、填空题(每小题3分,共24分)7.用不等式表示“x 的5倍与8的和不大于10”: .8.在方程3x -a y =8中,如果⎩⎨⎧==13y x 是它的一个解,那么a 的值为 . 9.如图,张叔叔家里的椅子坏了,于是他给椅子加了两根木条,他所用的数学原理是 .10.点A (-3,a )在第三象限的角平分线上,则a = .11.如图,a ∥b ,AC ⊥BC ,∠C=90°,∠β=25°,则∠α= .12.如图,在△ABC 中∠C=100°,∠B=30°,AE 是∠BAC 的平分线,∠AEC= .13.当x 时,式子231-x 的值是正数. βαC B A b a E C B A 9题图 11题图 12题图14.在某校举办的足球赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得了22分,已知这个球队中输了2场,为求此队胜几场和平几场.设这支足球队胜x 场,平y 场.根据题意,可列出方程组 .三、解答题(每小题5分,共20分)15.用代入法解方程组: ()⎩⎨⎧=-+=-11323y x y y x16.若一个多边形的内角和等于它外角和的2倍,求这个多边形的边数.17.如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数..32+x ≤3x -1四、解答题(每小题7分,共28分)□x +5y =13①19.甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎩⎨⎧==22y x ;乙看错了 4x -□y =2②方程②中y 的系数,解得⎩⎨⎧=-=41y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解.20.张大伯有一块大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°角,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数来检验模板是否合格?21.某山区有若干名中、小学生因贫困失学需要捐款,某中学七、八年级学生举行“献爱心”募捐活动.七、22.如图,在△ABC 中,AD 是BC 边上的中线,△ABD 的周长比△ACD 的周长小5,你能求出AC 与AB 的边长的差吗?五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,若每一个方格的边长代表一个单位.(1)线段CD 是线段AB 经过怎样的平移得到的?(2)若C 点的坐标是(4,1),A 点的坐标是(-1,-2),你能写出B ,D 两点的坐标吗?(3)求平行四边形ABCD 的面积.D C B A D C B A 22题图20题图24.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?六、解答题(每小题10分,共20分)25.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)若∠ABE=25°,∠BAD=50°,则∠BED 的度数是 .(2)在△ADC 中过点C 作AD 边上的高CH ;(3)若△ABC 的面积为60,BD=7.5,求点E 到BC 边的距离.26.小明与小王分别要把两块边长都为60㎝的正方形薄钢片制作成两个无盖的长方体盒子(不计粘合部分).(1)小明先在薄钢片四个角截去边长为10㎝的四个相同的小正方形(如图①),然后把四边折合粘在一起,便得到甲种盒子,请你帮忙求出甲种盒子底面边长.(2)小王如图②截去两角后,沿虚线折合粘在一起,便得到乙种盒子,已知乙种盒子底面的长AB 是宽BC 的2倍,求乙种盒子底面的长与宽.(3)若把乙种盒子装满水后倒入甲种盒子内,问是否可以装满甲种盒子,若能装满甲种盒子,那么乙种盒子里的水面还有多高?若不能装满甲种盒子,求出此时甲种盒子的水面的高度.E D C BA 剪去剪去CB A ① ② 26题图 25题图。

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试卷及答案

人教版数学七年级下册第三次月考试题一、单选题1.下列各式的值一定是正数的是( )A B C .21a D .a 2.下列式子中,是一元一次不等式的是( )A .x 2<1B .y –3>0C .a+b=1D .3x=2 3.上海是世界知名金融中心,以下能准确表示上海市地理位置的是( ) A .在中国的东南方B .东经121.5C .在中国的长江出海口D .东经12129',北纬3114' 4.如图,已知a ∥b ,小明把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为( )A .65°B .120°C .125°D .145° 5.若点P (a ,b )在第二象限,则点Q (b +2,2﹣a )所在象限应该是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A .不超过3cmB .3cmC .5cmD .不少于5cm 7.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =+⎧⎨+=⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =-⎧⎨=+⎩D .7385y x y x =+⎧⎨=+⎩8.下列计算或命题:①有理数和无理数统称为实数;=a ;的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有( )A .1个B .2个C .3个D .4个9.如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC+∠ACE+∠CEH=( ).A .180°B .270°C .360°D .540°10.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( )A .36,8B .28,6C .28,8D .13,311.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2) 12.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--.现已知x 1=-21x 3,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2019的值为( )A .13-B .1-C .34D .4二、填空题13.下列实数中:3.14,π,0,2270.3232232223(⋯每相邻两个3之间依次增加一个2),0.123456;其中无理数有______个.14.化简(21+-+_____.15.不等式7﹣2x >1的非负整数解为:_______________.16.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3m,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.17.编队飞行(即平行飞行)的两架飞机A、B在直角坐标系中的坐标分别为A(﹣1,2)、B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是_____.18.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____.三、解答题19.如图所示,已知AB∥CD,∠C=75°,∠A=25°,求∠E的度数.20.解方程(或方程组):(1) 4x2=81;(2)(2x+10)3=﹣27.(3)24 {4523x yx y-=-=-(4)11 {23 3210. x yx y+-=+=21.长阳公园有四棵古树A,B,C,D (单位:米).(1)请写出A,B,C,D 四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH 用围栏圈起来,划为保护区,请你计算保护区的面积.22.已知()267567190a b a b +-+--=.(1)求a 和b 的值;(2)当x 取何值时,ax b -的值大于2.23.如图,已知直线AB 和CD 相交于O 点,射线OE ⊥AB 于O ,射线OF ⊥CD 于O ,且∠BOF =25∘.求:∠AOC 与∠EOD 的度数.24.在平面直角坐标系xOy 中,有一点P (a ,b ),实数a ,b ,m 满足以下两个等式:2a -6m +4=0,b +2m -8=0.(1)当a =1时,点P 到x 轴的距离为______;(2)若点P 在第一三象限的角平分线上,求点P 的坐标;(3)当a <b 时,则m 的取值范围是______.25.列方程组解应用题:某学校在筹建数学实验室过程中,准备购进一批桌椅,现有三种桌椅可供选择:甲种每套150元,乙种每套210元,丙种每套250元.若该学校同时购买其中两种不同型号的桌椅50套,恰好花费了9000元,则共有哪几种购买方案?26.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC度数.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC 与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC 有何数量关系?并说明理由.参考答案1.C【解析】【分析】根据实数、绝对值以及算术平方根的性质进行选择即可.【详解】解:A 、当a≤0时,,故A 错误;B 、当a=0时,,故B 错误;C 、∵a≠0,∴a 2>0,∴21a >0,故C 正确; D 、当a=0时,|a|=0,故D 错误;故选:C .【点睛】本题考查了实数,立方根,非负数:绝对值和算术平方根,掌握非负数的性质是解题的关键. 2.B【解析】【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的次数是1的不等式,即可解答.【详解】解:A 、未知数次数是2,属于一元二次不等式,故本选项错误;B 、符合一元一次不等式的定义,故本选项正确;C 、含有2个未知数,属于二元一次方程,故本选项错误;D 、含有1个未知数,是一元一次方程,故本选项错误.故选B .【点睛】本题考查一元一次不等式的定义,解题的关键是熟练掌握一元一次不等式的定义. 3.D【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经12129',北纬3114',是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.4.C【解析】【分析】根据两直线平行,同位角相等,即可得到∠AEB=∠ACD=125°,再根据两直线平行,同位角相等,即可得到∠2的度数.【详解】如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.5.A【解析】【分析】直接利用第二象限内点的坐标特点得出a,b的符号进而得出答案.【详解】∵点P(a,b)在第二象限,∴a<0,b>0,∴b+2>0,2﹣a>0,∴点Q(b+2,2﹣a)所在象限应该是第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标特点是解题关键.6.A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P到直线l的距离是小于或等于3,故选A.【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短.7.C【解析】【分析】根据题意确定等量关系为:①组数×每组7人=总人数-3人;②组数×每组8人=总人数+5人.由此列方程组即可.【详解】根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为73 85y xy x=-⎧⎨=+⎩.故选C.【点睛】本题考查了二元一次方程组的应用,根据题意确定等量关系为组数×每组7人=总人数-3人和组数×每组8人=总人数+5人是解决问题的关键.8.D【解析】【分析】利用实数的定义、算术平方根的定义以及立方根的性质,分别判定各项即可解答.【详解】①有理数和无理数统称为实数,①正确;,②正确;,4的算术平方根是2,③正确;④实数和数轴上的点是一一对应的,④正确.故选D.【点睛】本题考查了命题与定理,熟练运用相关定义是解决问题的关键.9.C【解析】【分析】根据平行线的性质可以求得:∠BAC与∠ACD,∠DCE与∠CEF的度数的和,再减去∠HEF 的度数即可.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,同理∠DCE+∠CEF=180°,∴∠BAC+∠ACE+∠CEF=360°;又∵EH⊥CD于H,∴∠HEF=90°,∴∠BAC+∠ACE+∠CEH=∠BAC+∠ACE+∠CEF-∠HEF=360°-90°=270°.故选B .【点睛】本题主要考查了平行线的性质:两直线平行同旁内角互补.10.A【解析】【分析】此题不变的是井深,用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】设绳长x 米、井深y 米,依题意有4314x y x y ⎧=+⎪⎪⎨⎪=+⎪⎩ , 解得368x y =⎧⎨=⎩, 即:绳长36米、井深8米.故选:A【点睛】本题考核知识点:二元一次方程组的应用.解题关键点:设好未知数,根据题意,找出等量关系,列出方程(组).11.D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.12.D【解析】【分析】根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2019的值.【详解】解:由已知可得,x1=13 -,213,14 13x==⎛⎫--⎪⎝⎭314,314x==-411, 143x==--可知每三个一个循环,2019÷3=673,故x2019=4.故选D.【点睛】本题考查数字的规律问题,解题的关键是发现其中的规律,求出相应的x的值.13.4【解析】【分析】根据无理数的定义即可求出答案.【详解】π,0.3232232223…(每相邻两个3之间依次增加一个2)是无理数.故答案为:4.【点睛】本题考查了无理数的定义,解题的关键是熟练运用无理数的定义,本题属于基础题型.14.3+【解析】【分析】先算平方,再去绝对值,然后算立方根,从左往右依次相加即可.【详解】原式3故答案为3【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.15.0、1、2【解析】【分析】首先根据不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:不等式7-2x>1,整理得,2x<6,x<3,则不等式的非负整数解是:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键;解不等式应根据不等式的基本性质.16.20【解析】【分析】根据平移的距离表示出长方形A'ECF的长和宽,即可求出结论.【详解】解:由题意得到BE=3cm,DF=4cm,∵AB=DC=7cm,BC=10cm,∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,∴长方形A'ECF的周长=2×(7+3)=20(cm),故答案为20.【点睛】本题考查了平移的性质,认准图形,准确求出长方形A'ECF的长和宽是解题的关键.17.(1,0)【解析】【分析】先根据飞机A确定出平移规律,再求出飞机B的横坐标与纵坐标即可得解.【详解】∵飞机A(-1,2)到达(2,-1)时,横坐标加3,纵坐标减3,∴飞机B(-2,3)的横坐标为-2+3=1,纵坐标为3-3=0,∴飞机B的坐标为(1,0).故答案为(1,0)【点睛】本题考查了坐标与图形的变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.18.(2018,0)【解析】分析:根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.详解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2018次运动后,动点P的横坐标为2018,纵坐标为1,0,2,0,每4次一轮,∴经过第2018次运动后,动点P的纵坐标为:2018÷4=504余2,故纵坐标为四个数中第2个,即为0,∴经过第2018次运动后,动点P的坐标是:(2018,0),故答案为: (2018,0).点睛:此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.19.50°.【解析】【分析】先根据平行线的性质得∠BFE=∠C=105°,然后根据三角形外角性质求∠E的度数.【详解】解:∵AB∥CD,∴∠BFE=∠C=75°,∵∠BFE=∠A+∠E,∴∠E=75°﹣25°=50°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形外角性质.20.(1) x=92±; (2)x=132-; (3)436{313xy==;(4)=3{1=2xy.【解析】【分析】(1)系数化为1后,利用平方根的定义进行求解即可;(2)利用立方根的定义进行求解即可;(3)利用代入消元法进行求解即可;(4)整理后,利用加减消元法进行求解即可.【详解】(1) 4x2=81,x2=81 4,x=所以x=92±;(2)(2x+10)3=﹣27,,2x+10=-3,x=132 -;(3)244523x yx y-=⎧⎨-=-⎩①②,由①得y=2x-4③,把③代入②得,4x-5(2x-4)=-23,解得x=436,把x=436代入③,得y=313,所以436313x y ⎧=⎪⎪⎨⎪=⎪⎩; (4) 整理得3283210x y x y -=⎧⎨+=⎩①②, ①+②得,6x=18,x=3,②-①得,4y=2,y=12, 所以312x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了利用平方根定义、立方根定义解方程,解二元一次方程组,熟练掌握相关定义以及求解方法是解题的关键.21.(1)A(10,10),B(20,30),C(40,40),D(50,20);(2)1950m 2【解析】试题分析:(1)根据图形即可直接写出A 、B 两点坐标;(2)用大长方形面积减去三个小三角形面积即可.试题解析:(1)A (10,10)、B (20,30);(2)保护区面积为:60×50﹣12×10×60﹣12×10×50﹣12×20×50=1950m 2. 考点:点的坐标. 22.(1)21a b =⎧⎨=-⎩;(2) 当12x >时, 21x +的值大于2 【解析】【分析】(1)已知()267567190a b a b +-+--=,由非负数的性质可得675067190a b a b +-=⎧⎨--=⎩,解方程组即可求得求a 和b 的值;(2)根据题意可得2ax b ->,把a 和b 的值代入后解不等式即可求得x 的取值范围.【详解】(1)由题意得,675067190a b a b +-=⎧⎨--=⎩, 解得, 21a b =⎧⎨=-⎩; (2) 2ax b ->∵2a =,1b =-∴()212x --> 即12x > 所以,当12x >时, 21x +的值大于2. 【点睛】本题考查了非负数的性质、二元一次方程组的解法及一元一次不等式的解法,根据非负数的性质得到方程组675067190a b a b +-=⎧⎨--=⎩是解决问题的关键.23.∠AOC =115°, ∠EOD =25°.【解析】【分析】根据垂线的性质和余角及补角的定义可求出∠ AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∵OF ⊥CD ,∴∠COF =90°,∴∠BOC =90°-∠BOF =65°,∴∠AOC =180°-65°=115°. ∵OE ⊥AB ,∴∠BOE =90°,∴∠EOF =90°-25°=65°,∵OF ⊥CD∴∠DOF=90°∴∠EOD=∠DOF −∠EOF=90°-65°=25°.【点睛】垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键. 24.(1)6.(2)(4,4).(3)m<2【解析】【分析】(1)把a=1代入2a-6m+4=0中求出m值,再把m值代入b+2m-8=0中即可求出b的值,再根据点到x轴的距离是纵坐标的绝对值即可求解;(2)借助两个等式,用m把a、b分别表示出来,再根据题意可知P点的横、纵坐标相等,列关于m的方程求出m的值,最后求出a、b值.(3)把a、b用m表示出来,代入a<b,则m的取值范围可求.【详解】解:(1)当a=1时,则2×1-6m+4=0,解得m=1.把m=1代入b+2m-8=0中,得b=6.所以P点坐标为(1,6),所以点P到x轴的距离为6.故答案为6.(2)当点P在第一、三象限的角平分线上时,根据点的横、纵坐标相等,可得a=b.由2a-6m+4=0,可得a=3m-2;由b+2m-8=0,可得b=-2m+8.则3m-2=-2m+8,解得m=2.把m=2分别代入2a-6m+4=0,b+2m-8=0中,解得a=b=4,所以P点坐标为(4,4).(3)由(2)中解答过程可知a=3m-2,b=-2m+8.若a<b,即3m-2<-2m+8,解得m<2.故答案为m<2.【点睛】本题主要考察了点的坐标特征及解不等式,熟知特殊点的坐标特征是解题的关键.25.有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套【解析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.解:①若同时购买甲、乙两种桌椅,则设购买甲x套,购买乙y套.根据题意,得50 1502109000x yx y+=⎧⎨+=⎩,解方程组,得2525x y =⎧⎨=⎩; ②若同时购买甲、丙两种桌椅,则设购买甲x 套,购买乙z 套.根据题意,得501502509000x z x z +=⎧⎨+=⎩, 解方程组,得 3515x z =⎧⎨=⎩, ③若同时购买乙、丙两种桌椅,则设购买乙y 套,购买丙z 套.根据题意,得502102509000y z y z +=⎧⎨+=⎩, 解方程组,得87.537.5y z =⎧⎨=-⎩(不符题意,舍),所以,共有两种购买方案:购买甲、乙各25套,或者购买甲35套,购买丙15套. 26.(1)80°;(2)详见解析;(3)详见解析【解析】【分析】(1)过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠进行计算即可;(2)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠AKE =∠BAK ,∠CKE =∠DCK ,得到∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,同理可得,∠APC =∠BAP +∠DCP ,再根据角平分线的定义,得1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,进而得到1.2AKC APC ∠=∠ (3)过K 作KE ∥AB ,根据KE ∥AB ∥CD ,可得∠BAK =∠AKE ,∠DCK =∠CKE ,进而得到∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,同理可得,∠APC =∠BAP −∠DCP ,再根据角平分线的定义,得出1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,进而得到1.2AKC APC ∠=∠ 【详解】解:(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠APE =∠BAP ,∠CPE =∠DCP ,∴602080APC APE CPE BAP DCP ∠=∠+∠=∠+∠=+=; (2)1.2AKC APC ∠=∠理由:如图2,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠AKE =∠BAK ,∠CKE =∠DCK ,∴∠AKC =∠AKE +∠CKE =∠BAK +∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP +∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K , ∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠,∴12AKC APC ∠=∠; (3) 12AKC APC ∠=∠;理由:如图3,过K 作KE ∥AB ,∵AB ∥CD ,∴KE ∥AB ∥CD ,∴∠BAK =∠AKE ,∠DCK =∠CKE ,∴∠AKC =∠AKE −∠CKE =∠BAK −∠DCK ,过P 作PF ∥AB ,同理可得,∠APC =∠BAP −∠DCP ,∵∠BAP 与∠DCP 的角平分线相交于点K ,∴1111()2222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠,∴1.2AKC APC ∠=∠【点睛】考核知识点:平行线判定和性质综合.添辅助线,灵活运用平行线性质是关键.第21 页。

七年级数学下册月考试卷

七年级数学下册月考试卷

1、下列哪个数不是有理数?A、1/2B、3.14C、-5D、π(答案:D)解析:有理数是可以表示为两个整数之比的数,π是一个无理数,不能表示为两个整数的比。

2、在数轴上,点A表示的数是-3,点B表示的数是5,那么点A和点B之间的距离是?A、2B、5C、8D、15 (答案:C)解析:数轴上两点间的距离等于这两点所表示数的差的绝对值,即|5 - (-3)| = 8。

3、下列哪个选项描述的是平行线的性质?A、同位角相等B、对顶角相等C、内错角互补D、邻补角互补(答案:A)解析:平行线的性质之一是同位角相等,而对顶角相等、内错角互补、邻补角互补并非平行线的专有性质。

4、若一个角的余角是30°,则这个角的度数是?A、30°B、60°C、90°D、120°(答案:B)解析:两个角的和为90°时,它们互为余角。

因此,若一个角的余角是30°,则这个角的度数为90° - 30° = 60°。

5、下列哪个选项不是三角形的基本性质?A、任意两边之和大于第三边B、内角和等于180°C、任意两边之差小于第三边D、外角和等于360°(答案:D)解析:三角形的基本性质包括任意两边之和大于第三边、内角和等于180°、任意两边之差小于第三边,而外角和等于360°是多边形的性质,不是三角形专有的。

6、若a、b、c为三角形的三边,且a = 3,b = 4,c为奇数,则c的可能取值为?A、1B、3C、5D、7 (答案:C)解析:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

因此,3 + 4 > c 且 4 - 3 < c,且c为奇数,所以c的可能取值为5。

7、下列哪个选项描述的是垂线的性质?A、过一点有且仅有一条直线与已知直线平行B、过一点有且仅有一条直线与已知直线垂直C、两条直线平行,同位角互补D、两条直线相交,对顶角相等(答案:B)解析:垂线的性质之一是过一点有且仅有一条直线与已知直线垂直。

人教版数学七年级下册第三次月考试题及答案

人教版数学七年级下册第三次月考试题及答案

人教版数学七年级下册第三次月考试卷评卷人得分一、单选题1.现有两根小木棒,它们的长度分别为4cm 和5cm ,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是()A .4cm B .5cm C .8cm D .10cm2.已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A .22x -<<B .2x <C .2x ≥-D .2x >3.n 边形的内角和等于1080︒,则n 的值是()A .8B .7C .6D .54.方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为()A .1、2B .1、5C .5、1D .2、45.若37m -和9m -互为相反数,则m 的值是()A .4B .1C .1-D .4-6.用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是()A .正五边形B .正三角形,正五边形C .正三角形,正五边形,正六边形D .正三角形,正方形,正六边形7.已知关于x 的不等式组()3141x x x m⎧--⎨⎩<<无解,则m 的取值范围是()A .3m <B .3m >C .3m ≤D .3m ≥8.某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保特利润不低20%,那么至多打()A .6折B .7折C .8折D .9折评卷人得分二、填空题9.我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的___.10.当代数式2x﹣2与3+x的值相等时,x=_____.11.若5357x yx y+=⎧⎨-=⎩,则x y-=__.12.从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是______边形.13.关于x的不等式243x--≤的所有负整数解的和是____________.14.如图,△ABC是一块直角三角板,∠BAC=90°,∠B=25°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若∠CAF=20°,则∠BED的度数为_____°.评卷人得分三、解答题15.解方程:x+12=2−316.已知关于x,y的方程组21321x y mx y m+=+⎧⎨+=-⎩的解满足0x y+<,求m的取值范围.17.求不等式组123123x x -<⎧⎪+⎨<⎪⎩的整数解.18.一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100︒,求这个多边形的边数.19.如图,在ABC ∆中,AD 是BC 边上的中线,ADC ∆的周长比ABD ∆的周长多5cm ,AB 与AC 的和为11cm ,求AC的长.20.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?21.定义一种法则“⊕”如下:a ⊕b =()()a a b b a b >⎧⎨⎩ ,例如:1⊕2=2.(1)(﹣2018)⊕(﹣2019)=;(2)若(﹣3p +5)⊕8=8,求p 的负整数值.22.已知直线//PQ MN ,ABC ∆的顶点A 与B 分别在直线MN 与PQ 上,45C ∠=︒,设CBQ a ∠=∠,CAN β∠=∠.(1)如图①,当点C 落在PQ 的上方时,AC 与PQ 相交于点D ,求证:45a β∠=∠+︒;(2)如图②.当点C 落在直线MN 的下方时,BC 与MN 交于点F ,请判断a ∠与β∠的数量关系,并说明理由.23.某公司有A 、B 两种型号的客车,它们的载客量、每天的租金如表所示:A 型号客车B 型号客车载客量(人/辆)4530租金(元/辆)600450已知某中学计划租用A 、B 两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A 型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.24.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.参考答案1.D【解析】【分析】根据三角形的三边关系得到第三根木棒的长的取值范围,再确定答案即可.【详解】根据三角形三边关系可得:54-<第三根木棒的长54<+,即:1<第三根木棒的长9<,故不可以是10cm .故选:D .【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边之差小于第三边.2.D【解析】【分析】可根据不等式组解集的数轴表示法:实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右,小于向左.再观察相交的部分即为不等式组的解集.【详解】观察数轴可得,这个不等式组的解集为2x >.故选D.【点睛】本题考查不等式组解集的表示方法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.A【解析】【分析】依据多边形的内角和公式计算即可.【详解】根据题意得;(2)1801080n -⨯︒=︒,解得:8n =.故选:A .【点睛】本题主要考查的是多边形的内角和公式的应用,掌握多边形的内角和公式是解题的关键.4.C【解析】【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解.【详解】根据{x 2y == ,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.5.C【解析】【分析】根据相反数的性质得出关于m 的方程3790m m -+-=,解之可得.【详解】由题意知3790m m -+-=,则379m m -=-,22m =-,1m =-,故选:C .【点睛】本题主要考查相反数的性质,解题的关键是熟练掌握相反数的性质和解一元一次方程的基本6.D【解析】【分析】根据一种正多边形的镶嵌应符合一个内角度数能整除360°求解即可.【详解】解:若是正三角形地砖,正三角形的每个内角是60°,能整除360°,能够铺满地面;若是正四角形地砖,正方形的每个内角是90°,能整除360°,能够铺满地面;若是正五角形地砖,正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能够铺满地面;若是正六角形地砖,正六边形的每个内角是120°,能整除360°,能够铺满地面;故选D .【点睛】本题考查了平面镶嵌,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.7.C【解析】【分析】先把m 当作已知条件求出各不等式的解集,再根据不等式组无解求出m 的取值范围即可.【详解】()3141x x x m ⎧--⎨⎩<①<②,解①得x>3,∵不等式组无解,∴3m ≤.故选C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的法则是解答此题的关键.【解析】【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.【详解】设打了x折,由题意得360×0.1x-240≥240×20%,解得:x≥8.答:至多打8折.故选:C.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.9.稳定性.【解析】【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,根据三角形具有稳定性回答即可.【详解】用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,四边形不具有稳定性.10.5【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x﹣2=3+x,移项合并得:x=5,故答案为5.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.3【解析】【分析】利用加减消元法解之即可.【详解】5357x y x y +=⎧⎨-=⎩①②,①+②得:4412x y -=,方程两边同时除以4得:3x y -=,故答案为:3.【点睛】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.12.6【解析】【分析】根据n 边形从一个顶点出发可引出()n 2-个三角形解答即可.【详解】设这个多边形为n 边形.根据题意得:24n -=.解得:6n =.故答案为:6.【点睛】本题主要考查的是多边形的对角线,掌握公式是解题的关键.13.-6【解析】【分析】首先解不等式243x --≤,求得x 的范围,即可求解.【详解】解不等式243x --≤,得7,2x ≥-关于x 的不等式243x --≤的所有负整数解有:3,2, 1.---它们的和为:()()()321 6.-+-+-=-故答案为 6.-【点睛】考查一元一次不等式的整数解,掌握解一元一次不等式的方法是解题的关键.14.85【解析】【分析】依据DE ∥AF ,可得∠BED =∠BFA ,再根据三角形外角性质,即可得到∠BFA =20°+65°=85°,进而得出∠BED =85°.【详解】解:如图所示,∵DE ∥AF ,∴∠BED =∠BFA ,又∵∠CAF =20°,∠C =65°,∴∠BFA =20°+65°=85°,∴∠BED =85°,故答案为:85.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.15.x =18.【解析】【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【详解】方程两边同时乘以6得:6x +3=2(2﹣x ),去括号得:6x +3=4﹣2x ,移项得:6x +2x =4﹣3,合并同类项得:8x =1,系数化为1得:x =18.【点睛】考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.16.1m <-【解析】【分析】根据题目中的方程组可以求得x y +的值,从而可以求得m 的取值范围.【详解】21321x y m x y m +=+⎧⎨+=-⎩①②,①+②,得3322x y m +=+,223m x y +∴+=,0x y +< ,∴2203m +<,解得,1m <-,即m 的取值范围是1m <-.【点睛】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确题意,求出m 的取值范围.17.0,1,2,3,4【解析】【分析】先求出不等式组的解集,再求出不等式组的整数解即可.【详解】123123x x -<⎧⎪⎨+<⎪⎩①② 解不等式①得:1x >-,解不等式②得:5x <,∴不等式组的解集是:15x -<<,∴不等式组的整数解是:0,1,2,3,4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.18.9【解析】【分析】根据内角与相邻外角和为180度、内角比它相邻的外角大100︒,构造方程求出外角度数,最后利用外角和360︒可求边数.【详解】设每个内角度数为x 度,则与它相邻的外角度数为180x ︒-︒,根据题意可得(180)100x x --=,解得140x =.所以每个外角为40︒,所以这个多边形的边数为360409÷=.答:这个多边形的边数为9.【点睛】本题主要考查多边形的内角与外角、多边形的外角和360︒知识,解题的关键是利用内、外角转化求边数.19.8AC cm=【解析】【分析】根据中线的定义知CD BD =.结合三角形周长公式知5AC AB cm -=;又11AC AB cm +=.易求AC 的长度.AD 是BC 边上的中线,D ∴为BC 的中点,CD BD =.ADC ∆ 的周长ABD -∆的周长5cm =.5AC AB cm ∴-=.又11AB AC cm += ,8AC cm ∴=.答:AC 的长度是8cm .【点睛】本题考查了三角形的中线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.20.(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.【解析】分析:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.详解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得:63600500.8400.755200x y x y +⎧⎨⨯+⨯⎩==,解得:40120x y ⎧⎨⎩==.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.21.(1)-2018;(2)-1.【解析】根据新运算的法则求解即可.【详解】解:(1)∵﹣2018>﹣2019,∴(﹣2018)⊕(﹣2019)=﹣2018,故答案为﹣2018;(2)∵(﹣3p +5)⊕8=8,∴﹣3p +5≤8,解得:p ≥﹣1,∴p 的负整数值为﹣1.【点睛】本题考查了定义新运算,正确理解运算法则是解题关键.22.(1)见解析;(2)45αβ∠=∠+︒.【解析】【分析】(1)由三角形的外角性质得出CDQ C α∠=∠+∠,由平行线的性质得出CDQ β∠=∠,得出C βα∠=∠+∠,即可得出结论;(2)由三角形的外角性质得出CFN C β∠=∠+∠,由平行线的性质得出CFN α∠=∠,得出C αβ∠=∠+∠,即可得出结论.【详解】(1)证明:CDQ ∠ 是CBD ∆的一个外角,CDQ C α∴∠=∠+∠,//PQ MN ,CDQ β∴∠=∠,C βα∴∠=∠+∠,45C ∠=︒ ,45βα∴∠=∠+︒;(2)45αβ∠=∠+︒,理由如下:CFN ∠ 是ACF ∆的一个外角,CFN C β∴∠=∠+∠,//PQ MN ,CFN α∴∠=∠,C αβ∴∠=∠+∠,45C ∠=︒ ,45αβ∴∠=∠+︒.【点睛】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解题的关键.23.(1)最多能租用7辆A 型号客车;(2)有两种租车方案,方案一:组A 型号客车6辆、B 型号客车4辆;方案二:组A 型号客车7辆、B 型号客车3辆.【解析】【分析】(1)设租用A 型号客车x 辆,则租用B 型号客车(10﹣x)辆,根据总租金=600×租用A 型号客车的辆数+450×租用B 型号客车的辆数结合租车的总费用不超过5600元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再取其中的最大整数值即可得出结论;(2)设租用A 型号客车x 辆,则租用B 型号客车(10﹣x)辆,根据座位数=45×租用A 型号客车的辆数+30×租用B 型号客车的辆数结合师生共有380人,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再结合(1)的结论及x 为整数,即可得出各租车方案.【详解】解:(1)设租用A 型号客车x 辆,则租用B 型号客车(10﹣x)辆,依题意,得:600x+450(10﹣x)≤5600,解得:x≤713.又∵x 为整数,∴x 的最大值为7.答:最多能租用7辆A 型号客车.(2)设租用A 型号客车x 辆,则租用B 型号客车(10﹣x)辆,依题意,得:45x+30(10﹣x),≥380,解得:x≥513.又∵x为整数,且x≤713,∴x=6,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.【点睛】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.24.探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+12∠A;探究三:∠P=12(∠A+∠B).【解析】【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.【详解】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣12∠ADC﹣12∠ACD=180°﹣12(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+12∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣12∠ADC﹣12∠BCD=180°﹣12(∠ADC+∠BCD)=180°﹣12(360°﹣∠A﹣∠B)=12(∠A+∠B).故答案为探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+12∠A;探究三:∠P=12(∠A+∠B).【点睛】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。

2020-2021年新人教版七年级下第三次月考试卷

2020-2021年新人教版七年级下第三次月考试卷
(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.
6.不等式ax>a的解集为x>1,则a的取值范围是( )
A.a>0B.a≥0C.a<0D.a≤0
考点:不等式的解集.
故选C.
点评:本题考查一元一次不等式的识别,注意理解一元一次不等式的三个特点:
①不等式的两边都是整式;
②只含1个未知数;
③未知数的最高次数为1次.
2.不等式x﹣2≤0的解集在数轴上表示正确的是( )
A. B. C. D.
考点:在数轴上表示不等式的解集;解一元一次不等式.
分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.

解得1<x<2,
故选:C.
点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
8.若a<b,则下列各式中不一定成立的是( )
A.a﹣1<b﹣1B. < C.﹣a>﹣bD.ac<bc
考点:不等式的性质.
分析:A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.
B:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.
D:根据不等式的性质,可得①c>0时,ac<bc;②c=0时,ac=bc;③c<0时,ac>bc,据此判断即可.

七年级下数学第三次月考试卷

七年级下数学第三次月考试卷

于都三中2017-2018学年度第二学期七年级数学第三次月考试卷(满分120分 完卷时间120分钟)一、细心选一选(每小题3分,共30分)1.为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是( )A .这批电视机B .这批电视机的使用寿命C .抽取的100台电视机的使用寿命D .100台2.下列命题为假命题的是( )A .对顶角相等.B .如果|x |=1,那么x =1.C .若,,则.D .两直线平行,同位角相等.a b <b c <a c <3. 将3x ﹣2y =1变形,用含x 的代数式表示y ,正确的是( )A .B .C .D .123y x +=312x y -=132xy -=123y x -=4. 如图,OB ⊥CD 于点O ,∠1=∠2,则∠2与∠3的关系是( )A .∠2=∠3B .∠2与∠3互补C .∠2与∠3互余D .不确定5. 16的算术平方根是( )A .4B .C .2D .4±2±6. 不等式5-2x ≥x -4的非负整数解有( )A .1个 B .2个 C .3个 D .4个7. 点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(2,0) B .(0,﹣2) C .(4,0) D .(0,﹣4)8. 把不等式组的解集表示在数轴上,下列选项正确的是( )1010x x +>⎧⎨-≤⎩A .B.C.D.9. 已知实数,则下列结论中,不正确的是( )a b <A . B. C. D.44a b <35a b +<+22a b -<-32a b -<-10. 如图,已知AM ∥BN ,∠A =60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠NBP ,分别交射线AM 于点C ,D .则下列结论:①∠CBD =60° ②∠PDB =∠PBD ③∠APB =2∠ADB ④ △BCD 的面积始终不变.其中正确的结论的个数为( )A .1个B .2个C .3个D .4个二、耐心填一填(每小题3分,共18分)11. 若x 、y 为实数,且的值为_________.30x -+=12. 若方程的解也是方程的解,则=________.25x y +=24x y +=x y +13. 已知A 、B 两种型号的水笔单价分别为4元、6元,小明花费60元钱购买这两种水笔,共有 种不同的购买方案(每种型号水笔至少1支).14. 如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为 m 2.15.在平面直角坐标系内有点A (1,2),将点A 绕点P (4,3)旋转90°得到点B ,则点B 的坐标为 ____ ___.16.现定义运算“&”,对于任意有理数a ,b ,满足,如2()&2()a b a b a b a b a b -≥⎧=⎨-<⎩5&3=2×5﹣3=7;1&2 =1﹣2×2=﹣3.计算:2&(﹣1)= ;若x &3=5,则有理数x 的值为 .三、用心做一做(本大题共5题,每小题6分,共30分)17.计算(本题共2小题,每小题3分,计6分)(1)已知,求x 的值; (2).2(1)4x -=1--18. 解方程组19.解不等式组1243231y x x y ++⎧=⎪⎨⎪-=⎩3312183(1)x x x x -⎧+≥+⎪⎨⎪+<+-⎩20. 读句画图.已知:线段AB 和∠MON ,按要求画图并标出相应字母.(1)用圆规在射线OM 上截取线段OP ,使OP=AB ;(2)用量角器过点P 画射线OM 的垂线交射线ON 于点Q ;(3)过点Q 画OM 的平行线QC ,若∠MON=40°,则∠OQC=°.(21题图)21. 如图,∠1+∠2=180°,∠B =∠3,判断DE 与BC 的位置关系,并说明理由.四、用心做一做(本大题共4题,每小题8分,计32分)22. 已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,并画出△ABC .(2)求△ABC 的面积;(3)若点D 与点A 、B 、C 构成的四边形恰好为平行四边形,直接写出符合条件的点D 的坐标.23. 已知:如图,∠1=∠2,∠3=∠E ,∠ADC =∠E +20°.(1)求证:AD ∥BE ;(2)求∠2的度数.24. 甲、乙二人分别制作28个蝴蝶结,已知乙单独制作7天不能完成,而甲单独制作不到7天就已完成,且甲平均每天比乙多做2个.(1)甲、乙平均每天各做多少个蝴蝶结?(答案取整数)(2)在(1)的条件下,若乙先工作2天,甲才开始工作,那么甲工作几天,两人所做蝴蝶结数量相同?25. 梓山某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A 、B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A 类蔬菜面积(单位:亩)种植B 类蔬菜面积(单位:亩)总收入(单位:元)甲3112500乙2316500说明:不同种植户种植的同类蔬菜每亩平均收入相等.(1)求A 、B 两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A 、B 两类蔬菜,为了使总收入不低于63000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.五、用心做一做(本大题共1题,计10分)26.在平面直角坐标系中,O 为坐标原点,点A 坐标为(a ,2a —1),过点A 向x 轴作垂线,垂足为点B ,连接OA .(1)如图1,当a =4时,求△AOB 的面积;(2)若点A 到两坐标轴的距离相等,试求点A 的坐标;(3)在(1)的条件下,点M 从O 出发,沿y 轴的正半轴以每秒3.5个单位长度的速度运动,点N从点B出发以每秒2个单位长度的速度向x轴负方向运动,点M与点N同时出发,设它们运动时间为t秒.试判断以A、M、O、N为顶点的四边形的面积是否变化?若不变化,请求出其值;若变化,试说明理由;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D . 2.点P(-2,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 4.下列方程组不是二元一次方程组的是( )A .43624x y x y +=⎧⎨+=⎩B .44x y x y +=⎧⎨-=⎩C .141y x x y ⎧+=⎪⎨⎪-=⎩D .35251025x y x y +=⎧⎨+=⎩ 5.在311.41407π-,,, 1.14,3.212212221(每两个1之间多一个2),这些数中无理数的个数为( )A .3B .2C .5D .46.若点P ()31m m ,+-在x 轴上,则点P 的坐标为( )A .(0,-2)B .(4,0)C .(2,0)D .(0,-4) 7.如图,由下列条件不能得到AB ∥CD 的是( )A .∠B +∠BCD =180° B .∠1=∠2C .∠3=∠4D .∠B =∠5 8.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A .(-3,4)B .(4,-3)C .(3,-4)D .(-4,3) 9.下列说法中正确的是( )A .9的平方根是3B .4平方根是2±C 4D .-8的立方根是2± 10.已知x y 、是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( ) A .0 B .5 C .-1 D .111.如图所示,AB ∥DE ,∠ABC=60°,∠CDE=150°,则∠BCD 的度数为( )A .50°B .60°C .40°D .30°12.如图所示,一只电子跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→>(0,1)→(1,1)→>(1,0)→…]且每秒跳动一个单位,那么第45秒时跳蚤所在位置的坐标是( )A .(5,6)B .(6,0)C .(6,3)D .(3,6)二、填空题 13.把命题“同位角相等,两直线平行”改写成“如果……那么……”的形式是________.14.已知x y 、()230y -=,则xy 的值是_______.15 1.732 5.477≈≈,≈_____.16.如图所示,△ABC 沿着有点B 到点E 的方向,平移到△DEF ,已知BC=7cm ,EC=4cm ,那么平移的距离为______cm.17.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(−1,−2),“马”位于点(2,−2),则“兵”位于点__________.18.永川区某工程公司积极参与“三城同创”建设,该工程公司下属的甲工程队、乙工程队分别承包了三城的A 工程、B 工程,甲工程队睛天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了______天.三、解答题19.计算:(1)(2)已知(x –2)2=16,求x 的值.20.已知,△ABC 三个顶点的坐标分别为:A(-3,-2)、B(-5,0)、C(-2,2).(1)在平面直角坐标系中画出△ABC ;(2)将△ABC 向右平移5个单位长度,再向上移2个单位长度,画出平移后的111A B C △;(3)计算111A B C △的面积.21.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=20°,求∠BOE 和∠AOG 的度数.22.若关于x y 、的方程组59x y k x y k +=⎧⎨-=⎩的解满足236x y +=,求k 的值.23.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m 辆,乙型车n 辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.如图,△ABO 的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB 的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的25,求点M的坐标.参考答案1.B【分析】对顶角是两条直线相交,其中一个角是另一个角的边的反向延长线,据定义即可判断.【详解】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故选B【点睛】本题主要考查对顶角的定义,是一个基础题.理解定义是关键.2.C【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点在平面直角坐标系中,点P(−2,−5)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.B【解析】【分析】<<,推出23即可.【详解】解:<<,∴23,2和3之间.【点睛】.4.C【解析】【分析】根据二元一次方程组的定义对各选项分析判断后利用排除法求解.【详解】解:A、是二元一次方程组,故本选项错误;B、是二元一次方程组,故本选项错误;C、第一个方程x在分母上,不是二元一次方程组,故本选项正确;D、是二元一次方程组,故本选项错误.故选:C.【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项的最高次数都应是一次的整式方程.5.A【解析】【分析】根据无理数是无限不循环小数,直接判定即可.【详解】,π,3.212212221(每两个1之间多一个2),共3个;故选:A.【点睛】本题主要考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.6.B【解析】【分析】根据点P在x轴上,即m-1=0,可得出m的值,从而得出点P的坐标.【详解】解:∵点P(m+3,m-1)在x轴上,∴m-1=0,解得:m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.7.B【解析】【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【详解】解:A、∵∠B+∠BCD=180°,∴AB∥CD,正确,故本选项不选;B、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,错误,故本选项选;C、∵∠3=∠4,∴AB∥CD,正确,故本选项不选;D、∵∠B=∠5,∴AB∥CD,正确,故本选项不选;故选:B.【点睛】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.8.A【解析】【分析】首先根据题意得到P点的横坐标为负,纵坐标为正,再根据到x轴的距离与到y轴的距离确定横纵坐标即可.【详解】解:∵点P在第二象限,∴P点的横坐标为负,纵坐标为正,∵到x轴的距离是4,∴纵坐标为:4,∵到y轴的距离是3,∴横坐标为:−3,∴P(−3,4),故选:A.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.9.B【解析】【分析】根据算术平方根的定义、平方根的定义、立方根的定义即可作出判断.【详解】解:A、9的平方根是±3,故选项错误;B、4的平方根是±2,故选项正确;C2,故选项错误;D、-8的立方根是-2,故选项错误.故选:B.【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作(a≥0);也考查了立方根的定义.10.B【解析】【分析】两个二元一次方程相加可得4x+4y=20,两边同时除以4即可得到结果. 【详解】解:31238x yx y+=⎧⎨+=⎩①②,①+②得:4x+4y=20,∴x+y=5,故选:B.【点睛】本题考查了二元一次方程组的解,理解方程组解的定义是解题关键.11.D【解析】【分析】反向延长DE交BC于M,根据平行线的性质求出∠BMD的度数,由补角的定义求出∠CMD 的度数,根据三角形外角的性质即可得出结论.【详解】解:反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=60°,∴∠CMD=180°−∠BMD=120°;又∵∠CDE=∠CMD+∠BCD,∴∠BCD=∠CDE−∠CMD=150°−120°=30°.故选:D.【点睛】本题考查的是平行线的性质和三角形外角的性质,用到的知识点为:两直线平行,内错角相等.12.D【解析】【分析】根据题目中所给点运动的特点,从中找出规律,即可得出答案.【详解】解:由图可得,4秒后跳蚤所在位置的坐标是(2,0);16秒后跳蚤所在位置的坐标是(4,0);36秒后跳蚤所在位置的坐标是(6,0);∴42秒时根据跳蚤向上跳动6个单位可以到达(6,6),45秒时根据跳蚤向左跳动3个单位可以到达(3,6),故选:D.【点睛】本题主要考查点的坐标问题,解决本题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间.13.如果两条直线被第三条直线所截且同位角相等,那么这两条直线平行【解析】【分析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】解:“同位角相等,两直线平行”的条件是:“同位角相等”,结论为:“两直线平行”,所以写成“如果…,那么…”的形式为:“如果同位角相等,那么两直线平行”.14.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.17.32【解析】【分析】根据题目中的数据和算术平方根的求法可以解答本题.【详解】==≈,17.32故答案为:17.32.【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出所求数据的算术平方根.16.3【解析】【分析】BE 即是平移的距离,根据线段和差求出即可.【详解】解:根据题意可知BE即为平移的距离,BE=BC-EC=3cm,故答案为:3.【点睛】本题考查平移的性质,根据题意找到平移的的方向和距离是解题关键.17.(−3,1)【解析】试题分析:根据帅的坐标,建立坐标系,如图所示,然后判断得(-3,1).考点:平面直角坐标系18.17【解析】【分析】设晴天工作x 天,雨天工作y 天,根据题意列出二元一次方程组求解即可.【详解】解:设晴天工作x 天,雨天工作y 天, 根据题意得:()()1130%1141411120%11515x y x y ⎧+⨯-=⎪⎪⎨⎪+⨯-=⎪⎩, 解得:710x y =⎧⎨=⎩, ∴两个工程队各工作了x+y=17天,故答案为:17.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.19.(1)原式=4;(2)x=-2或x=6.【解析】【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=-+=+(2)()2216x -=,24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.20.(1)见解析;(2)见解析;(3)面积为5.【解析】【分析】(1)找到点A 、B 、C 的位置,连接即可;(2)根据平移的性质找到A 1、B 1、C 1的位置,连接即可;(3)用111A B C △所在矩形的面积减去周围直角三角形的面积进行计算.【详解】解:(1)如图,△ABC 即为所求;(2)如图,111A B C △即为所求;(3)111111342214235222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查平面直角坐标系和平移,熟练掌握平移的性质是解题关键.21.∠BOE=70°;∠AOG=55°. 【解析】【分析】先求出∠AOF ,根据对顶角的性质得出∠BOE ,再根据邻补角的性质求出∠AOE ,由角平分线即可求出∠AOG .【详解】解:∵AB ⊥CD ,∴∠AOD=∠AOC=90°,∵∠FOD=20°,∴∠AOF=90°-20°=70°,∴∠BOE=70°;∴∠AOE=180°-70°=110°,∵OG 平分∠AOE ,∴∠AOG=110°÷2=55°.【点睛】本题考查了垂线、对顶角、邻补角的定义,弄清各个角之间的数量关系是解决问题的关键. 22.34【解析】分析:先利用加减消元法解二元一次方程组,可得72x k y k=⎧⎨=-⎩,然后根据2x+3y=6可得:1466k k -=,解得34k =. 详解:解59x y k x y k +=⎧⎨-=⎩①②, 由①+②可得:214x k =,解得7x k =,把7x k =代入②可得:2y k =-, 因为2x+3y=6可得:1466k k -=,解得34k =. 点睛:本题主要考查含参数的二元一次方程组的解法,解决本题的关键是要熟练掌握加减消元法解二元一次方程组.23.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)24.(1)甲、乙两种车分别运载3吨,2吨;(2)共4种方案.【解析】【分析】(1)设甲、乙两种车分别运载x 吨,y 吨,根据题意列出二元一次方程组,求出x,y 即可得解;(2)列出二元一次方程,根据m ,n 都是整数,可得到方案.【详解】解:(1)设甲、乙两种车分别运载x 吨,y 吨;23123417x y x y +=⎧⎨+=⎩,解得32x y =⎧⎨=⎩; 答:1辆甲型车和1辆乙型车都装满枇杷一次可分别运货3吨,2吨;(2)设租甲、乙两种车分别m 辆,n 辆,由题意得:3m+2n=21.19m n =⎧⎨=⎩,36m n =⎧⎨=⎩,53m n =⎧⎨=⎩,70m n =⎧⎨=⎩共4种方案. 方案一:甲车1辆,乙车9辆;方案二:甲车3辆,乙车6辆;方案三:甲车5辆,乙车3辆方案四:甲车7辆,乙车0辆.答:甲车1辆,乙车9辆或甲车3辆,乙车6辆或甲车5辆,乙车3辆或甲车7辆,乙车0辆.【点睛】本题考查了二元一次方程组的实际应用,能够找到等量关系列出二元一次方程组是解题关键.25.(1)10;(2)P 点的纵坐标为8或-8,横坐标为任意实数;(3)M(-2,0),(2,0).【解析】【分析】(1)根据三角形面积公式可直接计算;(2)由于底不变,△OAP 的高是△OAB 的高的二倍即可;(3)分情况讨论,当M 在x 轴上时和当M 在y 轴上时,分别求出OM 即可.【详解】解:(1)∵O(0,0),A(5,0),B(2,4),∴S △OAB =0.5×5×4=10;(2)若△OAP 的面积是△OAB 面积的2倍,O ,A 两点的位置不变,则△OAP 的高应是△OAB 高的2倍,即△OAP 的面积=△OAB 面积×2=0.5×5×(4×2), ∴P 点的纵坐标为8或-8,横坐标为任意实数;(3) △OBM 的面积=21045⨯=, 当M 在x 轴上时,以OM 为底,OM 边上的高为4, ∴1442OM ⨯⨯=,解得OM=2, ∴M(-2,0),(2,0),同理当M在y轴上时,M(0,4),(0,-4).【点睛】本题考查了坐标与图形以及三角形的面积的求解,三角形的底边不变,则三角形的面积与高成正比,高不变,则三角形的面积与底边成正比,需要注意,在平面直角坐标系内,符合长度的点的坐标通常都有两种情况,不要漏解.。

相关文档
最新文档