2电磁场的基本规律
2 电磁场的基本规律

第2章
电磁场的基本规律
1
南京航空航天大学
信息科学与技术学院
主讲人:刘少斌
电磁场与电磁波
第2章
电磁场的基本规律
2
本章讨论内容
2.1 电荷守恒定律
2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流
2.6 麦克斯韦方程组
电磁场与电磁波
第2章
电磁场的基本规律
16
• 电场力服从叠加定理
真空中的N个点电荷 q1、q2、 、qN (分别位于 r1、r2、 、rN) )的作用力为 对点电荷 q (位于 r N N qqi Ri Fq Fqi q ( Ri r ri ) 3 i 1 i 1 4 π 0 Ri
2.7 电磁场的边界条件
南京航空航天大学
信息科学与技术学院
主讲人:刘少斌
电磁场与电磁波
第2章
电磁场的基本规律
3
2.1 电荷守恒定律
电磁场物理模型中的基本物理量可分为源量和场量两大类。
源量为电荷 q(r , t ) 和电流 I (r , t ) ,分别用来描述产生电磁效
应的两类场源。电荷是产生电场的源,电流是产生磁场的源。
南京航空航天大学
信息科学与技术学院
主讲人:刘少斌
电磁场与电磁波
第2章
电磁场的基本规律
15
2.2.1 库仑定律 电场强度 1. 库仑(Coulomb)定律(1785年) 真空中静止点电荷 q1 对 q2 的作用力:
z
q1 r1
R12 q2
F12 eR
说明:
静电场的散度与旋度 恒定磁场及其散度与旋度

S
S
1 E ( r ) dS
0
(r ) E (r ) 0
F ( x, y, z ) dl
C
无
0
0
V
( r )dV
S
n
S
F
M
0
高斯定理表明:
C
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
第2章 电磁场的基本规律
第一课
2013/3/25
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
第2章 电磁场的基本规律
2.2.2 静电场的散度与旋度 1. 静电场散度与高斯定理 回顾1.1 矢量场通量的概念
F ( x, y, z )
1.2 通量的物理意义
en
dS
面积元矢量
dS en dS ——
en ——
d F en dS ——
R (r ) 3 dV R
(r ) R
R3
1 E (r )
0
V
(r ) R dV
V
V
1 dV 4 π 0
V
1 1 2.2.10) p43 (r ) dV 4 π 0 V R 1 1 E (r ) (r ) 2 dV 4π 0 V R 2 1 4 π R R 1 E (r ) (r ) R dV 2.2.11) p43
( R r r )
电磁场与电磁波
第2章 电磁场的基本规律
电磁场与电磁波
电磁场的安培定律

电磁场的安培定律电磁场的安培定律是电磁学中的基本定律之一,它描述了电流在形成磁场时所遵循的规律。
安培定律是由法国物理学家安培在19世纪初实验观察到的,它通过定量描述了电流与磁场之间的相互作用关系。
本文将详细介绍电磁场的安培定律及其应用。
一、安培定律的内容与表达形式安培定律可以简单地表述为:通过一段闭合电流回路的任一截面,磁场的环量等于通过该截面的电流的代数和的若干倍。
用公式表示为:∮B·dl = μ_0I其中,∮B·dl表示沿闭合路径的磁场环量;μ_0表示真空中的磁导率,其值约为4π×10^(-7) T·m/A;I表示通过闭合路径的电流。
根据安培定律,我们可以得出以下结论:1. 当电流为零时,磁场环量也为零。
2. 电流方向改变,磁场环量方向也跟着改变。
3. 电流越大,磁场环量越大。
4. 磁场环量与电流方向、电流大小成正比。
二、安培定律的应用安培定律在实际的电磁学问题中有着广泛的应用,下面我们将介绍一些常见的应用情景。
1. 求磁场强度通过安培定律,我们可以利用已知电流通过闭合路径,求解该路径上的磁场强度。
一种常见的应用是计算直导线所产生的磁场强度。
在计算时,可以选择以直导线为轴线绕圈,通过闭合路径的电流即为导线电流,从而求解磁场强度分布。
2. 求导线周围的磁场强度安培定律还可以用来计算导线周围的磁场强度分布。
通过取闭合路径为一个圆,以导线为轴线,利用安培定律计算电流通过闭合路径的磁场环量,再根据环量与磁场强度的关系求解导线周围的磁场强度。
3. 求解相互作用力利用安培定律,我们可以计算由两根平行导线所产生的相互作用力。
在计算时,可以取闭合路径为两根导线连接起来的方形回路,通过闭合路径的电流即为两根导线的电流,通过计算闭合路径上的磁场环量,求解两根导线之间的相互作用力。
4. 求解电磁铁的特性电磁铁是一种应用广泛的电磁设备,利用安培定律可以计算电磁铁在不同电流下的磁场强度。
电磁场与电磁波期末复习知识点归纳

标量场:梯度描述
静态场(稳态场):不随t变
场
场 矢量场:散度和旋度描述 时变场:随t变化
单位矢量:模为1的矢量
与矢量 A同方向的单位矢量:
eA
Aˆ
A A
A eAA
坐标单位矢量:与坐标轴正向同方向的单位矢量
如:ex
ey
ez或者xˆ
yˆ
zˆ
A Axex Ayey Azez
◇ 唯一性定理的意义:是间接求解边值问题的理论依据。
● 镜像法求解电位问题的理论依据是“唯一性定理”。
点电荷对无限大接地导体平面的镜像
z
r1
P
q h
r r2 介质
x
h
介质
q
点电荷对接地导体球面的镜像。
P
r
a
r2
o θ q d’
d
r1 q
q a q, d
d a2 d
第4章 时变电磁场
nˆ B1 B2 0
nˆ H1 H2 0
第三章 静态电磁场及其边值问题的解
静电场中: E 0
E(r) (r )
静磁场:B A
已知电位表达式可以用E(r) (r )求场强E
已知电场强度也可以求电位(P)
等于边界电流面密度。
1、E1t E2t
nˆ (E1 E2 ) 0
2、B1n B2n
3、D1n D2n s
nˆ B1 B2 0 nˆ (D1 D2 ) s
4、H1t H2t Js
nˆ H1 H2 Js
电磁场基本规律

t
V
dV
0
即整个空间的总电荷是守恒的。
2、积分形式反映的是电荷变化与电流流动的宏观关系,而微分形式则描述空间各点电荷变化与电流流动 的局部关系。
3、恒定(稳恒)电流的连续性方程 所谓恒定(或称为稳恒),是指所有物理量不随时间变化。 不随时间变化电流称为恒定电流(或稳恒电流)。 恒定电流空间中,电荷分布也恒定不变,即对时间的偏导数为零,则电流连续性方程为
(r
/
r
)
0
/
(r r )
/
(r r )
函数性质:
(r/Biblioteka r)dV1
V
0
(r r/点在体积V内) (r r/点不在体积V内)
函数取样特性。
V f(r)(rr/)dV 0 f(r(/r)(rr/点 在 r/点 V外 在 )V内 )
/
/
(rr)(rr) 函数对场点和源点的对称性
(2)点电荷的表示
• 库仑力是平方反比径向力,是保守力。 • 库仑定律只能直接用于静止点电荷间。但若施力电荷静止,受力电荷运动,它们间的作用仍满足库仑定律。
2.2.2、 电场强度
E (r )
电场强度是描述电场的基本物理量。 1)定义:电场强度 = 空间中一点处的单位正电荷受的力。
E(r)F/q0 q 点电荷 的场强
J
JlimI ndI n S0S dS
载流导体内每一点都有一个电流密度,构成一个矢量场,称这一矢量场为电流场。电流场的矢量线叫 做电流线。
S 流过任意面积 的电流强度I
I S J d S S J d S c o s S J d S
2)( 面)电流密度
JS
当电荷只在一个薄层内流动时,形成的电流为面电流。
练习题(第二章 电磁场的基本规律)

c
d
x
B • 2.27 解: (1)由麦克斯韦方程组 E t B H 0 B ( E )dt B H (2) H H D E D 0 E D t D H k 1/ 3 t (3)将内导体视为理想导体 ,利用边界条件 1 8 J S en H ez 265.3 cos(10 t z ) a 3 1 D dS e 2 dz (4) J d id J d dS J d 2dz 0 t
E
l a
Hale Waihona Puke 40 2a 2 2 (ez ex cos 'ey sin ' )d '
2 2
l ez 'ex sin 'ey cos ' 2 8 2 0 a 2 l ( ex 2 ez ) 8 2 0 a
l ,求垂直于圆平面 2.10 一个半圆环上均匀分布线电荷 的轴线z=a处的电场强度,设半圆环的半径也为a. 解: 柱坐标系: 1 l ad ' dE z dE eR 2 p e 4 0 2a r a 1 1 eR eZ ( e ) y 2 2 er 1 (ex cos 'e y sin ' ez ) dl 2 x
• 2.31
y 媒质1 理想导体 x
1
1
1
r1 e r1 正电荷在空腔内产生的电场为 E1 3 0
单位向量 e r 1 e r 2 分别以大、小球体的球心为球面坐标 的原点。考虑到
负电荷在空腔内产生的电场为 E 2 r 2 e r2 3 0
《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场三大实验定律

电磁场三大实验定律
电磁场三大实验定律是电场高斯定律、磁场安培定律和法拉第电磁感应定律。
1. 电场高斯定律
电场高斯定律是描述电场分布的基本定律之一。
它指出,电场的通量与电场源的电荷量成正比,与电荷的分布方式有关,与电荷的位置无关。
具体地说,电场的通量等于电场源内的电荷量除以真空介电常数。
这个定律可以用来计算电场的分布,以及电荷分布对电场的影响。
2. 磁场安培定律
磁场安培定律是描述磁场分布的基本定律之一。
它指出,磁场的强度与电流成正比,与电流的分布方式有关,与电流的位置无关。
具体地说,磁场的强度等于电流在磁场中的环路积分。
这个定律可以用来计算磁场的分布,以及电流分布对磁场的影响。
3. 法拉第电磁感应定律
法拉第电磁感应定律是描述电磁感应现象的基本定律之一。
它指出,磁场的变化会引起电场的变化,从而产生电动势。
具体地说,电动势等于磁通量的变化率。
这个定律可以用来计算电磁感应现象的大小和方向,以及磁场变化对电场的影响。
以上三大实验定律是电磁场理论的基础,它们描述了电场和磁场的基本特性和相互作用规律,对于电磁场的研究和应用具有重要的意义。