2019-2020年中考数学试题分类汇编—概率
辽宁省2019年、2020年中考数学试题分类汇编——统计与概率(含答案)

2019年、2020年数学中考试题分类——统计与概率一.全面调查与抽样调查(共2小题)1.(2019•朝阳)下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.(2019•抚顺)下列调查中,最适合采用全面调查的是()A.对全国中学生视力和用眼卫生情况的调查B.对某班学生的身高情况的调查C.对某鞋厂生产的鞋底能承受的弯折次数的调查D.对某池塘中现有鱼的数量的调查二.频数(率)分布直方图(共1小题)3.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.5.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.7.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.8.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.9.(2020•丹东)某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如图不完整的统计图.种类A B C D E学习方式老师直播教学课程国家教育云平台教学课程电视台播放教学课程第三方网上课程其他根据以上信息回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择B类型的有人.(2)在扇形统计图中,求D所对应的圆心角度数,并补全条形统计图.(3)该校学生人数为1250人,选择A、B、C三种学习方式大约共有多少人?五.折线统计图(共1小题)10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A .众数是9B .中位数是8.5C .平均数是9D .方差是7六.加权平均数(共2小题)11.(2019•铁岭)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是( ) A .92.5分B .90分C .92分D .95分12.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8 C75这个公司平均每人所创年利润是 万元. 七.中位数(共2小题)13.(2020•辽阳)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .814.(2019•抚顺)一组数据1,3,﹣2,3,4的中位数是( ) A .1B .﹣2C .12D .3八.众数(共9小题)15.(2020•锦州)某校足球队有16名队员,队员的年龄情况统计如下:年龄/岁 13 14 15 16 人数3562则这16名队员年龄的中位数和众数分别是( )A.14,15B.15,15C.14.5,14D.14.5,15 16.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200D.300,300,30017.(2020•葫芦岛)一组数据1,4,3,1,7,5的众数是()A.1B.2C.2.5D.3.5 18.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 19.(2019•盘锦)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 20.(2019•铁岭)为了建设“书香校园”,某班开展捐书活动,班长将本班44名学生捐书情况统计如下:捐书本数2345810捐书人数25122131该组数据捐书本数的众数和中位数分别为()A.5,5B.21,8C.10,4.5D.5,4.5 21.(2019•丹东)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是()A.11B.12C.13D.14 22.(2019•朝阳)李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A.5,4B.3,5C.4,4D.4,5 23.(2019•葫芦岛)某校女子排球队12名队员的年龄分布如下表所示:年龄(岁)13141516人数(人)1254则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,14九.方差(共7小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A .甲B .乙C .丙D .丁26.(2020•朝阳)临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:S 甲2=0.075,S 乙2=0.04,这两名同学成绩比较稳定的是 (填“甲”或“乙”).27.(2020•葫芦岛)甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s 甲2=6.67,s 乙2=2.50,则这6次比赛成绩比较稳定的是 .(填“甲”或“乙”)28.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S 甲2=2.9,S 乙2=1.2,则两人成绩比较稳定的是 (填“甲”或“乙”).29.(2020•丹东)甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是 (填“甲”或“乙”).30.(2020•营口)从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S 甲2=3.83,S 乙2=2.71,S 丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是 . 一十.统计量的选择(共1小题)31.(2019•阜新)商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码 36 37 38 39 40 数量/双15281395商场经理最关注这组数据的( ) A .众数B .平均数C .中位数D .方差一十一.随机事件(共2小题)32.(2020•沈阳)下列事件中,是必然事件的是( ) A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 33.(2019•盘锦)下列说法正确的是( )A .方差越大,数据波动越小B .了解辽宁省初中生身高情况适合采用全面调查C .抛掷一枚硬币,正面向上是必然事件D .用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件 一十二.概率公式(共5小题)34.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1235.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4736.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2337.(2020•丹东)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( ) A .14B .12C .34D .138.(2020•锦州)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = .一十三.列表法与树状图法(共9小题)39.(2020•锦州)A ,B 两个不透明的盒子里分别装有三张卡片,其中A 盒里三张卡片上分别标有数字1,2,3,B 盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A 盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是 ; (2)从A 盒,B 盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.40.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.41.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.42.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.43.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.44.(2020•沈阳)沈阳市图书馆推出“阅读沈阳书香盛京”等一系列线上线下相融合的阅读推广活动,需要招募学生志愿者.某校甲、乙两班共有五名学生报名,甲班一名男生,一名女生;乙班一名男生,两名女生.现从甲、乙两班各随机抽取一名学生作为志愿者,请用列表法或画树状图法求抽出的两名学生性别相同的概率.(温馨提示:甲班男生用A 表示,女生用B表示;乙班男生用a表示,两名女生分别用b1,b2表示).45.(2020•丹东)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.46.(2020•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.47.(2020•辽阳)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.一十四.利用频率估计概率(共3小题)48.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 49.(2020•营口)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九0.900.850.820.840.820.82环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84 50.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.62019年、2020年辽宁省数学中考试题分类(13)——统计与概率参考答案与试题解析一.全面调查与抽样调查(共2小题)1.【解答】解:A、对全国初中学生视力情况的调查,适合用抽样调查,A不合题意;B、对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,B不合题意;C、对一批飞机零部件的合格情况的调查,适合全面调查,C符合题意;D、对我市居民节水意识的调查,适合用抽样调查,D不合题意;故选:C.2.【解答】解:A、对全国中学生视力和用眼卫生情况的调查,适合抽样调查,故此选项错误;B、对某班学生的身高情况的调查,适合全面调查,故此选项正确;C、对某鞋厂生产的鞋底能承受的弯折次数的调查,适合抽样调查,故此选项错误;D、对某池塘中现有鱼的数量的调查,适合抽样调查,故此选项错误;故选:B.二.频数(率)分布直方图(共1小题)3.【解答】解:(1)本次共调查了17÷34%=50名学生,故答案为:50;(2)C组学生有50﹣5﹣18﹣17=10(名),补全的频数分布直方图如右图所示;(3)扇形统计图中C组所对应的圆心角度数是:360°×1050=72°,即扇形统计图中C组所对应的圆心角度数是72°;(4)1500×550=150(名),答:该校有150名学生平均每天睡眠时间低于7时.三.扇形统计图(共2小题)4.【解答】解:(1)15÷25%=60(人),m=60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人,故答案为60,6;(2)C等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为300×12+6+560=115(人).故答案为:60,6.5.【解答】解:(1)m=20÷40%=50,2n+(n+10)=50﹣20﹣5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%=30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.四.条形统计图(共4小题)6.【解答】解:(1)20÷40%=50(名); 故答案为:50;(2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名. 7.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).8.【解答】解:(1)m=8÷8%=100,n%=100−30−2−8100×100%=60%,故答案为:100,60;(2)可回收物有:100﹣30﹣2﹣8=60(吨),补全完整的条形统计图如右图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,故答案为:108;(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.9.【解答】解:(1)参与本次问卷调查的学生共有:240÷60%=400(人),其中选择B类型的有:400×10%=40(人);故答案为:400,40;(2)在扇形统计图中,D 所对应的圆心角度数为: 360°×(1﹣60%﹣10%﹣20%﹣6%)=14.4°, ∵400×20%=80(人), ∴选择C 种学习方式的有80人. ∴补全的条形统计图如下:(3)该校学生人数为1250人,选择A 、B 、C 三种学习方式大约共有: 1250×(60%+10%+20%)=1125(人).答:选择A 、B 、C 三种学习方式大约共有1125人. 五.折线统计图(共1小题)10.【解答】解:A .数据10出现的次数最多,即众数是10,故本选项错误; B .排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误; C .平均数为:17(7+8+9+9+10+10+10)=9,故本选项正确;D .方差为17[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=87,故本选项错误; 故选:C .六.加权平均数(共2小题) 11.【解答】解:根据题意得: 95×40%+90×60%=92(分). 答:她的最终得分是92分. 故选:C .12.【解答】解:这个公司平均每人所创年利润是:110(10+2×8+7×5)=6.1(万).故答案为:6.1. 七.中位数(共2小题)13.【解答】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B .14.【解答】解:将这组数据从小到大排列为﹣2、1、3、3、4, 则这组数据的中位数为3, 故选:D . 八.众数(共9小题)15.【解答】解:共有16个数,最中间两个数的平均数是(14+15)÷2=14.5,则中位数是14.5;15出现了6次,出现的次数最多,则众数是15; 故选:D .16.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300, 故选:D .17.【解答】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1. 故选:A .18.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B .19.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05; 由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10. 故选:C .20.【解答】解:由表可知,5出现次数最多,所以众数为5; 由于一共调查了44人,所以中位数为排序后的第22和第23个数的平均数,即:5. 故选:A .21.【解答】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是4. 所以这5个数据分别是x ,y ,2,4,4,且x <y <2,当这5个数的和最大时,整数x ,y 取最大值,此时x =0,y =1, 所以这组数据可能的最大的和是0+1+2+4+4=11. 故选:A .22.【解答】解:设被污损的数据为x , 则4+x +2+5+5+4+3=4×7, 解得x =5,∴这组数据中出现次数最多的是5,即众数为5篇/周, 将这7个数据从小到大排列为2、3、4、4、5、5、5, ∴这组数据的中位数为4篇/周, 故选:A .23.【解答】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为15+152=15岁,故选:C .九.方差(共7小题)24.【解答】解:∵四人的平均成绩相同,而观察图形可知,乙和丙的波动较大, ∴应在丁和甲中做出选择. ∵丁有两次成绩恰好为平均成绩,∴丁比甲稳定.故选:D .25.【解答】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .26.【解答】解:∵S 甲2=0.075,S 乙2=0.04 ∴S 甲2>S 乙2∴乙的波动比较小,乙比较稳定 故答案为:乙.27.【解答】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.28.【解答】解:∵x 甲=7=x 乙,S 甲2=2.9,S 乙2=1.2, ∴S 甲2>S 乙2, ∴乙的成绩比较稳定, 故答案为:乙. 29.【解答】解:∵x 乙=2+3+5+7+85=5,∴S 乙2=15×[(2﹣5)2+(3﹣5)2+(5﹣5)2+(7﹣5)2+(8﹣5)2]=265, ∵S 甲2=5<S 乙2,∴成绩较稳定的是甲, 故答案为:甲.30.【解答】解:∵平均成绩都是87.9分,S 甲2=3.83,S 乙2=2.71,S 丙2=1.52, ∴S 丙2<S 乙2<S 甲2, ∴丙选手的成绩更加稳定, ∴适合参加比赛的选手是丙, 故答案为:丙.一十.统计量的选择(共1小题)31.【解答】解:对这个商场的经理来说,最关注的是哪一型号的卖得最多,即是这组数据故选:A .一十一.随机事件(共2小题)32.【解答】解:A 、从一个只有白球的盒子里摸出一个球是白球,是必然事件; B 、任意买一张电影票,座位号是3的倍数,是随机事件; C 、掷一枚质地均匀的硬币,正面向上,是随机事件;D 、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件; 故选:A .33.【解答】解:A 、方差越大,数据波动越大,故本选项错误; B 、了解辽宁省初中生身高情况适合采用抽样调查,故本选项错误; C 、抛掷一枚硬币,正面向上是不确定事件,故本选项错误;D 、用长为3cm ,5cm ,9cm 的三条线段围成一个三角形是不可能事件,故本选项正确; 故选:D .一十二.概率公式(共5小题)34.【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝下的概率是12.故选:D .35.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47.故选:D .36.【解答】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23.故选:D .37.【解答】解:∵从这4张卡片中任意抽取一张共有4种等可能结果,其中抽到的卡片正面是中心对称图形的是圆、平行四边形、正六边形这3种结果, ∴抽到的卡片正面是中心对称图形的概率是34,故选:C .38.【解答】解:根据题意,得:aa+4=23,。
上海市2019年中考数学真题与模拟题分类 专题20 统计与概率之填空题(35道题)(解析版)

专题20 统计与概率之填空题参考答案与试题解析一.填空题(共35小题)1.(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【答案】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为,故答案为:.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.2.(2019•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约90千克.【答案】解:估计该小区300户居民这一天投放的可回收垃圾共约100×15%=90(千克),故答案为:90.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.3.(2017•上海)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【答案】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.4.(2019•青浦区二模)A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为77.5%.【答案】解:77.5%,故答案为:77.5%.【点睛】本题考查频数(率)直方图,解答本题的关键是明确题意,利用数形结合的思想解答.5.(2019•浦东新区二模)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为160名.【答案】解:根据题意结合统计图知:估计这个学校全体学生每天做作业时间不少于2小时的人数约为560160人,故答案为:160.【点睛】本题考查的是用样本估计总体的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2019•静安区二模)为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C 等次的扇形所对的圆心角的度数为72度.【答案】解:扇形统计图中表示C等次的扇形所对的圆心角的度数为:360°72°,故答案为:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.7.(2019•虹口区二模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为92%.【答案】解:∵样本容量为:3÷0.06=50,∴该校初三毕业生一分钟跳绳次数的达标率约为100%=92%,故答案为:92%【点睛】本题考查的是频数分布表的知识,准确读表、从中获取准确的信息是解题的关键,注意用样本估计总体的运用.8.(2019•徐汇区二模)某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为72人.【答案】解:∵从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,∴从左至右前四个小组的频率为:0.04,0.08,0.34,0.3;∴跳绳次数不少于135次的频率为1﹣0.04﹣0.08﹣0.34﹣0.3=0.24,∴全年级达到跳绳优秀的人数为300×0.24=72人,故答案为:72人.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力,读懂题目信息,求出第⑤、⑥组的频率是解题的关键.9.(2019•普陀区二模)张老师对本校参加体育兴趣小组的情况进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组,根据图中提供的信息,可知参加排球兴趣小组的人数占体育兴趣小组总人数的百分数是25%.【答案】解:由题意得,参加篮球兴趣小组的人数为:80×45%=36(人),∴参加排球兴趣小组的人数为:80﹣36﹣24=20(人),∴参加排球兴趣小组的人数占体育兴趣小组总人数的百分数为:20÷80×100%=25%,故答案为:25%.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.10.(2019•崇明区二模)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是1620.【答案】解:由题意可得,样本中成绩在70~80分的人数为:600﹣12﹣18﹣180﹣600×0.16﹣600×0.04=270,36001620,故答案为:1620.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出全区此次成绩在70~80分的人数.11.(2019•金山区二模)100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是17.2克.【答案】解:∵每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,∴设100克鲤鱼肉的蛋白质含量是x克,由题意可得:(17.9+15.3+x)=16.8,解得:x=17.2.故答案为:17.2.【点睛】此题主要考查了频数分布直方图,由直方图获取正确信息是解题关键.12.(2019•黄浦区二模)秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表所示),图表中c=9.【答案】解:,c=50﹣6﹣20﹣15=9,故答案为:9【点睛】本题考查频数分布表,解题的关键是明确题意,利用表格中的数据,求出所求问题的答案.13.(2019•杨浦区二模)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.那么,其中最喜欢足球的学生数占被调查总人数的百分比为24%.【答案】解:∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比100%=24%,故答案为:24.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.14.(2019•宝山区二模)为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为1500人.【答案】解:∵从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,∴从左至右前四组的频率依次为0.02×5=0.1、0.03×5=0.15、0.04×5=0.2、0.05×5=0.25,∴后两组的频率之和为:1﹣0.1﹣0.15﹣0.2﹣0.25=0.3,∴体重不小于60千克的学生人数约为:5000×0.3=1500人,故答案为:1500.【点睛】本题考查了频数分布图和频率分布直方图的知识,根据频率、频数及样本容量之间的关系进行正确的运算是解题的关键.15.(2019•杨浦区三模)某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为170cm.【答案】解:∵某班10名学生校服尺寸分别是160cm、165cm、165cm、165cm、170cm、170cm、175cm、175cm、180cm、180cm,∴这10名学生校服尺寸的中位数为:(170+170)÷2=340÷2=170(cm)答:这10名学生校服尺寸的中位数为170cm.故答案为:170.【点睛】此题主要考查了中位数的含义和应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.(2019•嘉定区二模)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是95分.【答案】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.【点睛】此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.17.(2019•松江区二模)某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是28分.【答案】解:将这组数据从小到大的顺序排列后,处于中间位置的数是28分,28分,它们的平均数是28分,那么由中位数的定义可知,这组数据的中位数是28分.故答案为:28分.【点睛】本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.18.(2019•长宁区二模)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是7小时.【答案】解:∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是7小时;故答案为:7.【点睛】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).19.(2019•奉贤区二模)下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是26∽30分.【答案】解:由表格中数据可得本班一共有:3+7+9+13+8=40(人),故中位数是第20个和第21个数据的平均数,则该班这次体育中考模拟测试成绩的中位数落在的分数段是26∽30分.故答案为:26∽30分.【点睛】此题主要考查了中位数,正确把握中位数的定义是解题关键.20.(2019•闵行区二模)一射击运动员在一次射击练习中打出的成绩如表所示,那么这个射击运动员这次成绩的中位数是8.5.【答案】解:由表格中数据可得射击次数为20,中位数是第10个和第11个数据的平均数,故这个射击运动员这次成绩的中位数是:(8+9)=8.5.故答案为:8.5.【点睛】此题主要考查了中位数,正确把握中位数的定义是解题关键.21.(2019•青浦区二模)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是.【答案】解:根据题意,画树状图如下:由树状图可知,共有6种等可能排列的方式,其中恰好排列成“创建智慧校园”的只有1种,∴恰好排列成“创建智慧校园”的概率是,故答案为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2019•浦东新区二模)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是.【答案】解:共有6种情况,是偶数的有2种情况,所以组成的两位数是偶数的概率为,故答案为:.【点睛】此题主要考查了树状图法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),注意本题是不放回实验.23.(2019•静安区二模)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是.【答案】解:从0,1,2,3这四个数字中任取3个数有0、1、2;0、1、3;0、2、3;1、2、3四种等可能的结果数,所以取得的3个数中不含2的概率.故答案为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.24.(2019•虹口区二模)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有6个.【答案】解:设红球有x个,根据题意得:0.4,解得:x=6,答:红球有6个;故答案为:6.【点睛】本题考查了概率公式,设出未知数,列出方程是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.25.(2019•嘉定区二模)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【答案】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为,故答案为:.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.26.(2019•松江区二模)在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是,那么白色棋子的个数是8.【答案】解:设白色棋子的个数为x,根据题意得,解得x=8,即白色棋子的个数为8.故答案为8.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.27.(2019•徐汇区二模)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【答案】解:任意摸出一个棋子,摸到黑色棋子的概率.故答案为.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.28.(2019•金山区二模)从方程x2=0,1,x2﹣2x+4=0中,任选一个方程,选出的这个方程无实数解的概率为.【答案】解:∵1,x2﹣2x+4=0无实数解,∴无实数解的概率为,故答案为:.【点睛】此题主要考查了概率公式和一元二次方程的解法,关键是掌握算术平方根具有非负性,掌握判断一元二次方程解的方法.29.(2019•普陀区二模)如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是.【答案】解:如图所示:在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,符合题意的有:1,2,3,4,5共5个,故这个事件的概率是:.故答案为:.【点睛】此题主要考查了概率的意义,正确把握轴对称图形的性质是解题关键.30.(2019•闵行区二模)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是.【答案】解:从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确应用概率公式是解题关键.31.(2019•黄浦区二模)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是.【答案】解:掷一次骰子,向上的一面出现的点数是2的倍数的有2、4,6,故骰子向上的一面出现的点数是2的倍数的概率是:.故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.32.(2019•杨浦区二模)从﹣5,,,﹣1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为.【答案】解:在﹣5,,,﹣1,0,2,π这七个数中,为负整数的有﹣5,﹣1,共2个数,则恰好为负整数的概率为;故答案为.【点睛】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.33.(2019•长宁区二模)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.【答案】解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中2、3、5是素数,所以概率为,故答案为:.【点睛】本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.34.(2019•杨浦区三模)在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【答案】解:画树状图得:∵共有9种等可能的结果,两人打出相同标识手势的有3种情况,∴两人打出相同标识手势的概率是:.故答案为:.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.35.(2019•崇明区二模)从1、2、3、4、5、6、7、8这八个数中,任意抽取一个数,那么抽得的数是素数的概率是.【答案】解:∵1,2,3,4,5,6,7,8这8个数有4个素数,∴2,3,5,7;故取到素数的概率是.故答案为:.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到素数的个数为易错点.。
2020年江苏省中考数学分类汇编专题15 概率

2020年江苏省中考数学分类汇编专题15 概率一、单选题(共2题;共4分)1.在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次实验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是()A. 5B. 10C. 12D. 152.如图,电路图上有个开关、、、和个小灯泡,同时闭合开关、或同时闭合开关、都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关二、填空题(共4题;共4分)3.一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于________.4.一个不透明的袋中装有3个黑球和2个白球,这些球除颜色外都相同,从这个袋中任意摸出一个球为白球的概率是________.5.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.6.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________ .三、解答题(共12题;共78分)7.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排志愿者被随机分到组(体温检测)、组(便民代购)、组(环境消杀).(1)小红的爸爸被分到组的概率是________;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)8.智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“ ”有刚毅的含义,符号“ ”有愉快的含义.符号中的“ ”表示“阴”,“ ”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有________种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.9.一只不透明袋子中装有个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是________(精确到0.01),由此估出红球有________个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.10.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为________.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).11.某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.12.防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.13.现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是________;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)14.甲、乙两人分别从A、B、C这3个景点随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是________.15.从2021年起,江苏省高考采用“ ”模式:“3”是指语文、数学、外语3科为必选科目,“1”是指在物理、历史2科中任选科,“2”是指在化学、生物、思想政治、地理4科中任选2科.(1)若小丽在“1”中选择了历史,在“2”中已选择了地理,则她选择生物的概率是________;(2)若小明在“1”中选择了物理,用画树状图的方法求他在“2中选化学、生物的概率.16.一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K,搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母的概率为________;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“ ”的概率.17.在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是________;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.18.生活在数字时代的我们,很多场合用二维码(如图)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图,通过涂器色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图可表示不同信息的总个数:(图中标号表示两个不同位置的小方格,下同)(2)图为的网格图.它可表示不同信息的总个数为________;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来表示各人身份信息,若该校师生共人,则n的最小值为________;答案解析部分一、单选题1.【答案】A【解析】【解答】解:设袋子中红球有x个,根据题意,得:解得答:袋子中红球有5个.故答案为:A.【分析】设袋子中红球有x个,根据摸出红球的频率稳定在0.25左右列出关于x的方程,求出x的值即可得答案.2.【答案】B【解析】【解答】解:由小灯泡要发光,则电路一定是一个闭合的回路,只闭合1个开关,小灯泡不发光,所以是一个不可能事件,所以A不符合题意;闭合4个开关,小灯泡发光是必然事件,所以D不符合题意;只闭合2个开关,小灯泡有可能发光,也有可能不发光,所以B符合题意;只闭合3个开关,小灯泡一定发光,是必然事件,所以C不符合题意.故答案为:B.【分析】观察电路发现,闭合或闭合或闭合三个或四个,则小灯泡一定发光,从而可得答案.二、填空题3.【答案】【解析】【解答】解:∵袋子中共有5+1=6个小球,其中红球有5个,∴搅匀后从中任意摸出1个球,摸出红球的概率等于,故答案为:.【分析】根据概率计算公式,用红球的个数除以球的总个数即可得.4.【答案】【解析】【解答】解:根据题意可得:不透明的袋子里共有将5个球,其中2个白球,∴任意摸出一个球为白球的概率是:,故答案为:.【分析】根据概率的求法,找准两点:①全部的情况数;②符合条件的情况数;二者的比值就是其发生的概率.5.【答案】【解析】【解答】解:∵由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个区域中所占的比值= ,∴小球停在黑色区域的概率是;故答案为:【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.6.【答案】2.4【解析】【解答】∵正方形的二维码的边长为2cm,∴正方形二维码的面积为,∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,∴黑色部分的面积占正方形二维码面积得60%,∴黑色部分的面积约为:,故答案为.【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形面积得60%计算即可;三、解答题7.【答案】(1)(2)解:用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)=【解析】【解答】(1)共有3种可能出现的结果,被分到“B组”的有1种,因此被分到“B组”的概率为,故答案为:;【分析】(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.8.【答案】(1)8(2)解: 根据第(1)问一个阴、两个阳的共有3种,则有一个阴和两个阳的三行符号”的概率是.【解析】解:(1)共有8种等可能的情况数,分别是:阴,阴,阴;阴,阳,阴;阴,阴,阳;阳,阴,阴;阳,阳,阴;阳,阴,阳;阴,阳,阳;阳、阳、阳;故答案为:8;【分析】(1)用列举法举出所有等可能的结果数即可;(2)根据(1)列举的结果数和概率公式即可得出答案.9.【答案】(1)0.33;2(2)解:画树状图得:∵共有6种等可能的结果,摸到一个白球,一个红球有4种情况,∴摸到一个白球一个红球的概率为:;故答案为:.【解析】【解答】解:(1)随着摸球次数的越来越多,频率越来越靠近0.33,因此接近的常数就是0.33;设红球由个,由题意得:,解得:,经检验:是分式方程的解;故答案为:0.33,2;【分析】(1)通过表格中的数据,随着次数的增多,摸到白球的频率越稳定在0.33左右,进而得出答案;利用频率估计概率,摸到白球的概率0.33,利用概率的计算公式即可得出红球的个数;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸到一个白球一个红球的情况,再利用概率公式即可求得答案.10.【答案】(1)(2)解:画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.【解析】【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.11.【答案】(1)解:甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)解:由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是;所以两人坐到甲车的可能性一样.【解析】【分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.12.【答案】(1)(2)解:由题意画出树状图:由图可知,小明和小丽从同一个测温通道通过的概率= .【解析】【解答】解:(1) 因为共开设了A、B、C三个测温通道,小明从A测温通道通过的概率是,故答案为:.【分析】(1) 因为共开设了A、B、C三个测温通道,小明从A测温通道通过的概率是.(2)根据题意画出树状图,再根据所得结果算出概率即可.13.【答案】(1)(2)解:画树状图为:共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果为4种,所以抽得的2张卡片上的数字之和为3的倍数的概率=【解析】【解答】解:从中任意抽取1张,抽的卡片上的数字恰好为3的概率为;故答案为:【分析】(1)根据概率公式计算即可;(2)画树状图展示所有12种等可能的结果,可得抽得的2张卡片上的数字之和为3的倍数的结果数,根据概率公式计算即可.14.【答案】(1)解:用列表法表示所有可能出现的结果如下:(2)【解析】【解答】解:(2)共有9种可能出现的结果,其中选择A、B的有2种,∴P(A、B)= ;故答案为:.【分析】(1)列举出所有可能出现的结果,利用概率公式求解即可;(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.15.【答案】(1)(2)解:列出树状图如图所示:由图可知,共有12种可能结果,其中选化学、生物的有2种,所以,P(选化学、生物).答:小明同学选化学、生物的概率是.【解析】【分析】(1)小丽在“2”中已经选择了地理,还需要从剩下三科中进行选择一科生物,根据概率公式计算即可.(2)小明在“1”中已经选择了物理,可直接根据画树状图判断在4科中选择化学,生物的可能情况有2种,再根据一共有12种情况,通过概率公式求出答案即可.16.【答案】(1)(2)解:所有可能的情况如图所示:由图可知:共有9种等可能的情况,其中两个方格中的字母从左往右恰好组成“ ”的情况数只有1种,所以两个方格中的字母从左往右恰好组成“ ”的概率= .【解析】【解答】解:(1)第一次摸到字母的概率= .故答案为:;【分析】(1)用标有字母A的情况数除以总的情况数解答即可;(2)先画出树状图求出所有等可能的情况数,然后找出两个方格中的字母从左往右恰好组成“ ”的情况数,再根据概率公式解答.17.【答案】(1)(2)解: 画树状图如下:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,∴抽到的2支签上签号的和为奇数的概率为:= .【解析】【解答】解:(1)∵共有3个号码,∴抽到1号签的概率是,故答案为:;【分析】(1)由概率公式即可得出答案;(2)画出树状图,由图可知:所有等可能的情况有6种,其中抽到的2支签上签号的和为奇数的有4种,从而再利用概率公式求解即可.18.【答案】(1)解:画树状图如图所示:图的网格可以表示不同信息的总数个数有4个.(2)16(3)3【解析】【解答】解:(2)画树状图如图所示:图④2×2的网格图可以表示不同信息的总数个数有16=24个,故答案为:16.( 3 )依题意可得3×3网格图表示不同信息的总数个数有29=512>,故则n的最小值为3,故答案为:3.【分析】(1)根据题意画出树状图即可求解;(2)根据题意画出树状图即可求解;(3)根据(1)(2)得到规律即可求出n的值.。
2019年全国各地中考数学真题汇编:统计与概率(四川专版)(解析卷)

2019 年全国各地中考数学真题汇编(四川专版)统计与概率参照答案与试题分析一.选择题(共15 小题)1.( 2019?成都)某校展开了主题为“青春?梦想”的艺术作品搜集活动.从九年级五个班采集到的作品数目(单位:件)分别为:42,50, 45,46, 50,则这组数据的中位数是()A .42 件B.45 件C.46 件D.50 件解:将数据从小到大摆列为:42, 45, 46, 50, 50,∴中位数为 46,应选: C.2.( 2019?自贡)在 5 轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的均匀分都是90 分,甲的成绩方差是 15,乙的成绩方差是3,以下说法正确的选项是()A .甲的成绩比乙的成绩稳固B .乙的成绩比甲的成绩稳固C.甲、乙两人的成绩同样稳固D.没法确立甲、乙的成绩谁更稳固解:∵乙的成绩方差<甲成绩的方差,∴乙的成绩比甲的成绩稳固,应选: B.3.( 2019?攀枝花)比较 A 组、 B 组中两组数据的均匀数及方差,以下说法正确的选项是()A .A 组、B 组均匀数及方差分别相等B .A 组、 B 组均匀数相等, B 组方差大C.A 组比 B 组的均匀数、方差都大D .A 组、 B 组均匀数相等, A 组方差大解:由图象可看出 A 组的数据为:3, 3, 3, 3, 3,2, 2, 2, 2,B 组的数据为: 2, 2,2, 2,3,0, 0,0, 0则 A 组的均匀数为 A = ×( 3+3+3+3+3+2+2+2+2 )=B 组的均匀数为 B =×( 2+2+2+2+3+0+0+0+0 )=∴A =BA 组的方差 2×[(3﹣22222S A =) +(3﹣ ) +(3﹣ ) +(3﹣) +(3﹣) +(﹣1﹣)2+(﹣ 1﹣) 2+(﹣ 1﹣ ) 2+(﹣ 1﹣) 2]=2× [( 2﹣22222)B 组的方差 S B =) +(2﹣ ) +(2﹣) +(2﹣) +(3﹣) +(0﹣ 2222+( 0﹣) +( 0﹣) +(0﹣ ) ] =∴ S 2A > S 2B综上, A 组、 B 组的均匀数相等, A 组的方差大于 B 组的方差应选: D .4.( 2019?绵阳)帅帅采集了南街米粉店今年6 月 1 日至 6 月 5 日每日的用水量(单位:吨),整理并绘制成以下折线统计图.以下结论正确的选项是()A .极差是6B .众数是7C .中位数是5D .方差是8解:由图可知,6 月1 日至6 月5 日每日的用水量是:5, 7, 11, 3,9.A .极差=11﹣ 3=8,结论错误,故 A 不切合题意;B .众数为 5,7, 11, 3,9,结论错误,故 B 不切合题意;C .这 5 个数按从小到大的次序摆列为:3,5,7,9, 11,中位数为 7,结论错误,故 C 不切合题意;D .均匀数是( 5+7+11+3+9 )÷ 5=7,2 2 2 2 2 2方差 S = [( 5﹣7) +( 7﹣7) +( 11﹣ 7) +( 3﹣7) +( 9﹣7) ]= 8. 结论正确,故 D 切合题意;应选: D .5.( 2019?广元)假如一组数据 6, 7, x , 9, 5 的均匀数是 2x ,那么这组数据的中位数为( )A .5B .6C . 7D . 9解:∵一组数据6, 7, x,9, 5 的均匀数是2x,∴6+7+x+9+5 = 2x× 5,解得: x= 3,则从大到小摆列为: 3, 5, 6, 7, 9,故这组数据的中位数为:6.应选: B.6 .( 2019?遂宁)某校为了认识家长对“严禁学生带手机进入校园”这一规定的建议,随机对全校100 名学生家进步行检查,这一问题中样本是()A.100B.被抽取的 100 名学生家长C.被抽取的100 名学生家长的建议D.全校学生家长的建议解:某校为了认识家长对“严禁学生带手机进入校园”这一规定的建议,随机对全校100 名学生家进步行检查,这一问题中样本是:被抽取的100 名学生家长的建议.应选: C.7.( 2019?乐山)小强同学从﹣1, 0,1, 2,3,4 这六个数中任选一个数,知足不等式x+1 <2 的概率是()A .B.C.D.解:在﹣ 1, 0,1, 2, 3, 4 这六个数中,知足不等式x+1< 2 的有﹣ 1、 0 这两个,所以知足不等式x+1 < 2 的概率是=,应选: C.8.( 2019?南充)在 2019 年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班 50 名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A.5 人B.10 人C.15 人D.20 人解:∵选考乒乓球人数为50× 40%=20 人,选考羽毛球人数为 50×=10 人,∴选考乒乓球人数比羽毛球人数多20﹣ 10= 10 人,应选: B.9.( 2019?眉山)某班七个兴趣小组人数以下:5,6, 6, x, 7, 8,9,已知这组数据的均匀数是7,则这组数据的中位数是()A .6B.C. 7D. 8解:∵ 5, 6, 6, x, 7, 8, 9,这组数据的均匀数是7,∴x= 7× 7﹣( 5+6+6+7+8+9 )= 9,∴这组数据从小到大摆列为: 5, 6,6, 7, 8, 9, 9则最中间为7,即这组数据的中位数是7.应选: C.10.( 2019?宜宾)如表记录了两位射击运动员的八次训练成绩:次数第1次第2次第3次第4次第5次第6次第7次第8次环数运动员甲10 7 7 8 8 8 9 7乙10 5 5 8 9 9 8 10依据以上数据,设甲、乙的均匀数分别为、,甲、乙的方差分别为s 甲2, s 乙2,则以下结论正确的选项是()A .=, s 甲2<s 乙2B .=, s 甲2> s 乙2C.>, s 甲2< s 乙2D .<, s 甲2< s 乙2解:( 1)=( 10+7+7+8+8+8+9+7 )= 8;=( 10+5+5+8+9+9+8+10 )= 8;2 2 2 2 2 2 2 2s 甲= [( 10﹣ 8)+( 7﹣8) +( 7﹣ 8) +(8﹣ 8) +( 8﹣8) +( 8﹣8) +(9﹣ 8) +( 7﹣8)2 ]= 1;2 2 2 2 2 2 2 2s 乙= [( 10﹣8)+( 5﹣8) +(5﹣ 8) +( 8﹣8) +(9﹣ 8) +(9﹣ 8) +( 8﹣ 8)+( 10﹣8)2]=,∴=, s 甲2< s 乙2,应选: A.11.( 2019?广安)以下说法正确的选项是()A .“ 367 人中必有 2 人的诞辰是同一天”是必定事件B.认识一批灯泡的使用寿命采纳全面检查C.一组数据6, 5, 3,5, 4 的众数是5,中位数是 3D .一组数据10, 11, 12, 9, 8 的均匀数是 10,方差是解: A.“ 367 人中必有 2 人的诞辰是同一天”是必定事件,故本选项正确;B.认识一批灯泡的使用寿命采纳抽样检查,故本选项错误;C.一组数据6, 5, 3,5, 4 的众数是5,中位数是5,故本选项错误;D .一组数据 10, 11, 12, 9, 8 的均匀数是 10,方差是 2,故本选项错误;应选: A.12.( 2019?达州)一组数据1, 2, 1, 4 的方差为()A .1 B.C. 2 D.解:均匀数为== 22 2 2 2 2方差 S =[( 1﹣2) +( 2﹣2) +( 1﹣ 2) +(4﹣ 2) ]=应选: B.13.( 2019?巴中)以下图,是巴中某校正学生到校方式的状况统计图.若该校骑自行车到校的学生有 200 人,则步行到校的学生有()A .120 人B.160 人C. 125 人D. 180 人解:学生总数:200÷ 25%= 800(人),步行到校的学生:800× 20%= 160(人),应选: B.14.( 2019?资阳)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其余差别.其中红球若干,白球 5 个,袋中的球已搅匀.若从袋中随机拿出 1 个球,拿出红球的可能性大,则红球的个数是()A.4 个B.5 个C.不足 4 个D.6 个或 6 个以上解:∵袋子中白球有 5 个,且从袋中随机拿出 1 个球,拿出红球的可能性大,∴红球的个数比白球个数多,∴红球个数知足 6 个或 6 个以上,应选: D.15.( 2019?凉山州)某班40 名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10 那么该班 40 名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,B.17, 9 C.8, 9 D. 8,解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21 两个数的均匀数就是中位数,∴这组数据的中位数为=;应选: D.二.填空题(共 6 小题)16.( 2019?自贡)在一次有 12 人参加的数学测试中,得100 分、 95 分、 90 分、 85 分、 75 分的人数分别是 1、 3、 4、 2、 2,那么这组数据的众数是90 分.解:这组数据的众数是90 分,故答案为: 90.17.( 2019?南充)下表是某养殖户的500 只鸡销售时质量的统计数据.质量 /kg频数 /只56 162 112 120 40 10 则 500 只鸡质量的中位数为.解: 500 个数据的中位数是第250、251 个数据的均匀数,∵第 250 和 251 个数据分别为、,∴这组数据的中位数为=( kg),故答案为:.18.( 2019?巴中)假如一组数据为4、 a、5、 3、 8,其均匀数为a,那么这组数据的方差为.解:依据题意,得:= a,解得: a= 5,则这组数据为4、 5、 5、3、 8,其均匀数是5,所以这组数据的方差为2 2 2 2 2,×[(4﹣5)+( 5﹣ 5) +( 5﹣ 5) +( 3﹣5) +( 8﹣5) ]=故答案为:.19.( 2019?遂宁)某校拟招聘一批优异教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92 分、 85 分、 90 分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为 88.8 分.解:由题意,则该名教师的综合成绩为:92× 40%+85 × 40%+90 × 20%=36.8+34+18=故答案为:20.( 2019?资阳)一组数据1, 2, 5, x, 3, 6 的众数为 5.则这组数据的中位数为 4 .解:∵数据 1,2, 5, x,3, 6 的众数为 5,∴x= 5,则数据为1, 2, 3, 5, 5, 6,∴这组数据的中位数为= 4,故答案为: 4.21.( 2019?达州)以下图的电路中,当随机闭合开关S1、 S2、 S3中的两个时,可以让灯泡发光的概率为.解:由于随机闭合开关S1, S2, S3中的两个,有 3 种方法,其中有 2 种可以让灯泡发光所以 P(灯泡发光)=.故此题答案为:.三.解答题(共16 小题)22.( 2019?南充)现有四张完好同样的不透明卡片,其正面分别写有数字﹣张卡片反面向上洗匀后放在桌面上.( 1)随机的取一张卡片,求抽取的卡片上的数字为负数的概率.2,﹣ 1, 0, 2,把这四( 2)先随机抽取一张卡片,其上的数字作为点 A 的横坐标;而后放回并洗匀,再随机抽取一张卡片,其上的数字作为点 A 的纵坐标,试用画树状图或列表的方法求出点 A 在直线 y= 2x 上的概率.解:( 1)随机的取一张卡片,抽取的卡片上的数字为负数的概率为=;( 2)画树状图以下图:共有 16 个可能的结果,点 A 在直线 y= 2x 上的结果有 2 个,∴点 A 在直线 y= 2x 上的概率为=.23.(2019?成都)跟着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生供给以下四类在线学习方式:在线阅读、在线听课、在线答题和在线议论.为认识学生需求,该校随机对本校部分学生进行了“你对哪种在线学习方式最感兴趣”的检查,并依据检查结果绘制成以下两幅不完好的统计图.依据图中信息,解答以下问题:(1)求本次检查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线议论”对应的扇形圆心角的度数;(3)该校共有学生 2100 人,请你预计该校正在线阅读最感兴趣的学生人数.解:( 1)本次检查的学生总人数为: 18÷20%= 90,在线听课的人数为: 90﹣24﹣ 18﹣12= 36,补全的条形统计图如右图所示;= 48°,( 2)扇形统计图中“在线议论”对应的扇形圆心角的度数是:360°×即扇形统计图中“在线议论”对应的扇形圆心角的度数是48°;( 3) 2100×=560(人),答:该校正在线阅读最感兴趣的学生有560 人.24.( 2019?自贡)某校举行了自贡市创立全国文明城市知识比赛活动,初一年级全体同学参加了知识比赛.采集教据:现随机抽取了初一年级30 名同学的“创文知识比赛”成绩,分数以下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理剖析数据:成绩 x(单位:分)频数(人数)60≤ x< 70 170≤ x< 80 280≤ x< 901790≤ x< 10010(1)请将图表中空缺的部分增补完好;(2)学校决定表彰“创文知识比赛”成绩在 90 分及其以上的同学.依据上边统计结果预计该校初一年级 360 人中,约有多少人将获取表彰;(3)“创文知识比赛”中,遇到表彰的小红同学获取了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选用两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰巧有恐龙图案的概率是.解:( 1)补全图表以下:( 2)预计该校初一年级360 人中,获取表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、 B、 C、D ,画树状图以下:则共有 12 种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰巧有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰巧有恐龙图案的概率为,故答案为:.25.( 2019?攀枝花)某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班.为认识学生对这四类兴趣班的喜爱状况,对学生进行了随机问卷检查(问卷检查表以下图),将检查结果整理后绘制了一幅不完好的统计表.兴趣班频数频次AB 18C 15 bD 6共计 a 1请你依据统计表中供给的信息回答以下问题:(1)统计表中的 a= 60 , b= 0.25 ;(2)依据检查结果,请你预计该市2000 名小学生中最喜爱“绘画”兴趣班的人数;( 3)王姀和李婴选择参加兴趣班,若她们每人从A、B、 C、D 四类兴趣班中随机选用一类,请用画树状图或列表格的方法,求两人恰巧选中同一类的概率.解:( 1) a= 18÷= 60, b= 15÷ 60=,故答案为: 60、0.25 ;( 2)预计该市2000 名小学生中最喜爱“绘画”兴趣班的人数2000×= 700(人);( 3)依据题意画树状图以下:共有 16 种等可能的结果,其中两人恰巧选中同一类的结果有∴两人恰巧选中同一类的概率为=.26.( 2019?泸州)某市气象局统计了 5 月 1 日至 8 日正午制成以下图的两幅统计图.依据图中给出的信息,解答以下问题:4 种,12 时的气温(单位:℃),整理后分别绘( 1)该市 5 月 1 日至 8 日中正午气温的均匀数是℃,中位数是℃;( 2)求扇形统计图中扇形 A 的圆心角的度数;( 3)现从该市 5 月 1 日至 5 日的 5 天中,随机抽取 2 天,求恰巧抽到 2 天正午 12 时的气温均低于 20℃的概率.解:( 1) 5 月 1 日至 8 日中正午气温的均匀数:(19+16+22+18+21+22+25+26 )÷ 8=℃将 8 天的温度按低到高摆列:16, 18,19,21, 22, 22,25, 26,因其中位数为=℃,故答案为,;( 2)由于低于20℃的天数有3 天,则扇形统计图中扇形 A 的圆心角的度数 360°×= 135°,答:扇形统计图中扇形A 的圆心角的度数135°;( 3)设这个月 5 月 1 日至5 日的5 天正午12 时的气温挨次即为A 1, A 2, A 3, A 4, A 5,则抽到 2 天正午 12 时的气温, 共有(A 1A 2),( A 1A 3),( A 1A 4),( A 1A 5),(A 2A 3),(A 2A 4),( A 2 5),( A 3 4),( A 3 5),( A 4 A 5)共 10 种不一样取法,A A A其中抽到 2 天正午 12 时的气温均低于 20℃有( A 1A 2),( A 1A 4),( A 2 A 4) 3 种不一样取法,所以恰巧抽到 2 天正午 12 时的气温均低于 20℃的概率为.27.( 2019?绵阳)成功中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将 36名参赛选手的成绩(单位:分)统计并绘制成频数散布直方图和扇形统计图,部分信息以下:请依据统计图的信息,解答以下问题:( 1)补全频数散布直方图,并求扇形统计图中扇形D 对应的圆心角度数;( 2)成绩在 D 地区的选手, 男生比女生多一人, 从中随机抽取两人暂时担当该校艺术节的主持人,求恰巧选中一名男生和一名女生的概率.解:( 1) 80~ 90 的频数为 36× 50%=18,则 80~ 85 的频数为 18﹣11=7,95~ 100 的频数为 36﹣( 4+18+9 )= 5,补全图形以下:扇形统计图中扇形 D 对应的圆心角度数为360°×= 50°;( 2)画树状图为:共有 20 种等可能的结果数,其中抽取的学生恰巧是一名男生和一名女生的结果数为12,所以抽取的学生恰巧是一名男生和一名女生的概率为=.28.( 2019?广元)现在好多初中生喜爱购头饮品饮用,既影响身体健康又给家庭增添不用要的开支,为此某班数学兴趣小组对本班同学一天饮用饮品的状况进行了检查,大概可分为四种: A.白开水,B.瓶装矿泉水, C.碳酸饮料, D.非碳酸饮料.依据统计结果绘制以下两个统计图,依据统计图供给的信息,解答以下问题(1)这个班级有多少名同学?并补全条形统计图;(2)若该班同学每人每日只饮用一种饮品(每种仅限一瓶,价钱以下表),则该班同学每日用于饮品的人均花销是多少元?饮品名称白开水瓶装矿泉水碳酸饮料非碳酸饮料均匀价钱(元/瓶)023 4( 3)为了养成优异的生活习惯,班主任决定在饮用白开水的 5 名班委干部(其中有两位班长记为A,B,其余三位记为C,D ,E)中随机抽取 2 名班委干部作优异习惯监察员,请用列表法或画树状图的方法求出恰巧抽到 2 名班长的概率.解:( 1)这个班级的学生人数为 15÷ 30%= 50(人),选择 C 饮品的人数为 50﹣( 10+15+5 )= 20(人),补全图形以下:( 2)=(元),答:该班同学每日用于饮品的人均花销是 2.2 元;( 3)画树状图以下:由树状图知共有20 种等可能结果,其中恰巧抽到 2 名班长的有 2 种结果,所以恰巧抽到 2 名班长的概率为=.29.( 2019?遂宁)我市某校为了让学生的课余生活丰富多彩,展开了以下课外活动:代号活动种类A经典朗读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其余为认识学生的选择状况,现从该校随机抽取了部分学生进行问卷检查(参加问卷检查的每名学生只好选择其中一项),并依据检查获取的数据绘制了以下图的两幅不完好的统计图.请依据统计图供给的信息回答以下问题(要求写出简要的解答过程).( 1)此次共检查了200名学生.( 2)将条形统计图增补完好.( 3)“数学兴趣与培优”所在扇形的圆心角的度数为108°.( 4)若该校共有2000 名学生,请预计该校喜爱A、 B、 C 三类活动的学生共有多少人?( 5)学校将从喜爱“A”类活动的学生中选用 4 位同学(其中女生 2 名,男生 2 名)参加校园“金话筒”朗读初赛,并最后确立两名同学参加决赛,请用列表或画树状图的方法,求出恰巧一男一女参加决赛的概率.解:( 1)此次检查的总人数为40÷ 20%= 200(人),故答案为: 200;( 2)D 种类人数为200× 25%= 50(人),B 种类人数为200﹣( 40+30+50+20 )= 60(人),补全图形以下:( 3)“数学兴趣与培优”所在扇形的圆心角的度数为360°×= 108°,故答案为: 108°;( 4)预计该校喜爱A、B、 C 三类活动的学生共有2000×= 1300(人);( 5)画树状图以下:,由树状图知,共有 12 种等可能结果,其中一男一女的有8 种结果,∴恰巧一男一女参加决赛的概率=.30.( 2019?乐山)某校组织学生参加“安全知识比赛”,测试结束后,张老师从七年级720 名学生中随机地抽取部分学生的成绩绘制了条形统计图,以下图.试依据统计图供给的信息,回答下列问题:( 1)张老师抽取的这部分学生中,共有40 名男生,40 名女生;( 2)张老师抽取的这部分学生中,女生成绩的众数是27 ;( 3)若将不低于 27 分的成绩定为优异,请预计七年级720 名学生中成绩为优异的学生人数大概是多少.解:( 1)男生: 1+2+2+4+9+14+5+2+1 = 40(人)女生: 1+1+2+3+11++13+7+1+1 =40(人)故答案为 40, 40;( 2)女生成绩 27 的人数最多,所以众数为27,故答案为 27;( 3)(人),七年级 720 名学生中成绩为优异的学生人数大概是396 人.31.( 2019?眉山)某中学举行钢笔书法大赛,对各年级同学的获奖状况进行了统计,并绘制了以下两幅不完好的统计图.请联合图中有关信息解答以下问题:( 1)扇形统计图中三等奖所在扇形的圆心角的度数是108 度;(2)请将条形统计图补全;(3)获取一等奖的同学中有来自七年级,有来自九年级,其余同学均来自八年级.现准备从获取一等奖的同学中任选 2 人参加市级钢笔书法大赛,请经过列表或画树状图的方法求所选出的 2人中既有八年级同学又有九年级同学的概率.解:( 1)∵被检查的总人数为16÷ 40%= 40(人),∴扇形统计图中三等奖所在扇形的圆心角的度数是360°×=108°,故答案为: 108;(2)一等奖人数为 40﹣( 8+12+16 )= 4(人),补全图形以下:( 3)一等奖中七年级人数为4×= 1(人),九年级人数为4×= 1(人),则八年级的有 2 人,画树状图以下:4 由树状图知,共有12 种等可能结果,其中所选出的 2 人中既有八年级同学又有九年级同学的有种结果,所以所选出的 2 人中既有八年级同学又有九年级同学的概率为=.32.( 2019?宜宾)某校在七、八、九三个年级中进行“一带一路”知识比赛,分别设有一等奖、二等奖、三等奖、优异奖、纪念奖.现对三个年级同学的获奖状况进行了统计,其中获取纪念奖有17 人,获取三等奖有10 人,并制作了如图不完好的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;( 3)在获一等奖的同学中,七年级和八年级的人数各占,其余为九年级的同学,现从获一等奖的同学中选 2 名参加市级比赛,经过列表或许树状图的方法,求所选出的 2 人中既有七年级又有九年级同学的概率.解:( 1)三个年级获奖总人数为17÷ 34%= 50(人);( 2)三等奖对应的百分比为× 100%=20%,则一等奖的百分比为 1﹣( 14%+20%+34%+24% )= 8%,补全图形以下:( 3)由题意知,获一等奖的学生中,七年级有 1 人,八年级有 1 人,九年级有 2 人,画树状图为:(用 A、B、 C 分别表示七年级、八年级和九年级的学生)共有 12 种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率为.33.( 2019?广安)为了提升学生的阅读能力,我市某校展开了“读好书,助成长”的活动,并计划购买一批图书,购书前,对学生喜爱阅读的图书种类进行了抽样检查,并将检查数据绘制成两幅不完好的统计图,以下图,请依据统计图回答以下问题:( 1)本次检查共抽取了200名学生,两幅统计图中的m=84,n=15.( 2)已知该校共有3600 名学生,请你预计该校喜爱阅读“A”类图书的学生约有多少人?(3)学校将举办念书知识比赛,九年级 1 班要在本班 3 名优越者( 2 男 1 女)中随机选送 2 人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.解:( 1) 68÷ 34%= 200,所以本次检查共抽取了200 名学生,( 3)画树状图为:共有 6 种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.34.( 2019?达州)随机抽取某小吃店一周的营业额(单位:元)以下表:礼拜一礼拜二礼拜三礼拜四礼拜五礼拜六礼拜日共计540 680 640 640 780 1110 1070 5460 ( 1)剖析数据,填空:这组数据的均匀数是780 元,中位数是680 元,众数是640 元.( 2)预计一个月的营业额(按30 天计算):① 礼拜一到礼拜五营业额相差不大,用这 5 天的均匀数估量适合么?答(填“适合”或“不适合”):不适合.② 选择一个你以为最适合的数据估量这个小吃店一个月的营业额.解:( 1)这组数据的均匀数== 780(元);依据从小到大摆列为540、 640、 640、 680、 780、 1070、 1110,中位数为680 元,众数为 640 元;故答案为: 780, 680, 640;(2)① 由于在周一至周日的营业额中周六、日的营业额显然高于其余五天的营业额,所以去掉周六、日的营业额对均匀数的影响较大,故用该店本周礼拜一到礼拜五的日均匀营业额预计当月的营业总数不适合;故答案为:不适合;② 用该店本周一到周日的日均营业额预计当月营业额,当月的营业额为30× 780= 23400(元).35.( 2019?巴中)如图表示的是某班部分同学衣服上口袋的数目.① 从图中给出的信息获取学生衣服上口袋数目的中位数为4,众数为 4.② 依据如图信息,在给出的图表中绘制频数条形统计图,由此预计该班学生衣服上口袋数目为 5≤ x< 7 的概率.解:① 由图可知,学生衣服上口袋的数目分别为:3, 4,2, 6, 5, 5, 3, 1, 4, 2, 4, 6, 10,7, 1, 4, 5, 6, 2, 10, 3.按从小到大的次序摆列为:1, 1,2, 2, 2,3, 3,3, 4, 4,4, 4,5, 5, 5,6, 6,6, 7, 10, 10.故中位数为4,众数为4,故答案为4, 4.( 2)条形图以下图:预计该班学生衣服上口袋数目为5≤ x< 7 的概率==.36.( 2019?资阳)为认识“哈啰单车”的使用状况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获取的数据分红四组(A: 0<t≤ 30; B: 30< t≤ 60; C:60< t≤ 120; D: t> 120),并绘制出以下图的两幅不完好的统计图.(1)求 D 组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在 C、 D 两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰巧选中一男一女的概率.解:( 1)∵被检查的总人数为 6÷30%= 20(人),∴C 组人数为 20× 20%=4(人),则 D 组人数为 20﹣( 6+7+4 )= 3(人),∴ D 组所在扇形的圆心角的度数为 360°×= 54°,补全图形以下:( 2)树状图以下:共有 12 种等可能的状况,其中选中一名男同学和一名女同学的状况有 6 种,∴选中一名男同学和一名女同学的概率为=.37.( 2019?凉山州)某校初中部举行诗词大会预选赛,学校正参赛同学获奖状况进行统计,绘制了以下两幅不完好的统计图.请联合图中有关数据解答以下问题:( 1)参加此次诗词大会预选赛的同学共有40人;( 2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;( 3)将条形统计图增补完好;( 4)若获取一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请经过列表或树状图方法求所选两名同学中,恰巧是一名七年级和一名九年级同学的概率.解:( 1)参加此次诗词大会预选赛的同学共有18÷ 45%= 40(人),故答案为: 40;( 2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为: 90°.(3)获二等奖的人数= 40× 20%= 8,一等奖的人数为 40﹣ 8﹣ 10﹣ 18= 4(人),条形统计图为:( 4)由题意知,获一等奖的学生中,七年级有 1 人,八年级有 1 人,九年级有 2 人,画树状图为:(用A、B、 C 分别表示七年级、八年级和九年级的学生)共有 12 种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.。
辽宁省2019年、2020年中考数学试题分类汇编(11)——圆

2019年、2020年辽宁省数学中考试题分类(11)——圆一.圆周角定理(共4小题)1.(2020•阜新)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为()A.57°B.52°C.38°D.26°2.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°3.(2019•营口)如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°4.(2019•辽阳)如图,A,B,C,D是⊙O上的四点,且点B是AĈ的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.二.三角形的外接圆与外心(共3小题)5.(2020•鞍山)如图,⊙O是△ABC的外接圆,半径为2cm,若BC=2cm,则∠A的度数为()A.30°B.25°C.15°D.10°6.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则AĈ的长为.7.(2019•盘锦)如图,△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D,连接BD,半径OE⊥BC,连接EA,EA⊥BD于点F.若OD=2,则BC=.三.直线与圆的位置关系(共2小题)8.(2020•丹东)如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD 的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=13,DF=2,求⊙O的半径.9.(2019•抚顺)如图,在△ABC中,∠ACB=90°,CA=CB,点O在△ABC的内部,⊙O 经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作▱GDEC.(1)判断DE与⊙O的位置关系,并说明理由.(2)若点B是DBĈ的中点,⊙O的半径为2,求BĈ的长.四.切线的性质(共6小题)10.(2019•阜新)如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是()A.25°B.30°C.35°D.40°11.(2020•大连)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=512,BC=1,求PD的长.12.(2020•鞍山)如图,AB是⊙O的直径,点C,点D在⊙O上,AĈ=CD̂,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.(1)求证:AE=AF.(2)若EF=12,sin∠ABF=35,求⊙O的半径.13.(2019•营口)如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.14.(2019•沈阳)如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4√5,CD=4,则⊙O的半径是.15.(2019•大连)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五.切线的判定与性质(共11小题)16.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.17.(2020•沈阳)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.18.(2020•营口)如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tan A=34,AD=2,求BO的长.19.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.20.(2019•朝阳)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB 交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=√5,求⊙O的半径.21.(2019•鞍山)如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE =∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.22.(2019•盘锦)如图,△ABC内接于⊙O,AD与BC是⊙O的直径,延长线段AC至点G,使AG=AD,连接DG交⊙O于点E,EF∥AB交AG于点F.(1)求证:EF与⊙O相切.(2)若EF=2√3,AC=4,求扇形OAC的面积.̂=BN̂,弦MN交AB 23.(2019•锦州)如图,M,N是以AB为直径的⊙O上的点,且AN于点C,BM平分∠ABD,MF⊥BD于点F.(1)求证:MF是⊙O的切线;(2)若CN=3,BN=4,求CM的长.24.(2019•葫芦岛)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O 交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)求证:EF是⊙O的切线;(2)若cos∠CAD=35,AF=6,MD=2,求FC的长.25.(2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=2√3,求阴影部分的面积.26.(2019•本溪)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=12,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.六.正多边形和圆(共3小题)27.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,−√3)B.(1,√3)C.(1,﹣2)D.(2,1)28.(2020•葫芦岛)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EF A的度数是.29.(2019•锦州)如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为.七.弧长的计算(共4小题)30.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BĜ的长是( )A .π3B .π2C .2π3D .3π431.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DÊ的长为( )A .4π3B .πC .2π3D .π332.(2019•鞍山)如图,AC 是⊙O 的直径,B ,D 是⊙O 上的点,若⊙O 的半径为3,∠ADB =30°,则BĈ的长为 .33.(2019•铁岭)如图,点A ,B ,C 在⊙O 上,∠A =60°,∠C =70°,OB =9,则AB̂的长为 .八.扇形面积的计算(共2小题)34.(2020•朝阳)如图,点A ,B ,C 是⊙O 上的点,连接AB ,AC ,BC ,且∠ACB =15°,过点O 作OD ∥AB 交⊙O 于点D ,连接AD ,BD ,已知⊙O 半径为2,则图中阴影面积为 .35.(2019•抚顺)如图,直线l 1的解析式是y =√33x ,直线l 2的解析式是y =√3x ,点A 1在l 1上,A 1的横坐标为32,作A 1B 1⊥l 1交l 2于点B 1,点B 2在l 2上,以B 1A 1,B 1B 2为邻边在直线l 1,l 2间作菱形A 1B 1B 2C 1,分别以点A 1,B 2为圆心,以A 1B 1为半径画弧得扇形B 1A 1C 1和扇形B 1B 2C 1,记扇形B 1A 1C 1与扇形B 1B 2C 1重叠部分的面积为S 1;延长B 2C 1交l 1于点A 2,点B 3在l 2上,以B 2A 2,B 2B 3为邻边在l 1,l 2间作菱形A 2B 2B 3C 2,分别以点A 2,B 3为圆心,以A 2B 2为半径画弧得扇形B 2A 2C 2和扇形B 2B 3C 2,记扇形B 2A 2C 2与扇形B 2B 3C 2重叠部分的面积为S 2………按照此规律继续作下去,则S n = .(用含有正整数n 的式子表示)九.圆锥的计算(共2小题)36.(2020•营口)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.37.(2019•营口)圆锥侧面展开图的圆心角的度数为216°,母线长为5,该圆锥的底面半径为.一十.圆的综合题(共2小题)38.(2020•盘锦)如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当AFBF =25,CE=4时,直接写出CG的长.39.(2019•丹东)如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O 与边BC相切于点E,与边AC相交于点G,且AĜ=EĜ,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.2019年、2020年辽宁省数学中考试题分类(11)——圆参考答案与试题解析一.圆周角定理(共4小题)1.【解答】解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=38°,∴∠BAC=90°﹣∠ABC=52°,∴∠BDC=∠BAC=52°.故选:B.2.【解答】解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.3.【解答】解:连接AC,如图,∵BC是⊙O的直径,∴∠BAC=90°,∵∠ACB=∠ADB=70°,∴∠ABC=90°﹣70°=20°.故选:A.4.【解答】解:连接OB.∵AB̂=BĈ,∴∠AOB=∠BOC=50°,∴∠BDC=12∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.二.三角形的外接圆与外心(共3小题)5.【解答】解:连接OB和OC,∵圆O半径为2,BC=2,∴OB=OC=BC,∴△OBC为等边三角形,∴∠BOC=60°,∴∠A=12∠BOC=30°,故选:A .6.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴AC ̂的长=60⋅π⋅6180=2π, 故答案为2π.7.【解答】解:∵OD ⊥AC ,∴AD =DC ,∵BO =CO ,∴AB =2OD =2×2=4,∵BC 是⊙O 的直径,∴∠BAC =90°,∵OE ⊥BC ,∴∠BOE =∠COE =90°,∴BÊ=EC ̂, ∴∠BAE =∠CAE =12∠BAC =12×90°=45°, ∵EA ⊥BD ,∴∠ABD =∠ADB =45°,∴AD =AB =4,∴DC =AD =4,∴AC=8,∴BC=√AB2+AC2=√42+82=4√5.故答案为:4√5.三.直线与圆的位置关系(共2小题)8.【解答】解:(1)BC所在直线与⊙O相切;理由:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AF,∴∠ABF=∠AFB,∵BF平分∠DBC,∴∠DBF=∠CBF,∴∠ABD+∠DBF=∠CBF+∠C,∴∠ABD=∠C,∵∠A+∠ABD=90°,∴∠A+∠C=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)∵BF平分∠DBC,∴∠DBF=∠CBF,∴tan∠FBC=tan∠DBF=DFBD=13,∵DF=2,∴BD=6,设AB=AF=x,∴AD=x﹣2,∵AB2=AD2+BD2,∴x2=(x﹣2)2+62,解得:x=10,∴AB=10,∴⊙O 的半径为5.9.【解答】解:(1)DE 是⊙O 的切线; 理由:连接OD ,∵∠ACB =90°,CA =CB ,∴∠ABC =45°,∴∠COD =2∠ABC =90°,∵四边形GDEC 是平行四边形,∴DE ∥CG ,∴∠EDO +∠COD =180°,∴∠EDO =90°,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)连接OB ,∵点B 是DBĈ的中点, ∴BĈ=BD ̂, ∴∠BOC =∠BOD ,∵∠BOC +∠BOD +∠COD =360°,∴∠COB =∠BOD =135°,∴BC ̂的长=135⋅π×2180=32π.四.切线的性质(共6小题)10.【解答】解:如图:连接OB,∵∠A=25°,∴∠COB=2∠A=2×25°=50°,∵BC与⊙O相切于点B,∴∠OBC=90°,∴∠C=90°﹣∠BOC=90°﹣50°=40°.故选:D.11.【解答】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD 是⊙O 的切线,∴OD ⊥DP ,∴∠ODP =90°,又∵AD̂=CD ̂, ∴OD ⊥AC ,AE =EC ,∴∠DEC =90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ECP =90°,∴四边形DECP 为矩形,∴DP =EC ,∵tan ∠CAB =512,BC =1,∴CB AC =1AC =512,∴AC =125, ∴EC =12AC =65,∴DP =65.12.【解答】(1)证明:∵AF 与⊙O 相切于点A , ∴F A ⊥AB ,∴∠F AB =90°,∴∠F +∠B =90°,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CAE +∠CEA =90°,∵AĈ=CD ̂, ∴∠CAE =∠D ,∴∠D +∠CEA =90°,∵∠D =∠B ,∴∠B +∠CEA =90°,∴∠F =∠CEA ,∴AE =AF .(2)解:∵AE =AF ,∠ACB =90°,∴CF =CE =12EF =6,∵∠ABF =∠D =∠CAE ,∴sin ∠ABF =sin ∠CAE =35,∴CE AE =6AE =35, ∴AE =10,∴AC =√AE 2−CE 2=√102−62=8,∵sin ∠ABC =AC AB =8AB =35, ∴AB =403, ∴OA =12AB =203. 即⊙O 的半径为203.13.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AE ⊥BC ,∴AD ⊥OA ,∵AO 是⊙O 的半径,∴AD 是⊙O 的切线,又∵DF 是⊙O 的切线,∴AD =DF ,同理可得CE =CF ,∵CD =DF +CF ,∴CD =AD +CE .(2)解:连接OD ,AF 相交于点M ,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE=√(5t)2−(3t)2=4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=AOAD=2t4t=12,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵EF̂=EF̂,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=1 2.14.【解答】(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO =∠ABC ,∴∠CBD =∠ABC .;(2)解:连接AC ,在Rt △BCD 中,BC =4√5,CD =4,∴BD =√BC 2−CD 2=8,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB =∠CDB =90°,∵∠ABC =∠CBD ,∴△ABC ∽△CBD ,∴AB BC =CB BD ,即4√5=4√58, ∴AB =10,∴⊙O 的半径是5,故答案为5.15.【解答】(1)证明:作DF ⊥BC 于F ,连接DB ,∵AP 是⊙O 的切线,∴∠P AC =90°,即∠P +∠ACP =90°,∵AC 是⊙O 的直径,∴∠ADC =90°,即∠PCA +∠DAC =90°,∴∠P =∠DAC =∠DBC ,∵∠APC =∠BCP ,∴∠DBC =∠DCB ,∴DB =DC , ∵DF ⊥BC ,∴DF 是BC 的垂直平分线,∴DF 经过点O ,∵OD =OC ,∴∠ODC =∠OCD ,∵∠BDC =2∠ODC ,∴∠BAC =∠BDC =2∠ODC =2∠OCD ;(2)解:∵DF 经过点O ,DF ⊥BC ,∴FC =12BC =3,在△DEC 和△CFD 中,{∠DCE =∠FDC∠DEC =∠CFD DC =CD,∴△DEC ≌△CFD (AAS )∴DE =FC =3,∵∠ADC =90°,DE ⊥AC ,∴DE 2=AE •EC ,则EC =DE 2AE =92, ∴AC =2+92=132,∴⊙O 的半径为134.五.切线的判定与性质(共11小题)16.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB AC,∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF AD,∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,在Rt△ABF中,BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2﹣BH2,BD=BH,则BD2=98.∴BD=7√2.17.【解答】证明:(1)如图,连接OD,∵CD是⊙O的切线,∴CD⊥OD,∴∠ODC=90°,∴∠BDO+∠ADC=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A=∠ADC,∴CD=AC;(2)∵DC=DB,∴∠DCB=∠DBC,∴∠DCB=∠DBC=∠BDO,∵∠DCB+∠DBC+∠BDO+∠ODC=180°,∴∠DCB=∠DBC=∠BDO=30°,∴DC =√3OD =√3,故答案为:√3. 18.【解答】 (1)证明:过O 作OH ⊥AB 于H ,∵∠ACB =90°,∴OC ⊥BC ,∵BO 为△ABC 的角平分线,OH ⊥AB ,∴OH =OC ,即OH 为⊙O 的半径,∵OH ⊥AB ,∴AB 为⊙O 的切线;(2)解:设⊙O 的半径为3x ,则OH =OD =OC =3x ,在Rt △AOH 中,∵tan A =34,∴OH AH =34, ∴3xAH =34, ∴AH =4x , ∴AO =2+AH 2=√(3x)2+(4x)2=5x ,∵AD =2,∴AO =OD +AD =3x +2,∴3x +2=5x ,∴x =1,∴OA =3x +2=5,OH =OD =OC =3x =3,∴AC =OA +OC =5+3=8,在Rt △ABC 中,∵tan A =BCAC ,∴BC =AC •tan A =8×34=6, ∴OB =2+BC 2=√32+62=3√5.19.【解答】(1)证明:连接AE,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠AEB,∵AE=AB,∴∠AEB=∠ABC,∴∠DAE=∠ABC,∴△AED≌△BAC(SAS),∴∠DEA=∠CAB,∵∠CAB=90°,∴∠DEA=90°,∴DE⊥AE,∵AE是⊙A的半径,∴DE与⊙A相切;(2)解:∵∠ABC=60°,AB=AE=4,∴△ABE是等边三角形,∴AE=BE,∠EAB=60°,∵∠CAB=90°,∴∠CAE=90°﹣∠EAB=90°﹣60°=30°,∠ACB=90°﹣∠B=90°﹣60°=30°,∴∠CAE=∠ACB,∴AE=CE,∴CE=BE,∴S△ABC=12AB•AC=12×4×4√3=8√3,∴S△ACE=12S△ABC=12×8√3=4√3,∵∠CAE=30°,AE=4,∴S扇形AEF=30π×AE2360=30π×42360=4π3,∴S阴影=S△ACE﹣S扇形AEF=4√3−4π3.20.【解答】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DF A=∠DEC,∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH ,∵AD 是⊙O 的直径,∴∠AHD =∠DF A =90°,∴∠DFB =90°,∵AD =AB ,DH =√5,∴DB =2DH =2√5,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2,∴AD 2﹣AF 2=DB 2﹣BF 2,∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2,∴AD 2−(AD −2)2=(2√5)2−22,∴AD =5.∴⊙O 的半径为52. 21.【解答】解:(1)∵∠ACB =90°,点B ,D 在⊙O 上, ∴BD 是⊙O 的直径,∠BCE =∠BDE ,∵∠FDE =∠DCE ,∠BCE +∠DCE =∠ACB =90°, ∴∠BDE +∠FDE =90°,即∠BDF =90°,∴DF ⊥BD ,又∵BD 是⊙O 的直径,∴DF 是⊙O 的切线.(2)如图,∵∠ACB =90°,∠A =30°,BC =4,∴AB=2BC=2×4=8,∴AC=√AB2−BC2=√82−42=4√3,∵点D是AC的中点,∴AD=CD=12AC=2√3,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴DE=12AD=12×2√3=√3,在Rt△BCD中,BD=√BC2+CD2=√42+(2√3)2=2√7,在Rt△BED中,BE=√BD2−DE2=√(2√7)2−(√3)2=5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DEF=∠BED=90°,∴△FDE∽△DBE,∴DFBD =DEBE,即2√7=√35,∴DF=2√21 5.22.【解答】(1)证明:如图1,连接OE,∵OD=OE,∴∠D=∠OED,∵AD=AG,∴∠D=∠G,∴∠OED=∠G,∴OE∥AG,∵BC是⊙O的直径,∴∠BAC=90°,∵EF∥AB,∴∠BAF+∠AFE=180°,∴∠AFE=90°,∵OE∥AG,∴∠OEF=180°﹣∠AFE=90°,∴OE⊥EF,∴EF与⊙O相切;(2)解:如图2,连接OE,过点O作OH⊥AC于点H,∵AC=4,∴CH=12AC=2,∵∠OHF=∠HFE=∠OEF=90°,∴四边形OEFH是矩形,∴OH=EF=2√3,在Rt△OHC中,OC=√CH2+OH2=√22+(2√3)2=4,∵OA=AC=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴S扇形OAC=60π⋅42360=83π.23.【解答】证明:(1)连接OM,∵OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABD,∴∠OBM=∠MBF,∴∠OMB=∠MBF,∴OM∥BF,∵MF⊥BD,∴OM⊥MF,即∠OMF=90°,∴MF是⊙O的切线;(2)如图,连接AN,ON̂=BN̂,∵AN∴AN=BN=4̂=BN̂,∵AB是直径,AN∴∠ANB=90°,ON⊥AB∴AB=√AN2+BN2=4√2∴AO=BO=ON=2√2∴OC=√CN2−ON2=√9−8=1∴AC=2√2+1,BC=2√2−1∵∠A=∠NMB,∠ANC=∠MBC∴△ACN∽△MCB∴ACCM = CNBC∴AC•BC=CM•CN ∴7=3•CM∴CM=7 324.【解答】(1)证明:连接OF,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠CAD+∠DCA=90°,∵EC=EF,∴∠DCA=∠EFC,∵OA=OF,∴∠CAD=∠OF A,∴∠EFC+∠OF A=90°,∴∠EFO=90°,∴EF⊥OF,∵OF是半径,∴EF是⊙O的切线;(2)连接MF,∵AM是直径,∴∠AFM=90°,在Rt△AFM中,cos∠CAD=AFAM=35,∵AF=6,∴6AM =35,∴AM=10,∵MD=2,∴AD=8,在Rt△ADC中,cos∠CAD=ADAC=35,∴8AC =35,∴AC=40 3,∴FC=403−6=22325.【解答】(1)证明:连接OA,过O作OF⊥AE于F,∴∠AFO=90°,∴∠EAO+∠AOF=90°,∵OA=OE,∴∠EOF=∠AOF=12∠AOE,∵∠EDA=12∠AOE,∴∠EDA=∠AOF,∵∠EAC=∠EDA,∴∠EAC=∠AOF,∴∠EAO+∠EAC=90°,∵∠EAC+∠EAO=∠CAO,∴∠CAO=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵CE=AE=2√3,∴∠C=∠EAC,∵∠EAC+∠C=∠AEO,∴∠AEO=2∠EAC,∵OA=OE,∴∠AEO=∠EAO,∴∠EAO=2∠EAC,∵∠EAO+∠EAC=90°,∴∠EAC=30°,∠EAO=60°,∴△OAE是等边三角形,∴OA=AE,∠EOA=60°,∴OA=2√3,∴S扇形AOE=60⋅π×(2√3)2360=2π,在Rt△OAF中,OF=OA•sin∠EAO=2√3×√32=3,∴S△AOE=12AE•OF=12×2√3×3=3√3,∴阴影部分的面积=2π﹣3√3.26.【解答】(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP ≌△CBP (SAS ),∴∠CDP =∠CBP ,∵∠BCD =90°,∴∠CBP +∠BEC =90°,∵OD =OE ,∴∠ODE =∠OED ,∠OED =∠BEC ,∴∠BEC =∠OED =∠ODE ,∴∠CDP +∠ODE =90°,∴∠ODP =90°,∴DP 是⊙O 的切线;(2)∵∠CDP =∠CBE ,∴tan ∠CBE =tan ∠CDP =CE BC =12,∴CE =12×4=2, ∴DE =2,∵∠EDF =90°,∴EF 是⊙O 的直径,∴∠F +∠DEF =90°,∴∠F =∠CDP ,在Rt △DEF 中,DE DF =12, ∴DF =4,∴EF =√DE 2+DF 2=√42+22=2√5,∴OE=√5,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴PEPD =PDPF=DEDF,设PE=x,则PD=2x,∴x(x+2√5)=(2x)2,解得x=23√5,∴OP=OE+EP=√5+2√53=5√53.六.正多边形和圆(共3小题)27.【解答】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴∁i的坐标与C4的坐标相同,∵C(﹣1,√3),点C与C4关于原点对称,∴C4(1,−√3),∴顶点∁i的坐标是(1,−√3),故选:A.28.【解答】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠F AB=60°,∴∠EAF=108°﹣60°=48°,∵AE=AF,∴∠AEF=∠AFE=12×(180°﹣48°)=66°,故答案为:66°.29.【解答】解:∵正六边形ABCDEF内接于⊙O,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA =OB =AB =2,∴扇形AOB 的面积=60⋅π×22360=2π3, 故答案为:2π3.七.弧长的计算(共4小题)30.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°, ∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BF OD =BE OE ,∵OB =OD ,OE :EB =1:√3, ∴tan ∠BOF =BF OB =√3,∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BG ̂的长=60π×2180=23π, 故选:C .31.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =AB AE =√32, ∴∠BAE =30°,∴∠EAD =60°,∴DÊ的长=60⋅π×2180=2π3, 故选:C .32.【解答】解:由圆周角定理得,∠AOB =2∠ADB =60°, ∴∠BOC =180°﹣60°=120°,∴BC ̂的长=120π×3180=2π, 故答案为:2π.33.【解答】解:连接OA ,∵OA =OC ,∴∠OAC =∠C =70°,∴∠OAB =∠OAC ﹣∠BAC =70°﹣60°=10°,∵OA =OB ,∴∠OBA =∠OAB =10°,∴∠AOB =180°﹣10°﹣10°=160°,则AB ̂的长=160π×9180=8π, 故答案为:8π.八.扇形面积的计算(共2小题)34.【解答】解:∵∠ACB =15°,∴∠AOB =30°,∵OD ∥AB ,∴S △ABD =S △ABO ,∴S 阴影=S 扇形AOB =30π×22360=π3. 故答案为:π3. 35.【解答】解:过A 1作A 1D ⊥x 轴于D ,连接B 1C 1,B 2C 2,B 3C 3,B 4C 4, ∵点A 1在l 1上,A 1的横坐标为32,点A 1(32,√32), ∴OD =32,A 1D =√32,∴OA 1=√A 1D 2+OD 2=(32)2+(32)2=√3, ∴在Rt △A 1OD 中,A 1D =12OA 1, ∴∠A 1OD =30°,∵直线l 2的解析式是y =√3x ,∴∠B 1OD =60°,∴∠A 1OB 1=30°,∴A 1B 1=OA 1•tan ∠A 1OB 1=1,∵A 1B 1⊥l 1交l 2于点B 1,∴∠A 1B 1O =60°,∴∠A 1B 1B 2=120°,∴∠B 1A 1C 1=60°,∵四边形A 1B 1B 2C 1是菱形,∴△A 1B 1C 1是等边三角形,∴S 1=2(S 扇形B 1A 1C 1−S △B 1A 1C 1)=2×(60⋅π×12360−√34×12)=π3−√32, ∵A 1C 1∥B 1B 2,∴∠A 2A 1C 1=∠A 1OB 1=30°,∴A 2C 1=12,A 2B 2=A 2C 1+B 2C 1=32,∠A 2B 2O =60°, 同理,S 2=2(S扇形B 2A 2C 2−S △B 2A 2C 2)=2×[60⋅π×(32)2360−√34×(32)2]=(π3−√32)×(32)2, S 3=(π3−√32)×(32)4, …∴S n =(π3−√32)×(32)2(n ﹣1)=(π3−√32)×(32)2n ﹣2. 故答案为:(π3−√32)×(32)2n ﹣2.九.圆锥的计算(共2小题)36.【解答】解:∵圆锥的底面半径为3,高为4, ∴母线长为5,∴圆锥的侧面积为:πrl =π×3×5=15π,故答案为:15π37.【解答】解:设该圆锥的底面半径为r , 根据题意得2πr =216⋅π⋅5180,解得r =3. 故答案为3.一十.圆的综合题(共2小题)38.【解答】(1)证明:∵EF ⊥AB ,∴∠AFE =90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC.(2)①证明:连接OA,AC.∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线.②解:过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴EC BE =AF BF =25, ∵CE =4,∴BE =10,∵BC ⊥AD ,∴AĈ=CD ̂, ∴∠CAE =∠ABC ,∵∠AEC =∠AEB =90°,∴△AEB ∽△CEA ,∴AE CE =EB EA ,∴AE 2=4×10,∵AE >0,∴AE =2√10,∴AH =AE =2√10,∵∠G =∠G ,∠CHG =∠AEG =90°, ∴△GHC ∽△GEA ,∴GH GE =HC EA =GC GA , ∴y x+4=2√10=2√10+y , 解得x =283.39.【解答】解:(1)证明:①如图1,连接OE , ∵⊙O 与BC 相切于点E ,∴∠OEB =90°,∵∠ACB =90°,∴∠ACB =∠OEB ,∴AC∥OE,∴∠GOE=∠AGO,̂=EĜ,∵AG∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O的半径为r,∵OB=OD+BD,∴6+r=2r,∴r=6,∴AG=OA=6,AB=2r+BD=18,∴AC=12AB=9,∴CG=AC﹣AG=3,由(1)知,∠EOB=60°,∵OG=OE,∴△OGE是等边三角形,∴GE=OE=6,根据勾股定理得,CE=√GE2−CG2=√62−32=3√3,∴S阴影=S梯形GCEO﹣S扇形OGE=12(6+3)×3√3−60π⋅62360=27√32−6π.。
2020中考数学专题复习---统计与概率的综合

[分析](1)用D组的人数除以它所占的百分比得到 调查的总人数,然后计算C组的人数所占的百分比得到 m的值; (2)先计算出B组人数,然后补全条形统计图; (3)画树状图展示所有12种等可能的结果数,找出所 选的两人恰好是一名男生和一名女生的结果数,然后 利用概率公式求解.
[解答]解:(1)50 32[10÷20%=50(名),所以本次
解:(1)n=5÷10%=50. (2)样本中喜爱看电视的人数为50-15-20-5=10(人),1200× 即估计该校喜爱看电视的学生人数为240人. (3)画树状图为:
共有12种等可能的结果数,其中恰好抽到2名男生的结果数 所以恰好抽到2名男生的概率为162=12.
2019年 3.某市气象局统计了5月1日至8日中午12时的气温(单位: ℃),整理后分别绘制成如图所示的两幅统计图.根据图 中给出的信息,解答下列问题:
共有12种等可能的结果数,其中所选出的两人中既有七 同学的结果数为4,所以所选出的两人中既有七年级又有 率为142=13.
取法,因此恰好抽到2天中午12时的气温均低于20℃的概率
二、考情分析与预测 近三年的考题相当稳定,要求学生能正确读懂统
计图表,弄清图表中的数量关系,并能用样本特征去 估计总体特征或根据题干要求计算随机事件的概率.试 题的起点低(有的问题甚至小学生都能回答),与生活紧 密联系(以学生熟知的问题为背景),学生的得分率高.
解:(1)捐D类书的人数为30-4-6-9-3=8(人),补全条形统计 (2)这30名职工捐书本数的众数为6本、中位数为6本;
平均数为xത=310×(4×4+5×6+6×9+7×8+8×3)=6(本). (3)750×6=4500(本), 即估计该单位750名职工共捐书4500本.
陕西省2019年中考数学一轮复习 8.2 概率专项练习题(无答案)

概率1.(3分)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字, 则小军能一次打开该旅行箱的概率是()A.B.C.D.2.(3分)李湘同学想给数学老师送张生日贺卡,但她只知道老师的生日在6月,那么她一次猜中老师生日的概率是()A.B.C.D.3.(8分)甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.4.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C).这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙棕子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.5.(7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动.奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动.请你用列表或画树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.6.(8分)甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字-2 、-1 、1 、2 、3 ,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点.若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?7.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1 、2 、3 、4 、5 、6个小圆点的小正方体)8.(8分)七年级五班学生在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学们分为三人一组,每组用一个球台,甲、乙、丙三位同学用“手心、手背”游戏(游戏时, “手心向上”简称手心;“手背向上”简称手背)来决定哪两个人先打球.游戏规则是:每人每次同时随机伸出一只手,出手心或手背,若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现”两同一异” 为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.9.(8分)陕西汉中有百万亩油菜花,每年春天,盛开的油菜花与青山绿水相互掩映,构成一道亮丽的风景.摄影爱好者小飞和小青计划在油菜花节进行拍摄,但是由于油菜花海分布范围广泛,所以小飞和小青决定采用抽签的方式在“1—南郑,2—西乡, 3—汉台,4—勉县,5—洋县”这五个地方中选择两个地方进行拍摄.抽签规则如下:把五个地点分别写在五张背面相同卡片的正面上,然后背面朝上放在水平桌面上搅匀后,小飞先随机抽取一张卡片,不放回,小青再抽取一张.(1)求小飞抽取到的地点是南郑的概率;(2)请用画树状图或列表的方法,求小飞和小青选择在勉县和汉台这两个地方进行拍摄的概率.10.(3分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼11.(3分)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次12.(3分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.13.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.14.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.15.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.16.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5 个黄球,4个蓝球,若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.17.(3分)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.118.(3分)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为()A.B.C.D.19.(3分)某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.20.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.21.(3分)毛泽东在《沁园春•雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是______.22.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_________.23.(3分)如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积约是_______.24.(3分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球.从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是_____________.25.(3分)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下方在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是___________.26.(7分)2017宜宾)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为________;(2)用画树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.27.(7分)珊和高茽两人来兰州旅游,想品尝以下享有美誉“中华第一面”的兰州牛肉面.兰州牛肉面光滑爽口、味道鲜美,其搭配佐料也是独俱特色:一红二绿三白四黄,辣椒油红,汤上漂着鲜绿的香菜和蒜苗,几片白萝卜掺在红绿中又尤其显纯白,面条光亮透黄.大众喜欢的面型有:毛细、细的、二细、三细、韭叶、薄宽、大宽,两人同时选择面型,乔珊准备在“毛细、二细、薄宽”中选择:高茽准备在“细的、三细、韭叶、大宽”中选择,(毛细、二细、薄宽分别记为A、B、C;细的、三细、韭叶、大宽分别记为D、E、F、G).(1)用画树状图或列表的方法表示乔珊和高茽同时选择面型的所有可能结果;(2)求乔珊和高茽同时选择的面型都是“细”(毛细、细的、二细、三细)的概率.28.(7分)在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同). 用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球.则小强两次都摸到白球的概率是多少?29.(7分)在一只不透明的布袋中放入四个大小、材质完全相同的小球,且小球上分别标有数字1、2、3、4.甲、乙两位同学玩摸球游戏,规则如下:甲同学先在袋中随机摸出一个小球(不放回),将小球上标的数字记为一个两位数的十位数字,再由乙同学在袋中随机摸出一个小球,将小球上标的数字记为这个两位数的个位数字.甲、乙两位同学摸出的数字组成一个两位数,若十位数字比个位数字大,则称这个数为“伞数”.现规定组成的两位数是“伞数”,则甲同学胜;否则,乙同学胜.(1)请你用列表法或画树状图法表示出在一次游戏中出现的所有等可能情况;(2)求一次游戏结束后甲同学取胜的概率.30.(7分)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)请用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.31.(7分)中考报名前各校初三学生都要进行体检,某次中考体检设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体检.(1)请用列表或画树状图的方法求甲、乙、丙三名学生在同一处中考体检的概率;(2)求甲、乙、丙三名学生中至少有两人在B处体检的概率.32.(7分)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.33.(3分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n,如果m,n满足|m -n|≤1,那么就称甲、乙两人“心领神会”. 则两人“心领神会”的概率是()A.B.C.D.34.(3分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复模球实验后发现,摸到黄球的频率稳定在30% ,那么估计盒子中小球的个数n为()A.20B.24C.28D.3035.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.36.(3分)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是________.37.(3分)如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关x的方程x2+nx+ m=0有两个相等实数根的概率是_______.38.(7分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示)39.(7分)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏,游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出人口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的,规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,即可获得一只价值5元的小兔玩具,否则每玩一次付费3元.(1)请用表格或树状图求小美玩一次“守株待兔”游戏能得到小兔玩具的概率;(2)假设有1000人次玩此游戏,估计游戏设计者可赚多少元?40.(7分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10 元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.。
2020年中考数学考点提分专题十五 概率初步(解析版)

2020年中考数学考点提分专题十五概率初步(解析版)必考点1 确定事件和随机事件。
(1)“必然事件”是指事先可以肯定一定会发生的事件。
P(A)=1(2)“不可能事件”是指事先可以肯定一定不会发生的事件。
P(A)=0(3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。
0<P(A)<1【典例1】(2008·吉林中考真题)下列成语所描述的事件是必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖【举一反三】1.(2019·湖北中考真题)下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2011·四川中考真题)下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C.某彩票中奖率为36%,说明买100张彩票,有36张中奖。
D.打开电视,中央一套正在播放新闻联播。
3.(2019·湖北中考真题)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式必考点2 用频率估计概率(1)事件的频数、频率。
设总共做n次重复实验,而事件A发生了m次,则称事件A发生的次数m为频数。
称比值m/n为A发生的频率。
(3)概率:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
【典例2】(2019·江苏中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表: 抛掷次数 100 200 300 400 500 正面朝上的频数 5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( ) A .20B .300C .500D .800【举一反三】1.(2019·湖北初三期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过92.(2019·广东初三期末)一个不透明的袋子装有除颜色外其余均相同的2个白球和n 个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n 的值为( )A .2B .4C .8D .103.(2019·辽宁初三期末)一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为( ) A .50B .30C .12D .8必考点3 树状图与列表法求解概率列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.【典例3】(2019·辽宁中考真题)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A .23B .12C .13D .14【举一反三】(2019·广西中考真题)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A .1325B .1225C .425D .1214.(2019·广西中考真题)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( ) A .13B .23C .19D .2915.(2019·湖北中考真题)从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( ) A .14B .13C .12D .231.(2019·湖北初三期末)“射击运动员射击一次,命中靶心”这个事件是( ) A .确定事件 B .必然事件 C .不可能事件 D .不确定事件 2.(2019·山东中考真题)下列事件中,是必然事件的是( )A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯3.(2019·四川中考真题)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x+<的概率是()A.15B.14C.13D.124.(2013·山东中考真题)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为A.16B.13C.12D.235.(2019·海南中考模拟)从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是()A.23B.12C.13D.146.(2019·山东中考真题)从1,2,3,4中任取两个不同的数,分别记为a和b,则2219a b+>的概率是()A.12B.512C.712D.137.(2019·山东中考真题)一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.15B.25C.35D.458.(2019·江苏中考真题)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为________.9.(2019·江苏中考模拟)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.10.(2019·天津中考真题)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.11.(2019·辽宁中考真题)一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是__.12.(2019·辽宁中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( ) A .12B .10C .8D .613.(2019·湖南中考真题)在一个不透明布袋里装有3个白球、2个红球和a 个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为12,则a 等于_____. 14.(2019·江苏中考真题)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到红球的概率是________;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果)15.(2019·甘肃中考真题)2019年5月,以“寻根国学,传承文明”为主题的兰州市第三届“国学少年强一国学知识挑战赛”总决赛拉开帷幕,小明晋级了总决赛.比赛过程分两个环节,参赛选手须在每个环节中各选择一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用1234, , , A A A A 表示); 第二环节:成语听写、诗词对句、经典通读(分别用123,,B B B 表示) (1)请用树状图或列表的方法表示小明参加总决赛抽取题目的所有可能结果(2)求小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2013•郴州)掷一枚质地均匀的骰子,骰子的六个面上分别标有数字1~6,掷得朝上的一面的数字为奇数的概率是.考点:概率公式.分析:让向上一面的数字是奇数的情况数除以总情况数6即为所求的概率.解答:解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,奇数为1,3,5,则向上一面的数字是奇数的概率为=.故答案为:.点评:此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.(2013•衡阳)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件考点:随机事件.分析:根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.解答:解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选A.点评:用到的知识点为:必然事件指在一定条件下一定发生的事件.(2013,娄底)课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是()A.12B.13C.14D.16(2013•湘西州)小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.考点:几何概率.分析:先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可.解答:解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为.点评:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比. (2013,永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是(2013,成都)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下: 2019-2020年中考数学试题分类汇编—概率 等级 成绩(用s 表示)频数 频率A 90≤s ≤100 x0.08B 80≤s <9035 yC s <8011 0.22 合 计501(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.(1)4, 0.7 (2)树状图(或列表)略,P=61122= (2013,成都)若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______. 117(2013•达州)某中学举行“中国梦·我的梦”演讲比赛。
志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。
如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。
这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明。
解析:公平.………………………(1分)用列表法或树状图列出该事件的等可能情况如下:由此可知该事件共有12种等可能结果.………………………(4分) ∵四张卡片中,A 、B 中的算式错误,C 、D 中的算式正确,∴都正确的有CD 、DC 两种,都错误的有AB 、BA 两种.………………………(5分)∴班长去的概率P (班长去)=122=61, 学习委员去的概率P (学习委员去)=122=61,P (班长去)=P (学习委员去)∴这个游戏公平.………………………(7分)(2013•德州)一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于254n ,则算过关;否则不算过关.则能过第二关的概率是 A .1318 B .518 C .14 D .19(2013•广安)6月5日是“世界环境日”,广安市某校举行了“洁美家园”的演讲比赛,赛后整理参赛同学的成绩,将学生的成绩分成A 、B 、C 、D 四个等级,并制成了如下的条形统计图和扇形图(如图1、图2). (1)补全条形统计图.(2)学校决定从本次比赛中获得A 和B 的学生中各选出一名去参加市中学生环保演讲比赛.已知A 等中男生有2名,B 等中女生有3 名,请你用“列表法”或“树形图法”的方法求出所选两位同学恰好是一名男生和一名女生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题分析:(1)根据等级为A的人数除以所占的百分比求出总人数,进而求出等级B的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.解答:解:(1)根据题意得:3÷15%=20(人),故等级B的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(2)列表如下:男男女女女男(男,男)(男,男)(女,男)(女,男)(女,男)男(男,男)(男,男)(女,男)(女,男)(女,男)女(男,女)(男,女)(女,女)(女,女)(女,女)所有等可能的结果有15种,其中恰好是一名男生和一名女生的情况有8种,则P恰好是一名男生和一名女生=.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.(2013•乐山)在一个布口袋内装有白、红、黑三种颜色的小球,它们除颜色之外没有任何其他区别,其中有白球5只、红球3只、黑球1只。
袋中的球已经搅匀,闭上眼睛随机地从袋中取出1只球,取出红球的概率是(2013•泸州)在一只不透明的口袋中放入红球6个,黑球2个,黄球n个。
这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n= .(2013•绵阳)“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.16B.15C.25D.35(2013•内江)同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=﹣x2+3x上的概率为()A.B.C.D.考点:列表法与树状图法;二次函数图象上点的坐标特征.专题:阅读型.分析:画出树状图,再求出在抛物线上的点的坐标的个数,然后根据概率公式列式计算即可得解.解答:解:根据题意,画出树状图如下:一共有36种情况,当x=1时,y=﹣x2+3x=﹣12+3×1=2,当x=2时,y=﹣x2+3x=﹣22+3×2=2,当x=3时,y=﹣x2+3x=﹣32+3×3=0,当x=4时,y=﹣x2+3x=﹣42+3×4=﹣4,当x=5时,y=﹣x2+3x=﹣52+3×5=﹣10,当x=6时,y=﹣x2+3x=﹣62+3×6=﹣18,所以,点在抛物线上的情况有2种,P(点在抛物线上)==.故选A.点评:本题考查了列表法与树状图法,二次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()A.B.C.D.1考点:列表法与树状图法;三角形三边关系.分析:先通过列表展示所有4种等可能的结果数,利用三角形三边的关系得到其中三个数能构成三角形的有2,2,3;3,2,3,2;4,2,3共三种可能,然后根据概率的定义计算即可.解答:解:列表如下:共有4种等可能的结果数,其中三个数能构成三角形的有2,2,3;3,2,3,2;4,2,3.所以这张卡片与口袋外的两张卡片上的数能构成三角形的概率=.故选C.点评:本题考查了列表法与树状图法:先通过列表法或树状图法展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的定义计算这个事件的概率=.也考查了三角形三边的关系.(2013•雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是.考点:概率公式;无理数.分析:数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可.解答:解∵数据﹣1,0,,π,3中无理数只有π,∴取到无理数的概率为:,故答案为:点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.(2013•雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.解答:解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.A.B.C.D.考点:列表法与树状图法;轴对称图形.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是轴对称图形的情况,再利用概率公式求解即可求得答案.解答:解:分别用A、B、C、D表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有6种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:=.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)根据志愿者有6名的班级占20%,可求得班级总数,再求得志愿者是2名的班数,进而可求出每个班级平均的志愿者人数;(2)由(1)得只有2名志愿者的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名志愿者来自同一个班级的概率.解答:解:(1)∵有6名志愿者的班级有4个,∴班级总数为:4÷20%=20(个),有两名志愿者的班级有:20﹣4﹣5﹣4﹣3﹣2=2(个),如图所示:该年级平均每班有;(4×6+5×5+×4+3×3+2×2+2×1)=4(名),(2)由(1)得只有2名文明行为劝导志愿者的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名文明行为劝导志愿者来自同一个班级的概率为:=.点评:此题主要考查了条形统计图与扇形统计图的综合应用以及树状图法求概率,根据图象得出正确信息是解题关键.(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.(2013•大连)一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同。