高中数学必修三《简单随机抽样》同步教案

合集下载

人教版数学必修三2.1.1《简单随机抽样》教案

人教版数学必修三2.1.1《简单随机抽样》教案

2.1.1简单随机抽样(教案)教学目标:二、教学目标:【知识与技能】(1)理解什么是简单随机抽样;会用简单随机抽样从总体中抽取样本。

(2)通过学习本小节知识,提高学生对统计的认识,提高学生应用教材知识解决实际问题的能力。

【过程与方法】(1)通过探索、研究、归纳、总结形成本章较为科学的知识网,并掌握知识之间的联系。

(2)进行辨证唯物主义思想教育,数学应用意识教育和数学审美教育、提高学习数学的积极性。

【情感、态度与价值观】(1)结合教学内容培养学生学习数学的兴趣以及“用数学”的意识,激励学生勇于创新。

(2)强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心。

(3)通过安排学生游戏试验、分组讨论、,提升学生合作交流、互助提高的团队意识。

课型:新课。

教具与学具:多媒体、学生课前做好的签。

教学设计:一、新课导入课堂从辽沈战役中林彪通过收集数据生擒廖耀湘说起,历史是如此,那么我们现在生活在一个数字化时代(马云说当今的时代已经从IT(信息科技)时代变革为DT(数据科技)时代,我们时刻都在和数据打交道,引出统计学相关概念。

通过预习案展示验收学生预习效果1、统计学是干什么的?统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。

2、统计的两个核心内容是什么?(1)、收集数据(普查、抽样调查)(2)、用样本估计总体3、统计的基本思想方法是什么?用样本估计总体。

4、什么是总体、个体、样本、样本容量?总体:在进行统计分析时,研究对象的全部;个体:组成总体的每个研究对象;样本:从总体中按一定的规则抽出的个体的全部;样本容量:样本中所含个体的个数,用 n 表示。

例如:为了了解全国高中生的视力情况,从中抽取15000名学生进行调查。

其中,全国高中生的视力是总体;每一个学生的视力是个体;抽取的15000名学生的视力是样本;15000 是样本容量。

通过几个实例让学生对普查与抽查进行区分与优缺点总结。

人教版高中数学必修三 第二章 统计简单随机抽样教案_高一数学教案

人教版高中数学必修三  第二章 统计简单随机抽样教案_高一数学教案

简单随机抽样教案_高一数学教案自主学习学习目标1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.自学导引1.总体与个体一般把所考察对象的某一数值指标的________________看作总体,构成总体的____________作为个体,从总体中抽出若干个体所组成的集合叫做________.2.随机抽样在抽样时要保证每一个个体都____________,每一个个体被抽到的机会是________,满足这样的条件的抽样是随机抽样.3.简单随机抽样一般地,从元素个数为N的总体中____________抽取容量为n的样本,如果每一次抽取时总体中的各个个体有________的可能性被抽到,这种抽样方法叫做简单随机抽样,这样抽取的样本叫做________________.4.常用的简单随机抽样方法有________和____________.对点讲练知识点一简单随机抽样的概念例1下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.点评判定的依据是简单随机抽样的四个特点.“一次性”抽取和“逐个”抽取形式不同,但是不影响个体被抽到的可能性.而“一次性”抽取不符合简单随机抽样的定义,因而(3)不是简单随机抽样.变式迁移1下面的抽样方法是简单随机抽样吗?为什么?(1)某班有40名同学,指定个子最高的5名同学参加校篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件;(3)从一批2 000个灯泡中逐个抽取20个进行质量检查.知识点二抽签法的应用例2某单位支援西部开发,现从报名的18名志愿者中选取6名组成志愿小组到西藏工作3年.请用抽签法设计抽样方案.点评抽签法注意:一是编号;二是搅拌均匀;三是依次抽取.变式迁移2从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.知识点三随机数表法的应用例3设某校共有100名教师,为了支援西部教育事业,现要从中随机抽出12名教师组成暑期西部讲师团,请写出利用随机数表法抽取该样本的步骤.点评利用随机数表法抽取个体时,关键是事先确定以表中的哪个数(哪行哪列)作为起点,以及读数的方向,向左、向右、向上或向下都可以,同时,读数时结合编号特点进行读取,编号为两位,则两位、两位地读取,编号为三位数,则三位、三位地读取,如果出现重号则跳过,接着读取.变式迁移3要从某汽车厂生产的 3 000辆汽车中随机抽取10辆进行测试.请选择合适的抽样方法,并写出抽样过程.抽签法与随机数表法的相同点与不同点相同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个体数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.课时作业一、选择题1.我校期中考试后,为了分析高一年级1 220名学生的学习成绩,从中随机抽取了50名学生的成绩单,就这个问题来说,下面说法中正确的是() A.1 220名学生是总体B.每个学生是个体C.50名学生是所抽取的一个样本D.样本容量是502.在简单随机抽样中,某个个体被抽中的可能性是()A.与第几次抽样有关,第1次抽中的可能性要大些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一样3.下列调查中属于抽样调查的是()①每隔10年进行一次人口普查②某商品的质量优劣③某报社对某个事情进行舆论调查④高考考生的查体A.②③B.①④C.③④D.①②4.下列抽样实验中,用抽签法方便的是()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从某厂生产的3 000件产品中抽取10件进行质量检验D.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验5.用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字.这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②二、填空题6.福利彩票的中奖号码是从1~36中选出7个号码来按规则确定中奖情况,这种从36个中选出7个号码的抽样方法是________.7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为________.8.我班有50名学生,学号从01到50,数学老师在上统计课时,运用随机数表法选取5名学生提问.老师首先选定随机数表中的第21行第29个数2开始提问,然后向右走,到头后从下一行返回,即下一行是从左向右,再下一行从右开始,如果不在50以内则跳过去,那么被提问的5名学生是________________.附:随机数表的第21行第21个数开始到第22行的第10个数 (44227884260433460952)68079706577457256576…三、解答题9.现要在20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.10.某个车间工人已加工一种轴100件,为了了解这种轴的直径,要从中抽出10件在同一条件下测量,如何采用简单随机抽样的方法抽取上述样本?第二章统计§2.1随机抽样2.1.1简单随机抽样自学导引1.全体构成的集合每一个元素样本2.可能被抽到均等的3.不放回地相同简单随机样本4.抽签法随机数表法对点讲练例1解(1)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的.(2)不是简单随机抽样,因为它是有放回地抽样.(3)不是简单随机抽样,因为它是一次性抽取,而不是“逐个”抽取.变式迁移1解(1)不是简单随机抽样,因为这不是等可能抽样;(2)不是简单随机抽样,因为它是有放回抽样;(3)满足简单随机抽样的四个特点,故是简单随机抽样.例2解按抽签法的一般步骤进行设计.第一步:将18名志愿者编号,号码为1,2, (18)第二步:将号码分别写在一张纸条上,揉成团,制成号签;第三步:将所有号签放入一个箱子中,充分搅匀;第四步:依次取出6个号码,并记录其编号;第五步:将对应编号的志愿小组成员选出.变式迁移2 解 (1)先将20名学生进行编号,从1编到20;(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,然后依次从箱子中取出5个号签,按这5个号签上的号码对应学生,即得样本.例3 解 其步骤如下:第一步:将100名教师进行编号:00,01,02, (99)第二步:给出的随机数表中是5个数一组,使用各个5位数组的前2位,从各数组中任选一个前2位小于或等于99的数作为起始号码、例如从第1行的第3组数开始.第三步:依次向右读可以得到40,48,60,16,29,61,43,27,26,84,78,39.第四步:以上号码对应的12名教师就是要抽取的对象.变式迁移3 解 第一步:将3 000辆汽车编号,号码是0000,0001, (2999)第二步:给出的随机数表中是5个数一组,使用各个5位数组中的前4位,从各数组中任选一个前4位小于或等于2999的数作为起始号码,例如从第二行的第4组数开始;第三步:依次向右读,可以得到2691,2778,2037,2104,1290,2881,1212,2298,1321,2624.课时作业1.D [总体、个体、样本都是学生的成绩,样本容量为50.]2.B [简单随机抽样每个个体被抽取的可能性相等.]3.A4.B5.B6.抽签法7.120解析 ∵30N =0.25,∴N =120.8.26 04 33 46 09解析 用随机数法进行抽样,关键是弄清所选定的起始数码和读数的方向,还要弄清编号的位数与随机数表的构成.9.解 (1)先将20名学生进行编号,编号为1,2, (20)(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中充分搅拌,使之均匀,然后依次从箱子中抽取5个号签,于是和这5个号签上的号码对应的5名学生就构成了一个样本.10.解 有两种方法:方法一 (抽签法)将100个轴进行编号1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,可将这些号签放在一起,并进行均匀搅拌,接着依次抽取10个号签,然后测量这10个号签对应的轴的直径.方法二(随机数表法)将100个轴进行编号00,01,…,99,据课本上的随机数表,如取第6行第2组数开始选取10个,13,57,74,32,98,55,42,59,66,36,然后测量这10个编号对应的轴的直径.。

人教版高中必修3(B版)2.1.1简单随机抽样教学设计

人教版高中必修3(B版)2.1.1简单随机抽样教学设计

人教版高中必修3(B版)2.1.1简单随机抽样教学设计一、教学目标1.了解简单随机抽样的基本概念和方法。

2.掌握简单随机抽样的具体步骤,能够正确地使用随机数表进行抽样。

3.能够根据简单随机抽样得到的样本数据,对总体参数进行估计,并进行合理的推断。

二、教学重点1.简单随机抽样的基本概念和方法。

2.使用随机数表进行抽样的具体步骤。

3.根据简单随机抽样得到的样本数据进行总体参数的估计和推断。

三、教学难点1.如何正确地使用随机数表进行抽样。

2.如何根据简单随机抽样得到的样本数据进行总体参数的估计和推断。

四、教学方法1.讲授理论知识,结合实例进行讲解。

2.进行小组讨论,让学生自主思考和交流。

3.进行实际操作,让学生亲身体验和巩固。

五、教学过程1. 前置知识讲解(10分钟)1.回顾统计学的基本概念和方法。

2.提出本节课的主题:简单随机抽样。

3.引入本节课的教学目标和重点难点。

2. 理论知识讲解(25分钟)1.讲解简单随机抽样的基本概念和方法。

2.讲解使用随机数表进行抽样的具体步骤。

3.讲解根据简单随机抽样得到的样本数据进行总体参数的估计和推断的方法。

3. 小组讨论(20分钟)1.组织小组讨论,让学生自主思考和交流。

2.提供一些实际问题,让学生进行讨论和解决。

4. 实际操作(45分钟)1.讲解实际操作步骤。

2.提供数据,让学生使用随机数表进行简单随机抽样。

3.让学生根据抽样结果进行总体参数的估计和推断。

5. 总结回顾(10分钟)1.回顾本节课的主要内容和知识点。

2.强调本节课的重点难点和学习要点。

3.提供练习题,让学生进行巩固和练习。

六、教学评估1.组织小组讨论,检查学生的思维和表达能力。

2.观察学生的操作过程,检查学生的操作技能。

3.提供练习题,检查学生的理解和掌握程度。

七、教学资源1.电子白板、投影仪等教学设备。

2.随机数表、数据等教学材料。

八、教学反思本节课采用了讲授理论、小组讨论和实际操作相结合的教学方法。

人教版高中数学必修三2.1.1《简单随机抽样》教学设计

人教版高中数学必修三2.1.1《简单随机抽样》教学设计

2.1.1简单随机抽样(1课时)一、教学目标:1、正确理解简单随机抽样概念,会用抽签法、随机数表法从总体中抽取样本。

2、让学生经历简单随机抽样的过程,培养学生对数据的处理能力。

3、通过对现实生活和其他学科中统计问题的提出,体会教学知识与现实世界及各学科之间的联系,认识数学的重要性。

重点:简单随机抽样的概念,抽签法几随机数表法的特点和操作步骤。

难点:灵活应用简单随机抽样法从总体中抽取样本。

二、教学过程一、随机抽样1、新课引入教师:问如何将老师手里的糖果分给班级里的同学?设计意图:通过实例让学生感受到抽样的合理性很重要,激发学生学习的热情.学生:像某些舞台效果一样,直接抓一大把扔下来,谁接到就是谁的。

教师:演示并提出问题,每个同学得到糖的机会相等吗?学生:不相等。

教师:那就意味着这种方法不合理。

若老师手里只有6块糖如何分配让每个人心里都舒服呢?这就是本节课要研究的问题。

首先阅读教材49页前4段,并回答屏幕上的问题。

2、引例1:某校高中学生900人,校医务室想对全校学生身高情况作一次调查,为了不影响正常的教学活动,如何调查?准备抽出50人作为调查对象,你能帮医务室设计一个抽取方案吗?设计意图:通过实例重温统计学中的几个相关概念。

3、重温统计学中的几个概念:总体、个体、样本、样本容量4、抽样的必要性:教师提问1 :为了了解全校高中生的身高情况,需要将全校所有高中生逐一进行检查吗?教师提问2 :要测试灯泡的寿命,需要将所有的灯泡逐一检查吗?设计意图:通过两个问题说明当样本容量非常大,或具有破坏性时有必要用样本估计总体,从而引出统计学基本思想。

5、抽样原则:教师提问:在教材开始的问题中能否从高一年级选出50名学生的身高作为样本来估计全校高中学生的身高呢?设计意图:通过学生回答引出抽样原则和随机抽样的概念。

教师:与学生一起总结并板书。

随机抽样:抽样时每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样。

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》示范课教学设计【高中数学教案】

《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。

1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。

2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。

【教学难点】对样本随机性的理解。

抽签纸,图表等。

(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。

统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。

数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。

个体:总体中的每一个考察对象。

样本:从总体中抽取的一部分个体叫做这个总体的一个样本。

样本容量:样本中个体的数目。

(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。

为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。

于是此杂志预测兰顿将在选举中获胜。

实际选举结果正好相反,最后罗斯福在选举中获胜。

其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。

人教版高中数学必修3 第二章211简单随机抽样教学设计

人教版高中数学必修3 第二章211简单随机抽样教学设计
教学目标
1.知识与技能:理解简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.过程与方法:学会利用简单随机抽样的方法从总体中抽取样本,进而解决现实生活中的统计问题。
3.情感态度与价值观:通过对现实生活问题的提出,体会数学知识与现实生活之间的联系,感受数学的重要性。
教学重点
正确理解简单随机抽样概念及运用简单随机抽样方法从总体中抽取样本
学生总结
加深知识印象
6.课后作业
P51.练习A2 P52.练习B2
认真完成作业
巩固练习
7.板书设计
2.1.1简单随机抽样
定义:抽样方法:1.抽签法课
特点:2.随机数表法
2.随机数表法:利用随机数生成器生成一张随机数表如下:
48 62 85 00 89 38 85 56 98 82 27 76 17 39 03 69 27 49 87 20 41 57 17 94 13 53 66 60 89 12 48 39 53 26 16 34 90 56 36 40 57 93 17 23 28 49 19 51 76 99 00 62 07 96 13 29 90 19 23 64 38 65 96 45 26
定义:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样。这样抽取的样本,叫做简单随机样本。
简单随机抽样的实施方法:
1.抽签法:用小字条把每个同学的学号写下来放到盒子里,均匀搅拌,然后随机从中逐个抽出5个学号,被抽到学号的同学即为取可乐人抽签法一般步骤:(1)编号(2)制签(3)搅匀(4)抽签(5)取出个体
教学设计
教学题目
必修三第二章2.1.1简单随机抽样

人教版数学必修三2.1.1《简单随机抽样》同步教学教案

人教版数学必修三2.1.1《简单随机抽样》同步教学教案

2.1.1简单随机抽样教案教学目标:1、知识与技能:理解抽样的必要性,简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

教学重点正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

教学难点:正确理解简单随机抽样的科学性,理解随机数表法。

教学过程:本章介绍统计学是用科学方法收集、整理、描述和分析所得数据资料,并由此进行推断或决策的学科。

如何收集数据,根据所获得的数据提取有用的信息,作出合理的决策,这就是本章所要学习的主要内容。

而统计的基本思想是用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。

通过三个数据实例,引出普查及抽样调查的概念。

明确本章的核心思想是用样本估计总体。

也就是,我们可以通过考察对象中的一部分个体的情况来估计考察对象总体的情况。

一、复习回顾统计的有关概念:总体:在统计学中,所有考察对象的全体叫做总体。

个体:每一个考察的对象叫做个体。

样本:从总体中抽取的一部分个体叫做总体的一个样本。

样本容量:样本中个体的数目叫做样本的容量。

统计的基本思想:用样本去估计总体。

二、探究新知通过几个实例让学生明白生活中处处有“抽样”。

通过《买火柴》的小笑话让学生们明白许多考察带有破坏性,因此,我们往往考察总体中的一个样本,来了解总体的情况,即抽样的必要性。

通过例子,来说明简单随机抽样的抽样原则必须是搅拌均匀。

三、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

人教版高中必修32.1.1简单随机抽样教学设计

人教版高中必修32.1.1简单随机抽样教学设计

人教版高中必修32.1.1简单随机抽样教学设计一、教学目标1.掌握简单随机抽样的基本概念和相关方法。

2.理解简单随机抽样在实际调查中的应用。

3.能够设计和实施简单随机抽样调查,并进行数据处理与分析。

二、教学重难点1.理解简单随机抽样的基本概念和原理。

2.掌握简单随机抽样的方法和步骤。

3.学会分析和解读简单随机抽样结果。

三、教学内容及学时安排1. 简单随机抽样(1)概念与基本原理•随机抽样的概念•简单随机抽样的基本原理学时安排•课堂讲解:1学时(2)方法与步骤•简单随机抽样的方法•简单随机抽样的步骤学时安排•课堂教学:2学时•教师示范:1学时•实践操作:2学时(3)实际应用•简单随机抽样在实际调查中的应用•常见抽样误差的分析与处理学时安排•课堂讲解:1学时•实践操作:2学时2. 数据处理与分析(1)数据处理•数据的整理与清洗•数据的编码与录入•数据的统计与汇总学时安排•课堂讲解:1学时•实践操作:2学时(2)数据分析•描述性统计分析•推断性统计分析学时安排•课堂讲解:1学时•实践操作:2学时四、教学方法1.讲授法:通过讲授简单随机抽样的基本概念、方法和步骤,让学生初步理解和掌握这一统计方法的基本思想和步骤。

2.示范法:通过实际调查案例展示简单随机抽样的实际应用过程,加深学生对这一方法的理解和掌握。

五、教学资源教学所需资源主要包括:教材、教学PPT、调查工具、数据分析软件等。

六、教学评价1.调查设计与实施方案:重点评价学生调查设计、实施方案是否合理、是否符合简单随机抽样的基本步骤和原则。

2.数据处理与分析报告:重点评价学生对调查数据的处理和分析能力,能否恰当运用统计方法进行数据分析。

七、教学反思本次教学中,教师选择了讲授法和示范法相结合的教学方法,让学生学习理论的同时,还要实践操作,加深对简单随机抽样的理解和掌握。

在教学过程中,学生对于部分难点的掌握还需加强,教师在后续教学中,可以针对性地加强这部分内容的讲解和实践操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修三《简单随机抽样》同步教案高中数学必修三《简单随机抽样》同步教案高中数学必修三《简单随机抽样》教学设计(一)教学目标:知识与技能:理解统计学需要解决的问题、抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;过程与方法:通过对生活中的实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;情感、态度、价值观:通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。

(二)教学重点、难点重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性(三)教学基本思路一、设置情境引入:师:从这节课开始我们来学习新的一章——统计,当我们把这两个字键入“百度”或“google”的搜索栏内,呈现给我们的第一个词条就是“中华人民共和国国家统计局”(如右图)看来国家专门设置了一个统计部门,在主页上我们看到:3月份全国居民消费价格同比上涨8.3%城市上涨8.0%(如右下图),这当然是统计出的结论,关于统计你还知道那些例子吗?生:学生回答。

师:统计的例子有很多,如:产品的合格率、农作物的产量、产品的销售量、某地的气温、就业状况、电视台的收视率、我国是世界上的第13个贫水国,人均淡水占有量排世界第109位、我国土地沙漠化问题非常严重,全国沙漠化土地面积已超过174000平方公里,并以每年3400平方公里的速度扩张。

这些都是统计出来的。

可见统计是大量存在的,是与我们的日常生活息息相关,而且它反映了某种规律,而这种规律对我们来说是非常重要的,可以通过它来更好的指导我们去生活。

设计意图:让学生充分理解到统计的重要性,与现实生活联系在一起,数学来源于生活,激发学生的求知欲望。

师:统计前提得有数据,你知道这些数据是怎么来的吗?通过调查获得的。

怎么调查?是对考察对象进行全面调查还是抽样调查?带着这个问题咱们看下面的笑话:妈妈:“儿子,帮妈妈买盒火柴去。

”妈妈:“这次注意点,上次你买的火柴好多划不着。

”………儿子高兴地跑回来。

孩子:“妈妈,这次的火柴全划得着,我每根都试过了。

”孩子:“妈妈,这次的火柴全划得着,我每根都试过了。

”笑过之后,我们能得到什么样的结论呢?生:这个调查具有破坏性,不可能每根试过,不能展开全面调查。

设计意图:这个笑话要绘声绘色的讲出来,避免用幻灯片,减少人机对话。

从身边的笑话看出数学问题,提高学生学习数学的兴趣,且要关注生活中的数学。

再比如:要了解全国高中生的视力情况:请你设计调查方法。

参考:(1)对全国所有的高中生进行视力测试;属于普查,工作量太大,不方便,没有必要。

(2)对某一所著名中学的高中生进行视力测试;这种方法缺乏普遍性,不合适。

(3)在全国按东、南、西、北、中分片,每个区域各抽3所中学,对这15所中学的全部高中生进行视力测试。

设计意图:用学生身边的事去举例,能达到了提升学生兴趣的目的,让学生举例,让学生参与课堂。

感受解决身边问题的满足感。

让学生体验抽样的科学性。

这是突破教学难点的重要环节之一。

到此,例子铺垫已经达到了很好的效果,学生已了解统计的重要性。

师:人们在研究某个自然现象或社会现象时,会遇到不方便、不可能或不必要对所有对象作调查的情况,往往采用抽样调查的方法。

同学们觉得在什么时候用普查方式较好?什么时候用抽样调查方式较好呢?生:(1)当调查的对象个数较少,调查容易进行时,我们一般采用普查的方式进行。

(2)当调查的结果对调查对象具有破坏性时,或者会产生一定的危害性时,或不大经济可行我们通常采用抽样调查的方式进行调查。

(3)当调查对象的个数较多,调查不易进行时,我们常采用抽样调查的方式进行调查。

提出问题例如:为了了解一批计算器的寿命,我们能将它们逐一测试吗?很明显,这既不可能也没必要。

实践中,由于所考察的总体中的个体数往往很多,而且许多考察带有破坏性,因此,我们通常只考察总体中的一个样本,通过样本来了解总体的情况。

这就是统计学要解决的问题:用样本来估计总体于是,如何设计抽样方法,使抽取的样本能够真正代表总体,就成为我们要关注的一个关键问题。

否则,如果样本的代表性不好,那么对总体的判断就会出现错误。

下面的故事是一次著名的失败的统计调查,被称为抽样中的泰坦尼克事件。

它可以帮助我们理解为什么一个好的样本如此重要。

在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意调查。

调查兰顿(当时任堪萨斯州州长)和罗斯福(当时的总统)中谁将当选下一届总统。

为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有)。

通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜。

实际上选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:生:原因是:用于统计推断的样本来自少数富人,只能代表富人的观点,不能代表全体选民的观点(样本不具有代表性)。

师:像本例中这样容易得到的样本称为方便样本。

如果使用“方便样本”,那么得出与事实不符的结论的可能性就会大大增加。

设计意图:让学生了解到:合理抽样的重要性。

因此科学合理地采集样本才能作出客观的统计推断。

那么,怎样从总体中抽取样本呢?如何表示样本数据?如何从样本数据中提取基本信息(样本分布、样本数字特征等),来推断总体的情况呢?这些正是本章要解决的问题。

本节课我们来解决如何抽取样本,如何表示数据。

(给出标题)请大家翻开教材P54阅读相关的概念名词。

之后找同学回答下面的问题:要了解全国高中生的视力情况,第三种调查方法:在全国①按东、西、南、北、中分片,②每个区域各抽3所中学,③对这15所中学的全部高中生15000人进行视力测试。

总体是什么?个体是什么?样本是什么?样本的容量是什么?生:回答。

设计意图:简单易懂的概念让学生自学效果比较好。

师:为了了解学生对学校伙食的满意程度,小红访问了50名女生;小聪访问了50名男生;小明访问了24名男生和24名女生,其中高一、高二和高三的男生和女生各8名。

你认为小红、小聪、小明三人的不同抽样方法那一种最好?为什么?答:小明的方法最好。

小明抽得样本既有男生,又有女生,而均匀分布在各年级,这样的抽样较具有代表性,反映的情况具有普遍意义。

结论:在抽样时不能只图方便。

如果只从一些容易得到的个体中抽取样本,那么所得到的样本只是一个“方便样本”,“方便样本”的代表性差,基本这种方便样本得出的结论就会与事实相左。

生活中的“数学”:品尝一勺汤,就可以知道一锅汤的味道,你知道其中蕴涵的道理吗?高质量的样本数据来自“搅拌均匀”的总体。

如果我们能够设法将总体“搅拌均匀”,那么从中任意抽取一部分个体的样本,它们含有与总体基本相同的信息。

设计意图:生活中蕴含着丰富的数学知识,让学生去体悟生活。

如何抽取样本,直接关系到对总体估计的准确程度,因此在抽样时要保证每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样的条件的抽样叫随机抽样。

如何才能实现上述要求呢,统计工作者设计了许多方法,本章会介绍几种常用的随机抽样方法。

一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这样的抽样方法为简单随机抽样,这样抽取的样本,叫做简单随机样本。

注意以下点:(1)它要求被抽取样本的总体的个体数有限;(2)它是从总体中逐个进行抽取;(3)它是一种不放回抽样;(4)它是一种等概率抽样。

简单随机抽样是在特定总体中抽取样本,总体中每一个体被抽取的可能性是等同的,而且任何个体之间彼此被抽取的机会是独立的。

如果用从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽取的概卒等于n/N(举书上的例子加以说明)经常采用的方法(满足公平性)?1、抽签法(抓阄法)先将总体中的所有个体(共N个)编号(号码可以从1到N),并把号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌。

抽签时,每次从中抽出1个号签,连续抽取n次,就得到一个容量为n的样本。

对个体编号时,也可以利用已有的编号。

例如学生的学号,座位号等。

抽签法的步骤:1、把总体中的N个个体编号;2、把号码写在号签上,将号签放在一个容器中搅拌均匀;3、每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

例子:选修课抽签、福利彩票等。

例:要从班级46人中选5人为幸运同学去参加沈阳火炬手的选拔活动,请你用抽签法完成这一工作。

学生答完后,老师已经设计了46张签,请同学们现场实践抽取一下。

设计意图:让学生充分理解抽签的过程。

在自主探究,合作交流中构建新知,体验“抽签法”的公平性,从而突破难点,突出重点。

优缺点?(学生回答)引入随机数表法2、用随机数表法进行抽取随机数表是由0、1、2……9这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同。

有scilab命令生成随机数表。

(1)随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的。

(2)用随机数表进行抽样的步骤:将总体中个体编号;选定开始的数字;获取样本号码。

(3)用随机数表抽取样本,可以任选一个数作为开始,读数的方向可以向左,也可以向右、向上、向下等等。

因此并不是唯一的。

(4)由于随机数表是等概率的,因此利用随机数表抽取样本保证了被抽取个体的概率是相等的。

例:还是上一道题目,请同学们用随机数表编写。

规则1:从第3行第11列的两位数开始,依次向下读数,到头后再转向它左面的两位数号码,并向上读数,以此下去,直到取足样本。

规则2:从第12行第11列的两位数开始,每五列取头两位,依次向左读数,到头后再转向它下面的两位数号码,并向右读数,以此下去,直到取足样本。

练习:1.下列抽取样本的方式是属于简单随机抽样的是(C)①从无限多个个体中抽取100个个体作样本;②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后,再把它放回盒子里;③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取)A.①B.②C.③D.以上都不对四个特点:①总体个数有限;②逐个抽取;③不放回;④每个个体机会均等,与先后无关。

2.下列问题中,最合适用简单随机抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1—40,有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈。

B.从10台冰箱中抽出3台进行质量检查。

C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本。

相关文档
最新文档