脉波整流原理
12脉波整流电路原理

12脉波整流电路原理12脉波整流电路是一种用于将交流电转换为直流电的电路。
它通过使用12个二极管和一个中心引线,使得输出电压具有更高的平均值和更低的纹波。
本文将详细介绍12脉波整流电路的原理及其工作过程。
让我们来了解一下什么是脉波整流。
脉波整流是一种将交流电转换为直流电的技术。
通常,交流电的电压在正半周和负半周之间交替变化,而直流电的电压保持恒定。
脉波整流电路通过使用二极管来实现这一转换过程。
12脉波整流电路利用了三相交流电的特点。
三相交流电是指由三个相位相差120度的正弦波组成的电信号。
在12脉波整流电路中,三相交流电首先通过一个变压器,将其转换为低电压高电流的形式。
然后,通过连接12个二极管和一个中心引线,将交流电转换为直流电。
具体来说,当A相的电压最大时,通过A相的二极管将电流导通,此时B相和C相的二极管处于关断状态。
当A相的电压下降到零并开始变为负值时,A相的二极管关闭,B相的二极管导通。
在这一过程中,电流通过负载的方向保持不变,从而实现了整流的目的。
接下来,当B相的电压最大时,通过B相的二极管将电流导通,此时A相的二极管和C相的二极管处于关断状态。
当B相的电压下降到零并开始变为负值时,B相的二极管关闭,C相的二极管导通。
同样地,电流通过负载的方向保持不变。
当C相的电压最大时,通过C相的二极管将电流导通,此时A相和B相的二极管处于关断状态。
当C相的电压下降到零并开始变为负值时,C相的二极管关闭,A相的二极管导通。
电流继续通过负载的方向保持不变。
通过这样的循环过程,交流电被转换为具有更高平均值的直流电。
由于12脉波整流电路中使用了12个二极管,相比于6脉波整流电路,纹波更小,输出电压更稳定。
总结一下,12脉波整流电路是一种将交流电转换为直流电的电路。
它利用了三相交流电的特点,通过连接12个二极管和一个中心引线,将交流电转换为具有更高平均值和更低纹波的直流电。
这种电路在工业和电力系统中得到广泛应用,用于稳定供电和保护电子设备。
二十四脉波整流资料

3.24脉波整流机组整流机组是地铁直流牵引供电系统中的重要设备之一。
整流机组的设计、结构特点和保护方式关系到整个直流牵引供电系统的正常运行。
目前,为了提高直流电的供电质量,降低直流电源的脉动量,城市轨道交通多数采用等效24脉波整流机组,一般都由两台相同容量l2脉波的整流变压器[9]和与之匹配的整流器共同组成。
3.124脉波整流机组的作用及要求在地铁供电系统中,牵引变电所高压侧的电压多为35kV AC(或33kV AC),而接触网的电压为1500V DC(或750V DC),所以需要降压和整流。
整流机组包括整流变压器和整流器,其作用是将35kV AC(或33kV AC)降压、整流,输出1500V DC(或750V DC)电压供给地铁接触网,实现直流牵引。
地铁牵引变电所一般设于地下,所以整流机组也安装在地下室内。
整流变压器宜采用干式、户内、自冷、环氧树脂浇注变压器,其线圈绝缘等级为F级,线圈温升限值为70K/90K(高压,低压),其承受极限温度为155℃,铁心温升在任何情况下不应产生损坏铁心金属部件及其附近材料的温度。
在高湿期内可能产生凝露,应采取措施防止凝露对设备的危害。
整流器采用自然风冷式,适用于户内安装。
整流器柜宜采用独立式金属柜,二极管及其它元件的布置应考虑通风流畅、接线方便,同时便于维护、维修。
整流器与外部连接的跳闸信号采用接点方式,报警信号采用数字方式。
柜的上部及底部开口,采取措施防止小动物进入,正面和后面有门,各部件与柜应绝缘。
整流变压器应从结构上进行优化设计,以抑制谐波的产生,减少电磁波干扰。
整流机组产生的谐波电流应满足国家标准的规定,并满足我国电磁兼容相应的标准[10]。
根据IEC164规定,地铁作为重型牵引负荷,其负荷等级为VI级,整流机组设备的负荷特性满足如下要求:100%额定负荷时可连续运行;150%额定负荷时可持续运行2h;300%额定负荷时可持续运行1min。
整流器的设计应满足当任一臂并联的整流管有1个损坏时,能全负荷正常运行。
12脉波整流电路原理

12脉波整流电路原理
12脉波整流电路是一种高效的电力转换技术,它可以将交流电转换为直流电,同时减少了输出的脉动和谐波。
其原理基于三相交流电源的正弦波形,通过控制三相桥式整流器中的开关管,使得每个半周期内都能够有两个开关管被导通,从而实现了12个脉冲的整流。
在12脉波整流电路中,三相桥式整流器是核心部件。
其由6个二极管和6个可控硅组成,分别连接在三相交流电源的对应位置上。
当交流电源中某一相的正半周时,该相对应的可控硅导通,而其他两个可控硅则不导通。
当另外一相出现正半周时,则对应该相的可控硅导通,而前一个可控硅则停止导通。
如此循环下去,在一周期内就会出现12次开关变化。
由于12脉波整流器中每个半周期都有两个开关管被导通,因此输出端得到了更加平稳的直流输出。
同时,在输入端也减少了谐波污染和功率因数问题。
需要注意的是,在实际应用中需要进行适当的控制和保护。
例如,需要对可控硅的触发角度进行控制,以确保输出电压稳定。
同时,还需要考虑可控硅的损坏和过流保护等问题。
总之,12脉波整流电路是一种高效、稳定的电力转换技术。
其原理基于三相交流电源的正弦波形,在适当的控制下可以实现更加平稳和低谐波的直流输出。
在实际应用中需要进行适当的控制和保护,以确保系统的安全和可靠性。
24脉波整流原理

精心整理
精心整理
等效24脉波整流机组原理分析
整流机组是地铁直流牵引供电系统中的重要设备之一。
目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。
理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyll /d0一Dyl /d2等。
12组采用d 、Y 一个整流桥接至整流变压器二次侧“Y 单台12脉波整流机组输出波形如图17.5°,并联工作时,才能形成等效二十Dyll /Dd0和Dyl 2台整流变压器原边绕组分别移相+7.5°和一7.5°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。
一次侧三角绕组联结(延边三角形)二次侧y 结构向量关系图二次侧D 结构向量关系图
图2+7.5°变压器向量关系图
精心整理
精心整理
15°。
结组
别:Dyll /d0T2联结组别:Dyl /d2
图424脉波整流机组原理。
pwm整流原理

pwm整流原理PWM(脉宽调制)整流原理脉宽调制(PWM)是一种常用的电子控制技术,它通过改变电信号的脉冲宽度来实现电能的调节和控制。
PWM整流技术在电力电子领域有着广泛的应用,特别是在直流电源、变频器、逆变器等电力电子设备中。
PWM整流原理是将交流电信号转换为直流电信号的一种方法。
其基本原理是利用开关管(如晶闸管或功率MOS管)控制电流的导通和截止,通过改变开关管的导通时间比例,来控制输出电压和电流的大小。
PWM整流技术的优点之一是能够实现高效的能量转换。
由于开关管在导通状态下具有较低的电压降,因此能够减少能量的损耗。
而且,通过改变开关管的导通时间比例,可以实现对输出电压和电流的精确控制,提高系统的稳定性和精度。
PWM整流技术的另一个优点是能够实现电能的变换和传递。
在PWM整流系统中,输入的交流电经过整流和滤波处理后,被转换为稳定的直流电。
这种直流电可以进一步用于驱动各种电力电子设备,实现电能的变换和传递。
在PWM整流系统中,脉宽调制信号的频率和占空比是两个重要的参数。
频率决定了开关管的开关速度,而占空比则决定了开关管导通和截止的时间比例。
通过合理选择这两个参数,可以实现输出电压和电流的精确控制。
在实际应用中,PWM整流技术通常需要配合控制器或微处理器来实现。
控制器通过对输入信号进行采样和处理,得到脉宽调制信号的频率和占空比,并控制开关管的导通和截止。
这样,就可以实现对输出电压和电流的精确控制。
需要注意的是,PWM整流技术在实际应用中还存在一些问题和挑战。
例如,开关管的导通和截止会产生较大的电压和电流冲击,需要合理设计电路和采取保护措施。
此外,PWM整流系统的稳定性和可靠性也需要进行充分的测试和验证。
PWM整流技术是一种实现电能调节和控制的重要方法。
通过改变开关管的导通和截止时间比例,可以实现对输出电压和电流的精确控制。
同时,PWM整流技术还具有高效能量转换和电能变换传递的优点。
然而,在实际应用中需要充分考虑电路设计和保护措施,以确保系统的稳定性和可靠性。
24脉波整流原理

等效 24 脉波整流机组原理解析整流机组就是地铁直流牵引供电系统中的重要设备之一。
目前 ,城市轨道交通多数采用等效24 脉波整流机组 ,一般都由两台 12脉波的整流变压器与与之般配的整流器共同组成。
理论上只要满足12 相 24 脉波整流系统的要求 ,组成 24 脉波的 2 台变压器的联系组可以有很多种,如 Dy5/Dd0 一 Dy7/Dd2、Dyl l /d0 一 Dyl /d2 等。
12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用 d、Y接法 ;与之相般配的单台整流器由 2个三相 6脉波全波整流桥组成 ,其中一个整流桥接至整流变压器二次侧“ Y”型绕组 , 另一个整流桥接至整流变压器二次侧“△”型绕组 ,两个三相整流桥并联组成 6相12脉波的整流变电系统。
单台 12脉波整流机组输出波形如图1所示。
图1单台12脉波整流机组输出波形图两套相同的十二脉波整流机组并联工作其实不会改变整流脉波数 ,只有当两套机组的整流变压器网侧绕组分别移相 +7、5°与﹣ 7、5°,并联工作时 ,才能形成等效二十四脉波整流。
为了实现24脉波整流 ,两台整流变压器的基本联系组别可采用Dyll /Dd0与Dyl /Dd2。
每个牵引变电所内并联运行的 2台整流变压器原边绕组分别移相+7、5°与一 7、5°,目前为了实现两台整流变压器在网侧实现±7、5°的移相 ,在整流变压器原边采用延边三角形接法 ,其相量关系图如图 2与图 3所示。
一次侧三角绕组联系(延边三角形 ) 二次侧 y 结构向量关系图二次侧D结构向量关系图图 2 +7、5°变压器向量关系图一次侧三角绕组联系(延边三角形 ) 二次侧 y 结构向量关系图二次侧D结构向量关系图图 3﹣7、5°变压器向量关系图由于变压器网侧实现±7、5°的移相 ,使2台整流变压器次边电压相位差45°,经整流器实质输出的直流波形有 l5 °的相位差 ,并联运行就组成了等效24脉波整流。
24脉波整流原理

24脉波整流原理
24脉波整流原理是指通过电子器件将交流信号转换为直流信号的一种技术。
在传统的单相整流电路中,交流电压的波形只有正半周或负半周可用,而在24脉波整流电路中,每个周期内正、负两个半周期都可以被充分利用,大大提高了整流效率,减小了谐波功率的损耗。
1.输入电源:交流电源通过变压器降压后输入整流电路。
2.相位延迟:通过相位延迟电路将输入信号分成12个相位相差30度的交流信号。
3.整流:将每个相位经过整流电路进行整流,得到相应的直流信号。
4.滤波:将整流后的信号进行滤波,去除掉谐波部分,得到平滑的直流输出信号。
5.叠加:将12个直流信号进行叠加,得到最终的直流输出信号。
值得注意的是,24脉波整流电路中的整流电路和滤波电路需要根据具体的需求来设计。
常见的整流电路有单相桥式整流电路和三相桥式整流电路,常见的滤波电路有电容滤波电路和电感滤波电路等。
使用24脉波整流电路的好处是可以提高整流效率,减小谐波损耗。
在传统的单相整流电路中,只有正半周或负半周的信号能够被利用,导致整流效率较低。
而在24脉波整流电路中,每个周期内正、负两个半周期都可以被充分利用,大大提高了整流效率。
同时,由于12个相位相差30度的信号进行叠加,可以减小谐波部分的损耗,使得输出信号更加稳定,功率质量更高。
总之,24脉波整流原理是通过将输入交流信号分成12个相位相差30度的交流信号,然后经过整流、滤波和叠加等步骤,将交流信号转换为直流信号的一种技术。
其优点是能够提高整流效率,减小谐波损耗,适用于一些对输出功率质量要求较高的应用场合。
脉冲整流器的原理及分类

第五章 • 基本能量关系(网压 uN (t) 为正半波时)
5-9
第五章 • 基本能量关系(网压 uN (t) 为正半波时)(续)
5-10
第五章 – 不同工况时 uS、uN 和 iN 波形分析
• (a) 牵引
5-11
• (b) 理想空载 • (c) 再生
第五章
5-12
• 半导体器件中的电流波形
第五章
第五章 脉冲整流电路
5-1
第五章
5.5 脉冲整流器的原理及分类
• 概述 – 四象限变流器 – 减少电网污染 – 节约能源
5-2
• 基本原理 理想情况下:
第五章
5-3
• 分类 – 电压型脉冲整流器
• 输出电压恒定 ud (t) = Ud ,且Ud
• 输出电流
第五章
UN
• 基本结构
5-4
– 电流型脉冲整流器
第五章
5-19
– 对应原理图的波形图
第五章
• 电流型和电压型脉冲整流器的性能特点比较
5-20
• 脉冲变流器的应用 – 电流型交直交传动系统
第五章
5-21
第五章
(a) 牵引工况
(b) 再生工况
5-13
• 主要方程式及相量图 – 简化主电路 – 对于基波分量
– 基波相量图 (a) 整流 (b) 逆变 (c) 考虑
电网电阻
第五章
5-14
• 应用 – E120型单相大功率交流电力机车
第五章
5-15
5.7 电流型脉冲整流器
• 主电路结构及其工作原理
第五章
• 输出电流恒定 id (t) = Id ,且 Id
• 输出电压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉波整流原理
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
等效24脉波整流机组原理分析整流机组是地铁直流牵引供电系统中的重要设备之一。
目前,城市轨道交通多数采用等效24脉波整流机组,一般都由两台12脉波的整流变压器和与之匹配的整流器共同组成。
理论上只要满足12相24脉波整流系统的要求,组成24脉波的2台变压器的联结组可以有很多种,如Dy5/Dd0一Dy7/Dd2、Dyl l/d0一Dyl/d2等。
12脉波整流采用的整流变压器为轴向双分裂式牵引整流变压器,变压器阀侧绕组采用d、Y接法;与之相匹配的单台整流器由2个三相6脉波全波整流桥组成,其中一个整流桥接至整流变压器二次侧“Y”型绕组,另一个整流桥接至整流变压器二次侧“△”型绕组,两个三相整流桥并联构成6相12脉波的整流变电系统。
单台12脉波整流机组输出波形如图1所示。
图1 单台12脉波整流机组输出波形图
两套相同的十二脉波整流机组并联工作并不会改变整流脉波数,只有当两套机组的整流变压器网侧绕组分别移相+°和﹣°,并联工作时,才能形成等效二十四脉波整流。
为了实现24脉波整流,两台整流变压器的基本联结组别可采用Dyll/Dd0和Dyl/Dd2。
每个牵引变电所内并联运行的2台整流变压器原边绕组分别移相+°和一°,目前为了实现两台整流变压器在网侧实现±°的移相,在整流变压器原边采用延边三角形接法,其相量关系图如图2和图3所示。
一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关系图
图2 +°变压器向量关系图
一次侧三角绕组联结(延边三角形)二次侧y结构向量关系图二次侧D结构向量关
系图
图3 ﹣°变压器向量关系图
由于变压器网侧实现±°的移相,使2台整流变压器次边电压相位差45°,经整流器实际输出的直流波形有l5°的相位差,并联运行就构成了等效24脉波整流。
整流机组的接线原理如图4,图4中整流变压器副边输出电压T。
超前T:相位角15°。
T1联结组别:Dyl l/d0 T2联结组别:Dyl /d2
图4 24脉波整流机组原理。