从硅渣中提取工业硅的新方法

从硅渣中提取工业硅的新方法
从硅渣中提取工业硅的新方法

从硅渣中提取工业硅的工艺

瞿仁静包稚群

(昆明冶金研究院)

摘要:本文叙述一种简单的处理方法,通过手选、机选、配料、熔炼等工序,采用专利技术,利用工频炉,配入专利合成熔剂,从工业硅弃渣中提炼单质硅,产品达到工业硅精度,提炼方法简单,成本低廉,是硅行业的一种节能减排的新技术。

关键词:工业硅,硅渣,工频炉,合成熔剂

1.前言

工业硅生产以硅石为原料,碳质原料为还原剂,用电炉进行熔炼。工业硅是指以含氧化硅的矿物和碳质还原剂等为原料,经电炉熔炼制得的含Si97%以上的产物。工业硅主要用于配制合金、制造高纯半导体、生产硅、硅、硅油等有机硅。

目前云南省的硅产能为100×104t/a,产硅渣10×104t/a,硅渣长期以来都用来铺路或作为弃渣堆存,占据了大量的土地资源,硅渣中含有15%以上的单质硅没有被回收,造成了资源的浪费。云南省永平县泰达废渣开发利用有限公司法人进行了多年的研究,发明了“微铝微钙硅铁的生产方法”来处理硅渣,通过简单的方法回收硅渣中有效成分,并除掉硅中的杂质,使硅中杂质含量和结晶状态等符合要求,并将此工艺申请专利,在四川省大邑县成功生产近2年,在云南省永平县成功生产1年有余。

2.原辅料

从工业硅渣中提取单质硅的新方法,以冶炼硅渣为原料,通过造渣去除原料中的CaO、Al2O3、FeO。配料为专利技术,主要有两种辅料,辅料专利号为ZL02X341672,文中以辅料1、辅料2代替。

硅渣成分见表1。

表1 硅渣成分

原、辅料单耗量:硅渣为6250kg/t硅,辅料1、2各为kg/t硅。

3工业硅的杂质来源和性质

工业硅中的杂质以单质和化合物的形态存在。热力学计算表明,Fe2O3、SiO2、MgO、Al2O3、CaO等在常压下还原时,Fe2O3还原温度最低,其次是SiO2,再次是Al2O3、MgO和CaO。因为还原温度不同,Fe2O3、SiO2绝大部分被还原,Al2O3、MgO和CaO只能部分还原。未还原的Al2O3、MgO 和CaO与SiO2一起形成熔渣。这种熔渣有的积聚在一起形成明显的浅色熔渣块,局限在晶界间,界限分明,破碎时可用手工清除;另一些熔渣则变成深色的仅在显微镜下才能看到的颗粒,和硅混杂在一起,成为硅中的杂质。

4硅与渣的分离原理

从硅渣中提取工业硅,第一步是要将硅渣中明显的浅色渣与深色渣用手工锤分离,再用中选原理进一步分离,提高硅渣中硅的含量;第二部进行熔炼分离,主要是要分离熔体硅中的杂质。

硅渣中的杂质以还原和未还原两种形态存在,在工业硅中加入由Na2O5~50%, SiO250~95%组成的絮凝剂或者由Na2O5~50%, SiO250~95%以及MgO、CaO低于35%组成的熔剂后,熔渣的熔点可从原来的1450~1480,降到1000左右,还可降低熔渣的密度,改善其粘度和表面张力,有利于熔渣和硅的分离。铝和钙与合成熔剂间发生氧化反应而被除掉,铝和钙的氧化速度常数与温度成线性关系,铝和钙的氧化过程在接近扩散的区域内进行。熔渣在合成熔剂中经40min即可全部溶解,可除掉83%的铝及92%的钙。这种熔剂是由苏打灰、白云石、硅石、生石灰和蛇纹岩或碎玻璃等配成,对硅呈惰性,能很好地使铝、钙氧化和使非金属夹杂物聚集上浮分离,但无除铁作用。熔剂的添加量一般为精制工业硅的10~20%(质量)。配料工作要求准确、均匀、及时,配料工作的好坏对产品的产量、原料单耗和成本等都有重要影响,甚至会决定熔炼提纯过程能否进行。

硅渣提纯熔炼用工频炉进行加热和保温。

5工艺流程简述

根据硅渣的性质,冶炼工艺分为手选、机器分选、配料、提纯炉熔化、产品浇注、精整、破碎、烟气除尘净化等工序。

生产使用的原料,通过手工分选后由振动筛冲水落入机器分选车间,用铲车运送至配料车间配料,配好料后装入吨袋,再由铲车输送至熔化车间,用起重机送至炉子操作平台,由人工进行加料。

电提纯炉容量为1500~4000kV A,由于炉子的炉龄较短,每座炉子有2个炉体,保证炉子能正常生产。冶炼周期2h~3h,当一台炉子在加料或出料的时候,另外的炉子在工作,不会同时加料和出料。经电提纯炉冶炼得到硅熔体流到铁水包中,由行车运至浇注区进行铸模,自然冷却后人工破碎、精整,检验合格后装袋包装入库。当一个铁水包在浇注时,三台炉子都在工作,浇注时无炉子加料或出料。

除尘工艺流程为:提纯炉、浇注烟气→布袋除尘器→引风机→烟囱。

采用袋式除尘器净化烟气。烟气经炉顶活动烟罩汇入烟管,进入袋式除尘器,净化烟气由引风机送入烟囱排入大气。提纯炉炉口敞开,烟气上升过程中温度降到除尘器的安全操作温度。引风机吸风,炉口烟气处于负压状态,避免烟气外逸,净化烟气由引风机送入烟囱排入大气,收集的粉尘返回配料。

通过手工分选和机器分选后的原料成分见表2,配料后的入炉物料成分见表3,炉渣成分见表4,产品硅的成分见表5。硅渣回收生产工艺流程见图1。

表2 选矿后原料成分

表3 入炉物料成分

表4 炉渣成分

表5 产品成分

图1 硅渣回收工艺流程图

6车间组成

工业硅企业是高能耗企业,消耗大量电能,硅渣提炼车间应配置在靠近原料产地,廉价能源基地。

硅渣回收主要由原料堆场、机器分选车间、配料车间、熔化车间库房、除尘设施及辅助设施组成。其中机器分选车间、配料车间、熔化车间、库

房、除尘设施及配电房为联合厂房。

机器分选车间设置堆场、机器分选设备、带式输送机,物料由带式输送机输送至配料车间。配料车间与机器分选车间相连。熔化车间设置铲车通道、提纯炉、浇注区、破碎车间。提纯炉的循环水泵房靠近电炉厂房,布置在较低处,电炉的烟气净化设施也靠近厂房。电炉厂房四周的建筑物的长度比电炉厂房的长度短。提纯炉设置两个冷却水池,保证水质符合低压蒸汽锅炉用水的水质要求,每升水中钙、镁离子应不大于mol,氯离子含量不大于20~30mg/L,循环水的补水在处理后补入。

7成本分析

从硅渣中提取工业硅制造成本约为7500元/t,其中可变成本比例为%,固定成本比例为%。原料费用及动力占总成本费用的比例为%,是影响本项目效益的关键因素,企业应提高回收率,在降低耗量、加强内部管理上下功夫,以使效益稳步增长。制造成本分析见表6。

表6 制造成本构成分析表(%)

8结论

硅渣中含有15%以上的已经还原的单质硅,长期以来没有进一步进行分离,单质硅与硅渣混合成为廉价的铺路材料。采用专利合成熔剂利用工频炉融化硅渣,可以再次分离硅与渣,并对单质硅进行进一步提纯,使其达到工业硅的要求。加工技术精湛,加工成本低廉,是硅行业的一项节能减排新技术。

参考文献:

【1】何允平、王恩慧.工业硅生产【M】.冶金工业出版社,北京,1989年。211~213.

【2】硅铁生产一百问编写组.硅铁生产一百问,冶金工业出版社【M】.北京,1997年。

【3】铁合金生产编写组.铁合金生产,冶金工业出版社【M】.北京,1995年。

作者简介:

瞿仁静(1963-),女,重庆人,高级工程师。

工业硅冶炼操作工艺

工业硅冶炼操作工艺 西安宏信矿热炉有限公司

一、工业硅生产工艺流程图

二、工业硅生产安全管理制度 工业硅生产是铁合金生产中最为精细的一种产业,要求每个操作人员必须经过严格培训,掌握生产个环节的重点和工艺要素,作到心中有数。只有这样才能将生产管理规范化、精细化,生产出高品级的工业硅。 1、冶炼工技术操作职责 ?保证高温冶炼,尽量减少热损失,使SiC的形成和破坏保持相对平衡。 ?炉料混合均匀后加入炉内。 ?正常冶炼的操作程序是沉料—攒热料—加新料—焖扎盖。 ?要垂直于电极加料,不要切线加料。料落点距电极100mm左右,不允许抛散炉料。 ?炉料形状和分布要合理,集中加料后,使料面呈馒头形状,料面要高于炉口200—300mm。 ?每班接时要捣炉,捣出的黏料捣碎后推到炉心。 ?沉料、捣炉时动作要块,不要碰撞电极、铜瓦和水套。 ?根据炉料融化情况加料,尽量做到加料量、用料量和出硅量相适应。 ?保持合理的料层结构,捣松的炉料就地下沉,不要大翻炉膛。 ?使用铁质工具沉料、捣炉时,动作要块,避免融化铁铲和捣炉棒。 ⑴木块等碳质还原剂在加料平台上可单独堆放,沉料结束或处理炉况时先加木块于电极根部凹坑处,然后加混合料盖住。 ⑵ 仔细观察仪表,协调其他人员用计算机控制电极的压放,使三根电极平衡运行。 ⑶ 随时了解电炉电流、电压的变化情况,给予适当的调整。

2、出炉工技术操作职责 ①正常情况下,每班出3—4炉,尽量大流量、快出硅。 ②出炉前先将炉眼、流槽清理干净,准备好出炉工具和材料。 ③用烧穿器前,要先将钢钎清除炉嘴外的结渣硅,使炉眼保持φ150mm左右的喇叭口形状,然后用烧穿器烧开炉眼。能用钢钎捅开时不用烧穿器。 ④当流量小时,要用木棒捅炉眼、拉渣,用烧穿器协助出硅。 ⑤堵炉眼前炉眼四周和内部渣滓扒净,用烧穿器修理炉眼至通畅光滑,然后堵眼,深度超过或达到炉墙厚度。 ⑥堵眼时如果炉气压力过大无法堵塞,要停电堵眼。 ⑦出炉口和硅包附近要保持干燥,禁止积水,防止跑眼爆炸。 ⑧精练产品要按方案进行,不可随意改变供气量、精练时间、造渣剂的比例等。精练时注意安全,防止硅液飞溅、过大氧气回火等事故发生。 ⑨浇注前要修补好锭模,放好挡渣棒,锭模底部可适当放适量合格硅粒,或涂脱模剂,保护锭模。 ⑩浇注时,硅包倾倒至硅液快要流出时,稍停片刻,使硅渣稳定,再使硅液从包嘴慢慢流入缓冲槽。 ⑴工业硅锭冷却到乌红时,用专用吊具从锭模中吊出,转移到冷却间。严禁用水急冷。 3、电工技术操作职责 ①持证上岗,遵守供用电制度,要求与变电站和生产指挥紧密配合。 ②电工作到四会:会原理、会检修、会接线、会操作

工业硅工艺流程资料讲解

.1项目主要建设内容 主要建设内容为:建设生产厂房8000平方米,供水系统、环保系统等配套设施用房10000平方米,厂区道路及停车场等4800平方米,厂区绿化3400平方米。购置和制作生产所需的冶炼炉、精炼炉、除尘系统等生产设备326台(套),监测、化验及其他设备9台套。 1.2.2产品规模 年产高纯工业硅5万吨,其中:1101级高纯工业硅4万吨,3N级高纯工业硅6000吨, 4N 级高纯工业硅4000吨。 1.2.3生产方案 1、产品方案 目前,国内外工业硅市场1101级以下(不包括1101级)产品基本处于供大于求的状况,且短时期内不会有很大变化。结合全油焦生产工艺产品产出比例,本项目产品方案为:年产高纯工业硅5万吨,其中:1101级高纯工业硅4万吨,3N级高纯工业硅6000吨, 4N级高纯工业硅4000吨。 2、技术方案 1)国内外现状和技术发展趋势 冶金级工业硅由于生产技术简单,全世界生产企业众多,产量较大,供需基本保持平衡,且耗能高、附加值低,属国家限制类行业。目前国外有工业硅生产厂家30多家,主要集中在美国、巴西和挪威三国,占世界生产能力的65%,最大生产厂家主要有挪威的埃肯、巴西的莱阿沙、美国的全球冶金,电炉变压器容量大多在10000KVA—60000KVA,通用炉型为3000 0KVA,小于10000KVA的电炉基本停用。其发展趋势是矿热炉大容量化,由敞开式的固定炉体向旋转、封闭炉体发展,自焙电极的应用、炉气净化处理、新型还原剂的开发与应用、炉外精炼技术的发展和应用、生产过程中的计算机管理和控制。其特点是电炉容量大、劳动生产率高、单位产品投资少、有利于机械化、自动化生产和控制环境污染。我国工业硅生产起步于上世纪的50年代,目前仍在生产的厂家约有300多家,电炉400多台,产能约为90—120万吨/年,产量约为70—90万吨。且大部分分布在福建和云、贵、川等小水电资源丰富的地区,受季节性影响较大。其突出特点是电炉容量小、台数多,厂家多而分散,操作机械化水平低、劳动生产率低,产品质量不稳,化学级工业硅产量低(不到产量的1/8),且能源消耗、原材料消耗和生产成本偏高(行业内称为“三高”)。从电炉变压器容量看,我国以3200Kva至6300kVA的电炉为主要炉型,2006年国内已建成的10000kVA工业硅电炉仅有

硅的提纯

第二章硅的提纯 2.1 硅的化学提纯与多晶硅的制备 半导体硅是元素半导体,半导体的基本特征是掺入微量电活性杂质将明显改变其电学性能。最 纯净的本征硅单晶的电阻率在室温下理论值大于200kΩ·cm。而若在单晶中掺入百万分之一磷杂质原子,就能使单品电阻率下降到大约0.2Ω·cm,即下降了约一百万倍。杂质对于半导体的性能是如此 的敏感,因此在用半导体制造固体器件时必须控制所用的半导体材料基本上不存在有害杂质。虽然 有些杂质影响显著,而有些杂质影响器件性能较少,但为了控制硅单晶的性能,我们不可能采用某种 技术有选择地只去除有害杂质而又保留若干无害杂质。所以最实际的办法是将硅的纯度提高到足 够的高度,去除各种杂质,然后再根据应用的需要有控制地掺入特定的杂质。作为生长硅单晶的原 始材料,在半导体工业中需要很纯的多晶硅。一般要求纯度达到小数点后面7个“9”至8 个“9”的范围(n个9表示纯度为99·99…9%)。 硅是由石英砂(二氧化硅)在电炉中用碳还原而得,其反应式为 所得硅纯度约为95%~99%,称为粗硅,又称冶金级硅,其中含有各种杂质,如Fe、C、B、P等。 为了将粗硅提纯到半导体器件所需的纯度,硅必须经过化学提纯。所谓硅的化学提纯是把硅用化学方法转化为中间化合物,再将中间化合物提纯至所需的高纯度,然后再还原成为高纯硅。中间化合物一般选择易于被提纯的化合物。曾被研究过的中间化合物有四氯化硅、四碘化硅、甲硅烷等。中间化合物提纯到高纯度后,在还原过程中如果工艺技术不恰当,还会造成污染而降低产品纯度。因此,还原也是重要的工艺过程。高纯多晶硅的生产方法大多数分为三个步骤:①中间化合物的合成; ②中间化合物的提纯;③还原成纯硅。 历史上,人们研究或应用过各种高纯多晶硅的制造方法。最早实现的是四氯化硅锌还原法,由于在还原时锌的沾污,产品还要经过区域提纯(物理提纯)才能达到电子级的要求,整个过程不经济所以已被淘汰。用四碘化硅作为中间化合物也曾被重视,因为四碘化硅能用各种方法提纯,如精馏、萃取、区域提纯等方法均可用于提纯四碘化硅,但由于结果并不经济,纯度也不优于其他方法而被淘汰。现代大量用于生产的是四氯化硅氢还原法、二氯二氢硅还原法、三氯氢硅氢还原法和甲硅烷热分解法。尤其是后两者,在国际上占主导地位。现分述如下。 2.1.1 三氯氢硅氢还原法 三氯氢硅氢还原法最早由西门子公司研究成功,有的文献上称此法为西门子法。三氯氢硅氢还原法可分为三个重要过程:一是中间化合物三氯氢硅的合成,二是三氯氢硅的提纯,三是用 氢还原三氯氢硅获得高纯硅多晶。

工业硅酸钠工艺规程

工业硅酸钠工艺规程 1.目的为了对生产过程进行控制及便于操作,以保证生产出合格的硅酸钠产品。 2.范围适用于泡花碱车间马蹄焰窑炉硅酸钠产品生产过程。 3.产品说明 3.1 名称化学名称: 硅酸钠又称水玻璃俗名: 泡花碱英文名称: Sodium Silcate 化学式: Na2O?nSiO2 (其中n 为模数) 说明:模数在3以上的称为“中性”水玻璃,模数在3以下的称为“碱性”水玻璃。 3.2 性质 3.2.1 物理性质 3.2.1.1 外观固体水玻璃: 淡兰色、青绿色、天蓝色或黄绿色玻璃状物。液体水玻璃: 无色透明或带浅灰色粘稠状液体。当杂质含量极少时,玻璃状无水固体硅酸纳是无色透明的玻璃体。随着杂质含量的增加,玻璃体出现颜色。杂志中铁的氧化物使其呈现淡棕或深棕色,甚至是黑色。颜色的深浅又随模数的减小而加深。 3.1.1.2 密度: 随着模数的降低而增大。当模数从3.33 下降到1时,密度从2.413增大到2.560。 3.1.1.3 熔点: 无固定熔点, "中性"水玻璃大约在550℃左右软化。 3.1.1.4 对急冷急热非常敏感,受到这种作用时,立即裂成不规则的小碎块。 3.1.1.5 溶解度: 固体水玻璃在水中溶解度随下列因素有关 a 与压强有关,压强升高,溶解速度增大。 b 在相同的压强下,随水玻璃模数增大,溶解速度而减少。 c与固体水玻璃的粒度有关,粒度越大,所用的溶解时间越长。 3.1.1.5模数:硅酸纳中的二氧化硅与氧化纳的摩尔比称为模数。模数既显示硅酸纳的组成,又影响硅酸纳的物理、化学性质。模数与质量百分比的关系如下式: M=SiO 2%∕Na2O%×1.032 式中M为模数,1.032为换算系数(Na2O与SiO2分子量之比)。 3.2.2 化学性质无论是块状或粉状固体无水硅酸纳,对酸都很难起起作用。但易被氢氟酸分解,生成挥发性的SiF4和碱金属氟化物。苛性碱能溶解固体硅酸钠,特别对细粉状物的反应更快。 a 水玻璃的水溶液能发生强烈的水解反应而使溶液呈碱性。 b 强酸、弱酸、甚至电解质,在加热或在室温,都能使水玻璃水解而析出二氧化硅。 c氯气在低于100 ℃时,即能相当剧烈地分解固体硅酸钠。生成NaCl、SiO2、并放出氧气。 d H2O2能与固体硅酸纳起反应,生成含氧气泡的二氧化硅凝胶。模数高的硅酸钠

【CN110183235A】一种切割硅渣压砖的粘结剂及粘结方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910385601.1 (22)申请日 2019.05.09 (71)申请人 永平县泰达废渣开发利用有限公司 地址 672600 云南省大理白族自治州永平 县博南镇苏屯村 (72)发明人 羊实 庹开正  (74)专利代理机构 成都行之专利代理事务所 (普通合伙) 51220 代理人 胡晓丽 (51)Int.Cl. C04B 35/634(2006.01) C04B 35/632(2006.01) C04B 35/80(2006.01) C04B 35/622(2006.01) (54)发明名称一种切割硅渣压砖的粘结剂及粘结方法(57)摘要本发明公开了一种切割硅渣压砖的粘结剂,按重量份配比,粘结剂包括以下原料:无机纤维,5~11份,水玻璃,30~45份,海泡石,2~8份,高岭石,5~16份,铝土矿,3~12份,甲基苯基硅树脂,2.6~12份,环己酮,4~11份,硬脂酸镁,0.3~1.5份。粘结方法,依次包括以下步骤:压砖基料、粘结剂和水配料混合均匀,压制成砖坯;自然干燥后进行低温煅烧处理;高温煅烧处理,获得渗水砖成品。本发明提供的粘结剂可用于以硅渣为主要原料制砖,利于实现工业切割硅渣的有效回收再利用,利于减少企业压力和环境污染,具有良好的经济效益和社会效益;获得的硅渣压砖具有良好的抗压强度、抗折强度及渗水系数,满足用于广场、 街道的渗水砖铺设的性能需求。权利要求书2页 说明书6页CN 110183235 A 2019.08.30 C N 110183235 A

工业硅生产常识问答

1、硅的主要物理化学性质有哪些 答:硅的主要物理化学性质如下: 原子量:28.086 比重:2.34g/cm3 沸点:3427 C 熔点:1413 C 比热:(25 C时)4.89卡/克分子度 比电阻:(25 C时)214000欧姆厘米 纯净结晶硅是一种深灰色、不透明、有金属光泽的晶体物质。它即不是金属,又不是 非金属,介于两者之间的物质。它质硬而脆,是一种良好的半导体材料。硅在常温下很不活 泼,但在高温下很容易和氧、硫、氮、卤素金属化合成相应的硅化物。 硅与氧的化学亲合力很大,硅与氧作用产生大量的热,并形成SiO2: Si+ O2= SiO2 △ H298=-21O.2千克/克分子 二氧化硅在自然界中有两种存在形式:结晶态和无定形态。结晶态二氧化硅主要以简 单氧化物及复杂氧化物(硅酸盐)的形式存在于自然界。冶炼硅所用硅石,就是以简单氧化 物形式广泛存在的结晶态二氧化硅。结晶态二氧化硅根据其晶型不同,在自然界存在三种不同的形态:石英、鳞石英、方石英。这几种形态的二氧化硅又各有高温型和低温型两种变体。 因而结晶态二氧化硅实际上有六种不同的晶体,各种不同的晶型存在范围、转化情况,随压 力温度的变化二氧化硅的晶型转化不同,不仅晶型发生变化,而且晶体体积也随着自发生变 化。特别是从石英转化成鳞石英时,体积发生明显的膨胀,这就是硅石在冶炼过程中发生爆 裂的主要原因。 结晶的二氧化硅是一种硬、较脆,难熔的固体。二氧化硅的熔点为1713C 、沸点为2590C 。二氧化硅的化学性质很不活泼,是一种很稳定的氧化物。除氢氟酸外、二氧化硅不溶于任何 一种酸。在低温下比电阻很高(1.0 to3Q?Cm但温度升高时,二氧化硅的比电阻急剧下降,

高纯硅提取原理

高纯硅提取原理 高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料单晶硅。 工业生产中使用硅石(SiO2)和焦炭以一定的比例混合,在电炉中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO 粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。 高纯多晶硅的制备方法很多,据不完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅。 目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定的优点,目前比较被广泛的应用。此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。 1三氯氢硅还原法 (1)三氯氢硅的合成 第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃可制得纯度为95%~99%的粗硅。其反应式如下: SiO2+3C=SiC+2CO(g)↑ 2SiC+SiO2=3Si+2CO(g)↑ 总反应式:SiO2+2C=Si+2CO(g)↑ 生成的硅由电炉底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%。 第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉

多晶硅生产工艺流程定稿版

多晶硅生产工艺流程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

多晶硅生产工艺流程(简介) -------------------------来自于网络收集 多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显着、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑

从硅渣中提取工业硅的新方法

从硅渣中提取工业硅的工艺 瞿仁静包稚群 (昆明冶金研究院) 摘要:本文叙述一种简单的处理方法,通过手选、机选、配料、熔炼等工序,采用专利技术,利用工频炉,配入专利合成熔剂,从工业硅弃渣中提炼单质硅,产品达到工业硅精度,提炼方法简单,成本低廉,是硅行业的一种节能减排的新技术。 关键词:工业硅,硅渣,工频炉,合成熔剂 1.前言 工业硅生产以硅石为原料,碳质原料为还原剂,用电炉进行熔炼。工业硅是指以含氧化硅的矿物和碳质还原剂等为原料,经电炉熔炼制得的含Si97%以上的产物。工业硅主要用于配制合金、制造高纯半导体、生产硅、硅、硅油等有机硅。 目前云南省的硅产能为100×104t/a,产硅渣10×104t/a,硅渣长期以来都用来铺路或作为弃渣堆存,占据了大量的土地资源,硅渣中含有15%以上的单质硅没有被回收,造成了资源的浪费。云南省永平县泰达废渣开发利用有限公司法人进行了多年的研究,发明了“微铝微钙硅铁的生产方法”来处理硅渣,通过简单的方法回收硅渣中有效成分,并除掉硅中的杂质,使硅中杂质含量和结晶状态等符合要求,并将此工艺申请专利,在四川省大邑县成功生产近2年,在云南省永平县成功生产1年有余。 2.原辅料 从工业硅渣中提取单质硅的新方法,以冶炼硅渣为原料,通过造渣去除原料中的CaO、Al2O3、FeO。配料为专利技术,主要有两种辅料,辅料专利号为ZL02X341672,文中以辅料1、辅料2代替。 硅渣成分见表1。 表1 硅渣成分 原、辅料单耗量:硅渣为6250kg/t硅,辅料1、2各为kg/t硅。

3工业硅的杂质来源和性质 工业硅中的杂质以单质和化合物的形态存在。热力学计算表明,Fe2O3、SiO2、MgO、Al2O3、CaO等在常压下还原时,Fe2O3还原温度最低,其次是SiO2,再次是Al2O3、MgO和CaO。因为还原温度不同,Fe2O3、SiO2绝大部分被还原,Al2O3、MgO和CaO只能部分还原。未还原的Al2O3、MgO 和CaO与SiO2一起形成熔渣。这种熔渣有的积聚在一起形成明显的浅色熔渣块,局限在晶界间,界限分明,破碎时可用手工清除;另一些熔渣则变成深色的仅在显微镜下才能看到的颗粒,和硅混杂在一起,成为硅中的杂质。 4硅与渣的分离原理 从硅渣中提取工业硅,第一步是要将硅渣中明显的浅色渣与深色渣用手工锤分离,再用中选原理进一步分离,提高硅渣中硅的含量;第二部进行熔炼分离,主要是要分离熔体硅中的杂质。 硅渣中的杂质以还原和未还原两种形态存在,在工业硅中加入由Na2O5~50%, SiO250~95%组成的絮凝剂或者由Na2O5~50%, SiO250~95%以及MgO、CaO低于35%组成的熔剂后,熔渣的熔点可从原来的1450~1480,降到1000左右,还可降低熔渣的密度,改善其粘度和表面张力,有利于熔渣和硅的分离。铝和钙与合成熔剂间发生氧化反应而被除掉,铝和钙的氧化速度常数与温度成线性关系,铝和钙的氧化过程在接近扩散的区域内进行。熔渣在合成熔剂中经40min即可全部溶解,可除掉83%的铝及92%的钙。这种熔剂是由苏打灰、白云石、硅石、生石灰和蛇纹岩或碎玻璃等配成,对硅呈惰性,能很好地使铝、钙氧化和使非金属夹杂物聚集上浮分离,但无除铁作用。熔剂的添加量一般为精制工业硅的10~20%(质量)。配料工作要求准确、均匀、及时,配料工作的好坏对产品的产量、原料单耗和成本等都有重要影响,甚至会决定熔炼提纯过程能否进行。 硅渣提纯熔炼用工频炉进行加热和保温。 5工艺流程简述 根据硅渣的性质,冶炼工艺分为手选、机器分选、配料、提纯炉熔化、产品浇注、精整、破碎、烟气除尘净化等工序。

如何提炼硅

如何提炼硅&多晶硅生产工艺 纯净的硅(Si)是从自然界中的石英矿石(主要成分二氧化硅)中提取出来的,分几步反应: 1.二氧化硅和炭粉在高温条件下反应,生成粗硅: SiO2+2C==Si(粗)+2CO 2.粗硅和氯气在高温条件下反应生成氯化硅: Si(粗)+2Cl2==SiCl4 3.氯化硅和氢气在高温条件下反应得到纯净硅: SiCl4+2H2==Si(纯)+4HCl 以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅: 1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅: SiO2+2Mg==2MgO+Si(粗) 2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去: Mg+2HCl==MgCl2+H2 MgO+2HCl==MgCl2+H2O Mg2Si+4HCl==2MgCl2+SiH4 3.过滤,滤渣即为纯硅 (一)国内外多晶硅生产的主要工艺技术 1,改良西门子法——闭环式三氯氢硅氢还原法 改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。 国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。 2,硅烷法——硅烷热分解法 硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。但美国Asimi和SGS 公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。 3,流化床法 以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。 制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差,危险性大。其次是产品纯度 不高,但基本能满足太阳能电池生产的使用。 此法是美国联合碳化合物公司早年研究的工艺技术。目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。此法比较适合生产价廉的太阳能级多晶硅。 4,太阳能级多晶硅新工艺技术 除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。 1)冶金法生产太阳能级多晶硅 据资料报导[1]日本川崎制铁公司采用冶金法制得的多晶硅已在世界上最大的太阳能电池厂(SHARP公司)应用,现已形成800吨/年的生产能力,全量供给SHARP公司。 主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭

晶体硅的生产过程

一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。 单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。 由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。 单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。 二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。 日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。 目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,

工业硅精炼提纯工艺

工业硅精炼提纯工艺 1.概述 工业硅是在埋弧电炉中用电热法冶炼生产的,在高温和强还原条件下一些由含硅原料和还原剂带入的氧化物杂质必然会得到部分被还原而进入产品金属相中。作为一般用途的工业硅,其杂质含量并不构成使用上的困难。但作为有机硅产品的原料,必须是化学级工业硅, 因此必须进行精炼, 除去其中的Ca、Al等杂质。 从化学反应角度来看,炉外精炼主要分为氯化精炼和氧化精炼两种。氯化精炼由于在处理过程中会造成环境污染, 而氧化精炼也能有效地除去工业硅中的主要杂质铝和钙, 且工艺过程简单, 硅烧损率低,故一般采用炉外硅包氧化底吹精炼。精炼原理是利用渣-金属元素相平衡的原理,将工业硅中的Ca 和Al氧化脱除后使其进入渣相。整个过程不需要输入能量,只考虑硅包的散热损失。 2.精炼过程简述 2.1保持精炼过程的能量平衡 为使精炼过程顺利完成, 采用氧气和空气混吹的方式(应设有氧气站和空压站)。纯氧氧化元素时放出的热量最多, 空气次之, 元素被氧化放出的热量能够和精炼过程中的散热保持平衡。要维持精炼过程的能量平衡必须选择1580~ 1690℃作为精炼过程的温度区间。 2.2精炼的吹气方式 采用底吹方式, 底吹氧的透气砖安装在包底中,透气砖内有较多的细铜管, 氧气和空气从细铜管中吹向硅熔液实施精炼, 空气在吹氧结束后亦通过透气砖向硅熔液中形成正压。 2.3精炼的搅拌 采用压缩空气搅拌, 在吹入氧气进行精炼时以一定比例混入空气进行搅拌是为了改善渣--金属元素相反应的动力学条件, 加速造渣, 尽快脱除杂质, 减少热损失和硅液粘包。 2.4工艺简述 从氧气站和空压站输送来的氧气和压缩空气经计量由耐热橡胶管输入硅包底部散气砖中与刚出炉的硅液进行反应, 脱除杂质Ca和Al。在出炉前2~3min, 先向包底通入压缩空气,以防止硅液灌入透气孔, 当硅液达三分之一硅包深度时,即可开启氧气进行氧化精炼。待出完炉堵眼后并完成精炼, (铝、钙等含量达要求值以下) 即可关闭氧气, 并将砖包由出炉小车拉至浇铸间进行浇铸, 倒完硅液后继续通入压缩空气3~5min, 防止散气孔的堵塞, 稍后即可拔去热耐橡胶管, 并扒去硅渣, 等待出下一炉。 2.5工艺指标 (1) 氧气: 压力为0.5MPa, 消耗指标0.06T/T.Si(42m3) ;

硅的提纯工艺

高纯硅的制备一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。工业上是用硅石(SiO2)和焦炭以一定比例混合,在电炉中加热至1600~1800℃而制得纯度为95%~99%的粗硅,其反应如下:SiO2+2C=Si+2CO粗硅中一般含有铁、铝、碳、硼、磷、铜等杂质,这些杂质多以硅化构成硅酸盐的形式存在,为了进一步提高工业粗硅的纯度,可采用酸浸洗法,使杂质大部分溶解(有少数的碳化硅不溶)。其生产工艺过程是:将粗硅粉碎后,依次用盐酸、王水、(HF+H2SO4)混合酸处理,最后用蒸馏水洗至中性,烘干后可得含量为99.9%的工业粗硅。高纯多晶硅的制备方法很多,据布完全统计有十几种,但所有的方法都是从工业硅(或称硅铁,因为含铁较多)开始,首先制取既易提纯又易分解(即还原)的含硅的中间化合物如SiCl4、SiHCl3、SiH4等,再使这些中间化合物提纯、分解或还原成高纯度的多晶硅目前我国制备高纯硅多晶硅主要采用三氯氢硅氢还原法、硅烷热解法和四氯化硅氢还原法。一般说来,由于三氯氢硅还原法具有一定优点,目前比较广泛的被应用。此外,由于SiH4具有易提纯的特点,因此硅烷热分解法是制备高纯硅的很有发展潜力的方法。下面我们就分别介绍上述三种方法制备高纯硅的化学原理。1. 三氯氢硅还原法(1)三氯氢硅的合成第一步:由硅石制取粗硅硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃可制得纯度为95%~99%的粗硅。其反应式如下:SiO2+3C=SiC+2CO(g)↑2SiC+SiO2=3Si+2CO(g)↑总反应式:SiO2+2C=Si+2CO(g)↑生成的硅由电炉底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%。第二步:三氯氢硅的合成三氯氢硅是由干燥的氯化氢气体和粗硅粉在合成炉中(250℃)进行合成的。其主要反应式如下:Si+3HCl=SiHCl3+H2(g)(2)三氯氢硅的提纯由合成炉中得到的三氯氢硅往往混有硼、磷、砷、铝等杂质,并且它们是有害杂质,对单晶硅质量影响极大,必须设法除去。近年来三氯氢硅的提纯方法发展很快,但由于精馏法工艺简单、操作方便,所以,目前工业上主要用精馏法。三氯氢硅精馏是利用三氯氢硅与杂质氯化物的沸点不同而分离提纯的。一般合成的三氯氢硅中常含有三氯化硼(BCl3)、三氯化磷(PCl3)、四氯化硅(SiCl4)、三氯化砷(AsCl3)、三氯化铝(Al2Cl3)等氯化物。其中绝大多数氯化物的沸点与三氯氢硅相差较大,因此通过精馏的方法就可以将这些杂质除去。但三氯化硼和三氯化磷的沸点与三氯氢硅相近,较难分离,故需采用高效精馏,以除去这两种杂质。精馏提纯的除硼效果有一定限度,所以工业上也采用除硼效果较好的络合物法。三氯氢硅沸点低,易燃易爆,全部操作要在低温下进行,一般操作环境温度不得超过25℃,并且整个过程严禁接触火星,以免发生爆炸性的燃烧。(3)三氯氢硅的氢还原提纯三氯氢硅和高纯氢混合后,通入1150℃还原炉内进行反应,即可得到硅,总的化学反应是:SiHCl3+H2=Si+3HCl 生成的高纯多晶硅淀积在多晶硅载体上。

工业硅安全生产各岗位职责

XXXX硅业有限公司安全生产各岗位职责 第一章总则 为进一步贯彻落实“安全第一,预防为主”的方针,强化各级安全生产责任制,确保安全生产,特制定本制度。 企业法定代表人是本企业安全生产的第一责任人,应贯彻管生产必须管安全,谁主管谁负责的原则。企业的各级领导人员和职能部门,必须在各自工作范围内对实现安全生产负责。 安全生产人人有责,企业的每个职工都必须在自己的岗位上认真履行各自的安全职责,实现全员安全生产责任制。

总经理安全生产职责 1、认真贯彻执行国家安全生产方针、政策、法律和法规,把安全工作列入公司管理的重要议事日程,亲自主持重要的安全生产工作会议,批阅上级有关安全方面的文件,签发有关安全工作的重大决定,对本公司的安全生产工作全面负责。 2、负责建立健全安全生产责任制,督促检查安全生产工作,及时消除生产安全事故隐患。 3、组织制定并实施公司安全规章制度、安全操作规程、重大安全技术措施和生产安全事故应急预案。 4、保证安全生产投入的有效实施,解决安全措施费用。 5、健全安全管理机制,充实专职安全生产管理人员,定期听取安全生产管理部门的工作汇报,及时研究解决或审批有关安全生产中的重大问题。 6、按规定和事故处理的“三不放过”原则,组织对事故的调查处理。 7、加强对各项安全活动的领导,决定安全生产方面的重要奖惩。

副总经理安全生产职责(生产副总) 1、组织开展安全生产技术研究工作,积极引进、采用先进技术和安全生产防护装置,组织研究落实重大事故隐患的整改方案。 2、督促车间主任落实本公司的各项安全生产规章制度、安全技术规程,编制安全生产技术措施计划、并组织实施。 3、每周组织一次安全生产大检查,着重抓好重大隐患的整改工作,坚持每周四次安全例会制度,扎实的做好安全工作。 4、在组织新车间、新设施、新设备以及技术改造项目的设计、施工和投入使用时,做到“三同时”(安全设施与主体工程同设计、同施工、同时投入使用)。 5、审查公司安全技术规程和安全技术措施时,应保证切实可行。 6 负责督促事故的调查处理,并及时上报上一级领导。 7、负责召开公司安全生产专项会议,分析安全生产动态,解决安全生产中存在的问题与隐患。

简述有机硅单体生产的工艺流程

简述有机硅单体生产的工艺流程 金属硅通过破碎成硅粉,和催化剂、氯甲烷一起加入到硫化床,进过洗涤塔滤出渣浆后进过粗 单体塔获得粗单体。 硅粉和氯甲烷为有机硅生产的原料,硅块进过给料机送至鄂式破碎机进行初步破碎,再送至旋风磨,磨成硅粉,筛分后的合格硅粉由气力输送泵或槽车送至单体合成。 硅粉和氯甲烷在流化床内气固相催化反应合成有机硅粗单体,从流化床出来的气固混合物进 过旋风分离器出去大部分粉尘后去洗涤塔,顶部采出的粗单体去粗单体塔进一步分离,粗单体塔地步采出粗单体。 粗单体:混合物,主要含有二甲基二氯硅烷、一甲基三氯硅烷、三甲基一氯硅烷、一甲基二 氯硅烷、二甲基氯硅烷、高沸物、低沸物等。 粗单体进过脱高塔、脱低塔、二元塔(产品二甲、一甲)、轻分塔(产品轻沸)、含氢塔(产 品:含氢),共沸塔(产品:共沸)、三甲塔(产品三甲)、高沸塔(产品高沸)进行精馏分 离操作。 甲基单体精馏具有分离组分多、组分相对挥发度度小、分离纯度高等特点,装置采用微正压、 先脱高、后脱低、先后分出一甲、二甲的多塔连续工艺、分别获得多种高纯度的甲基单体产品。 简述有机硅基础聚合物(110 硅橡胶和107 硅橡胶)的生产工艺流程和应用 110 硅橡胶 二甲加入浓酸循环封闭式管道反应系统发生水解反应生成低聚硅氧烷(二甲水解物)并释放出氯化氢,氯化氢通过管道输送至其他工段生产氯甲烷或者浓盐酸,低聚硅氧烷 进过萃取、中和、蒸煮、排水处理,得到合格水解物。 水解物经过静置排水后进入裂解釜,在氢氧化钾催化剂的作用下环花重排,经裂解 塔分解出钾盐、线体、得到环体进入脱低塔;脱低塔塔顶采出D3,塔釜液体输送至产品塔;产品塔塔釜返回至水解循环系统水解,塔顶采出DMC。 DMC 和 VMC 混合脱水后,加入封头剂、碱胶发生聚合后经过脱氢脱去低分子得到产品进行包装,即可得到110 甲基乙烯基生胶. 甲基乙烯基硅橡胶由于硫化活性提高,耐热性和高温抗压缩变形有很大改进,是产量最大、应用最广的一类硅橡胶,品种牌号也最多。除通用型胶料外,各种专用性和具 有加工特性的硅橡胶,也都以它为基础进行加工配合,如高强度、低压缩变形、导电性、迟燃性、导热性等硅橡胶。这类硅橡胶广泛用于 O 型密封圈、油密封,各种管道、密封剂和粘合剂等。 110 系列硅橡胶可用于制造模压胶、挤出胶、电绝缘胶、阻燃胶等各类混炼胶。 107硅橡胶 原料经过脱水,加入催化剂聚合后,脱去低分子即可进入成品罐储存包装。 连续法生产 将3 个静态混合器串联,组成了连续化的生产流程。如图所示。二甲基环硅氧烷先经过 预热,然后在脱气罐中脱水,在用泵经催化剂混合器送至第一静态混合器。在混合器内 物料与催化剂(硅氧烷醇钾溶液)混合。第一混合器温度为 180-190 ℃,压力 1.16MPa ,物料停留时间为 17-24 分钟,在此加入计量的水。随后,在第二静态混合器即中和器内 用磷酸和硅氧烷配制成的溶液进行中和处理;加入中和剂的物料再进入第三静态反应器, 进一步完成中和。最后,中性物料经压力调节阀,再加热提高物料温度,进入脱除挥发 分装置,在真空下除去聚合物中的低分子聚硅氧烷。 7硅橡胶是由硅氧烷单体聚合而成的、其分子两末端带有羟基的有机硅材料。 根据羟基含量高低和粘度不同,可分别用于不同的行业。

工业硅冶炼及炼硅炉基本知识

工业硅冶炼及炼硅炉基本知识 工业硅消费增产降耗的措施主要有:1.把握炉况及时调整料比,坚持适合的C/SiO2分子比,适合的物料粒度和混匀,避免过多SiC生成。2.选择合理的炉子构造参数和电气参数,保证反响区有足够高的温度,合成消费的碳化硅使反响向有力消费硅的方向。3.及时捣炼硅炉,协助沉料,防止炉内过热,形成硅的挥发,或再氧化成SiO,减少炉料损失,进步Si回收率。4.坚持料层具有良好的透气性,可及时排出反响消费的气体,减少热损失和SiO大量逸出。 一、消费工业硅的原料 冶炼工业硅的原料主要有硅石、碳素复原剂。 (一)硅石硅石要有一定的抗爆性和热稳定性,其中抗爆性对大炉子很重要,对容量小的炉子请求可略为降低。有些硅石很致密,难复原,形成冶炼情况不顺,经济指标差,很少采用。 硅石的粒度视炉子容量的大小不同而异,普通5000KVA以上的炉子,硅石粒度为50-100毫米,且40-60毫米的粒度要占50%以上。 硅石要清洁无杂质,破碎筛分后,要用水冲洗,除掉碎石和泥土。目前对新采用的硅石在化学成分、破碎合格以后,还要在消费中试用。经济指标较好,才干长期运用。 (二)碳质复原剂优选各种不同碳质复原剂,请求固定碳高,灰分低,化学生动性要好,采用多种复原剂搭配运用,以到达最佳冶炼效果。冶炼工业硅所用的碳质复原剂有:石油焦、沥青焦、木炭、木块(木屑)低灰分褐煤,半焦和低灰、低硫烟煤等。

石油焦:其特性是固定碳高,灰分低,价钱低廉,并且能使料面烧结好,但高温比电阻低,影响电极下插,反响才能差。要选择固定碳大于82%,灰分小于0.5%、水份稳定,动摇不许超越1%,以免影响复原剂配入量。粒度请求4-10毫米,粒度配合比例要适宜。粉料多烧损大,下部易缺碳,透气性不好;粒度大数量多比电阻小,电极易上抬。 木块(或木屑):其性质接近木炭,在炉内干馏后,在料下层构成比木炭孔隙度、化学生动性更好的木炭。所运用的木块(或木屑)要清洁无杂物,不许代入泥土等杂质。木块长度不得超越100毫米。 褐煤、烟煤:有比电阻、挥发份高,孔隙度大,化学生动性好,料面烧结性强,价钱低廉的特性。挥发份在料层中挥发利于料面烧结和闷烧,而且能够构成疏松的比外表积大,比电阻极大的焦化碳,对冶炼很有利。请求灰分小于4%,粒度小于25毫米,否则不能运用。褐煤性质接近木炭,可作木炭的代用品。 碳素复原剂品种不同,即便同种但产地不同性质也不相同。可搭配运用,求得更好的经济效益。如运用石油焦60-80%,木炭(或加局部木块)20%;石油焦60-70%,木炭(或木块)20-40%,烟煤5-10%搭配运用,效果比拟好。国外采用石英与复原剂职称团块炉料,先焙烧停止复原,再冶炼工业硅,使电耗降低到9000Kwh/t以下。 二、冶炼原理 在工业硅的消费中,普通以为硅被复原、炼硅炉中的反响式为 SiO2液+2C=Si液+2CO T始1933K(1) 实践消费中硅的复原是比拟复杂的,从冷态下炉内状况动身,对实践消费中炉内物化反响停止讨论。消费过程中的运转表示大致如下:

工业硅矿热炉的设计说明

工业硅冶炼能源节约技术的研究 5.1概述 能源安全已构成我国整体战略安全的一个极大隐患,成为经济社会发展的瓶颈。我国人均煤炭、石油、天然气资源量仅为世界平均水平的60%、10%和5%。目前,我国已成为世界第二大能源消费国和第二大石油消费国,能源供应紧张局面日趋严重[81]。 与此同时,我国也存在严重能源利用效率低的问题。近年来的快速增长在很大程度上是靠消耗大量物质资源实现的。我国单位产出的能耗和资源消耗水平明显高于国际先进水平,如火电供煤消耗高达22.5%,吨钢可比能耗高21%,水泥综合能耗高达45%。据测算,我国每创造一美元GDP所消耗的能源是美国的4.3倍,是日本的11.5倍。能源利用率仅为美国的26.9%,日本的11.5%[82]。因此,提高能源使用效率是在能源总量不变条件成为中国发展中的刻不容缓的任务。 工业硅生产是高能耗行业,平均每吨工业硅需要消耗13000KWh电以上,全国年产100万吨工业硅需要13亿KWh以上。而国外先进水平吨硅消耗量为11000KWh,我国工业硅电耗比国外先进水平高10—20%,能源节约潜力仍很大(预计年节约0.2亿KWh,相当0.1亿元)。另外,国外先进水平也不是最理想的能耗水平,我国如能在国外先进水平基础上再配以精工细作,吨硅消耗量应该在10000—11000KWh间。 我国工业硅生产能源消耗高主要是因为设计上不合理、控制水平与管理水平不高。设计上不合理体现在我国普遍使用的是6300KVA左右的小炉型(散热

大、产量低)、炉型设计上为隔热措施不严密、电路设计不合理、极心圆尺寸大小不合理等许多细节方面。控制水平不高体现在人工操作范围大、炉况稳定性差、造成因调整炉况波动费时较长而使得非生产性能耗损失大。管理水平不高体现在管理上不严、制度不健全、操作细节缺乏,造成物资或能源上的消耗浪费。 目前工业硅生产中能源节约途径主要有:1)炉型的大型化方向;2)炉型的密闭化方向;3)余热利用化方向;4)提高炉子电效率措施如改进短网结构设计、改善变压器性能、改善电参数、采用低频电源等;5)提高炉子热效率;6) 改变炉内反应机制;7)改变原料性能方向;8)采用自动控制方向;9)管理制度建设方向。由于上述诸多途径尚处于讨论阶段,形成固定技术并推广者仅有短网改进、管理制度建设上,许多技术细节缺乏,因此真正意义上可以直接使用的工业硅生产中能源节约技术还需要研究与试验。 经过多年的摸索探讨,目前我国工业硅电弧炉的电效率平均在92%以上,各种提高电效率的技术或措施也比较成熟如改进短网结构设计、使用优质导电材质、采用低压补偿技术、改善电参数等方面。但是,我国工业硅电弧炉的热效率普遍比较低,这是导致我国工业硅生产能耗高、能源利用效率低的主要原因,表5-1是我国某厂6300KVA电弧炉的热平衡分析表[21]。 表5-1 我国某厂6300KVA电弧炉的热平衡分析

相关文档
最新文档