第七章地下连续墙结构设计

合集下载

地下连续墙结构设计ppt课件

地下连续墙结构设计ppt课件

五 槽幅设计
(四)槽段划分 考虑的因素
① 成槽施工顺序 ② 连续墙接头形式 ③ 主体结构布置及设缝要求
六 导墙设计
导墙截面形式 C20混凝土,厚度200~300mm; 导墙深度深入原状土不小于300mm; 顶面高出地面100~200mm; 宽度大于连续墙设计宽度的
30~50mm。
一 地下连续墙受力特点
施工阶段和使用阶段几种典型的工作状态: 槽段土方开挖阶段 槽段侧壁的稳定性 地下连续墙浇筑形成 开挖前的受力状态 基坑第一层开挖 悬臂受力状态、地面侧向位移 基坑土方开挖阶段 墙的结构强度、基坑稳定及变形量 基坑土方工程结束 基坑底部隆起、基坑整体失稳 工程竣工 水土压力和上部地面建筑的垂直载荷共同作用
下的强度和变形 19
第二节 结构设计
二 结构体系的破坏形式
稳定性破坏 整体失稳 基坑底隆起 管涌及流沙
强度破坏 支撑强度不足或压屈 墙体强度不足
变形过大
20
三 地下连续墙设计计算的主要内容
(1)确定在施工过程和使用阶段各工况的荷载,即作用于连 续墙的土压力、水压力以及上部传来的垂直荷载。
46
3.国内常用的计算方法
47
(二)横撑轴向力、墙体弯矩不变化的计算方法
3.国内常用的计算方法
Y 0

k 1 1
Ni
Байду номын сангаас

Nk
xm

1 2
xm2

1 2
h02k
h0k xm

1 2
(h0k
xm )xm

0

N k
h0k xm

1 2

《地下连续墙结构》课件

《地下连续墙结构》课件

1 前期准备
地下连续墙施工前需要做好勘察、设计、材 料准备、安全规划等。
2 围护结构的建立
地下连续墙的围护结构有深挖土墙、草坪角 阵墙、护岸结构等。
3 桩基础处理
地下连续墙的施工需要进行桩基础处理,防 止土方塌方和墙体倾斜。
4 连续墙开挖与加固
开挖后,需要根据设计方案选择不同的加固 措施,如加固钢筋架、施工中涂抹混凝土等。
地下连续墙的设计和计算
1
设计原则
地下连续墙设计应遵循安全可靠、经济
力学计算方法
2
合理、施工方便的原则。
力学计算方法包括有限元法、解析法、
数值模拟法等。
3
抗震设计
地下连续墙需要进行抗震设计,提高抗 震性能。
地下连续墙的质量验收和监测
质量验收标准
质量验收应遵循相关标准和规范,如工程质量验收 规范。
监测方法
常用监测方法有钢筋测量、应力测量、收敛测量等。
地下连续墙的应用
地铁工程
地下连续墙广泛应用于地铁路基、车站、夹层等。
地下商业工程
地下连续墙是地下商业工程的一个主要构造,如 购物中心、地下停车场等。
水利工程
地下连续墙在水利工程中主要应用于水库、大坝、 隧洞等。
其他工程
地下连续墙还广泛应用于其他类型的工程,如高 速公路、机场等。
地下连续墙结构
探究地下连续墙的概念、构造、施工、设计和计算、以及应用、发展趋势和 对工程建设的启示。
地下连续墙的概念
定义
地下连续墙是深基坑围护结 构的一种,它是用在特定条 件下作为深基础工程的一种 主要的支护结构。
历史
最早地下连续墙用于公路建 设,如今则广泛应用于地铁、 商业、水利等工程领域。

地下连续墙结构设计(荷载、槽幅、导墙、厚度深度初选)

地下连续墙结构设计(荷载、槽幅、导墙、厚度深度初选)

地下连续墙结构设计(荷载、槽幅、导墙、厚度
深度初选)
本文讲解地下连续墙结构设计包括:荷载的确定,地下连续墙槽幅设计,地下连续墙导墙
的设计,地下连续墙厚度深度初选。

一、荷载确定
(一)施工阶段
基坑开挖水土压力;施工荷载,若采用逆作法考虑上部结构自重。

(二)使用阶段
水土压力;主体结构传递的恒载和活载。

水土压力的确定是荷载确定的关键!!!
水土压力的计算规定
1.粘性土按水土合算,非粘性土按水土分算,按水土分算时,应考虑地下水是否有渗流。

2. 土压力分布模式:泰沙基试验
3.某些规范规定土压力分布应按入土深度和墙体侧向位移选用。

如《港口工程地下连续墙结构设计与施工规程》(JTJ 303- 2003),《上海市基坑工程设计规程》等。

二、槽幅设计
(一)槽幅:一次成槽的槽壁长度
槽壁长度;槽段划分
(二)槽壁长度确定规定
槽壁长度应与成槽机械尺寸成模数关系,最小不小于机械的尺寸,最大尺寸由槽壁稳定性确定。

目前常用为3~6m,一般不超过8m。

(三)槽幅稳定性验算
梅耶霍夫经验公式法
非粘性土的经验公式
(四)槽段划分
考虑的因素
成槽施工顺序;连续墙接头形式;主体结构布置及设缝要求
三、导墙设计
四、连续墙厚度深度初选
1、连续墙厚度依据不同阶段的受力、变形和裂缝控制要求确定,常用规格600、800、1000、1200mm;
2、连续墙的入土深度(基坑地面以下的深度)与基坑深度之比,称为入土径比,据经验依据地质条件取0.7~1.0;
3、可用古典稳定判别方法——板桩稳定平衡状态法得出初值。

古典稳定判别方法。

地下连续墙的设计

地下连续墙的设计

地下连续墙的设计作为基坑围护结构,主要基于强度、变形和稳定性三个大的方面对地下连续墙进行设计和计算,强度主要指墙体的水平和竖向截面承载力、竖向地基承载力;变形主要指墙体的水平变形和作为竖向承重结构的竖向变形;稳定性主要指作为基坑围护结构的整体稳定性、抗倾覆稳定性、坑底抗隆起稳定性、抗渗流稳定性等,稳定性计算方法。

以下针对地下连续墙设计的主要方面进行详述。

一、墙体厚度和槽段宽度地下连续墙厚度一般为0.5~1.2m,而随着挖槽设备大型化和施工工艺的改进,地下连续墙厚度可达2.0m 以上。

日本东京湾新丰洲地下变电站圆筒形地下连续墙的厚度达到了2.40m。

上海世博 500kV 地下变电站基坑开挖深度 34m,围护结构采用直径 130m 圆筒形地下连续墙,地下连续墙厚度1.2m,墙深57.5m。

在具体工程中地下连续墙的厚度应根据成槽机的规格、墙体的抗渗要求、墙体的受力和变形计算等综合确定。

地下连续的常用墙厚为 0.6、0.8、1.0 和 1.2m。

确定地下连续墙单元槽段的平面形状和成槽宽度时需考虑众多因素,如墙段的结构受力特性、槽壁稳定性、周边环境的保护要求和施工条件等,需结合各方面的因素综合确定。

一般来说,壁板式一字形槽段宽度不宜大于 6m,T 形、折线形槽段等槽段各肢宽度总和不宜大于 6m。

二、地下连续墙的入土深度一般工程中地下连续墙入土深度在 10~50m 范围内,最大深度可达150m。

在基坑工程中,地下连续墙既作为承受侧向水土压力的受力结构,同时又兼有隔水的作用,因此地下连续墙的入土深度需考虑挡土和隔水两方面的要求。

作为挡土结构,地下连续墙入土深度需满足各项稳定性和强度要求,作为隔水帷幕,地下连续墙入土深度需根据地下水控制要求确定。

1. 根据稳定性确定入土深度作为挡土受力的围护体,地下连续墙底部需插入基底以下足够深度并进入较好的土层,以满足嵌固深度和基坑各项稳定性要求。

在软土地层中,地下连续墙在基底以下的嵌固深度一般接近或大于开挖深度方能满足稳定性要求。

地下连续墙方案

地下连续墙方案

地下连续墙方案地下连续墙是在土壤中设置的一种地下结构工程,主要用于支撑和保护土壤,防止地基沉降和土壤侵蚀等问题。

本文将介绍地下连续墙的设计原理、施工方法以及应用场景等内容。

一、地下连续墙的设计原理地下连续墙的设计原理是通过墙体的抗倾覆和抗滑移能力,保持土体的稳定状态。

地下连续墙采用连续的墙体结构,能够有效地分散土体的压力,并在地下水位较高的情况下,起到防止土体液化和冲刷的作用。

地下连续墙的设计原理还包括选择合适的墙体材料和结构形式。

常见的墙体材料包括钢筋混凝土、砂浆、钢板等,结构形式主要有嵌入式墙、悬臂式墙和分段施工墙等。

二、地下连续墙的施工方法地下连续墙的施工方法主要包括基坑开挖、地下连续墙结构的搭设以及墙体的加固等。

在施工过程中,需要考虑基坑土方开挖后的支护措施,以及墙体的加固方法。

首先,在施工前需要进行详细的工程地质勘察,确保对地层情况有充分的了解。

然后,在基坑开挖时,需要采用合适的支护结构,以防止土方塌方和地表沉降。

接下来,地下连续墙的结构搭设是关键的施工环节。

通常采用嵌入式墙,即将墙体一部分埋入土壤中,以增加墙体的稳定性。

在墙体施工中,需要确保墙体的垂直度和水平度,在安装钢筋和浇筑混凝土时控制好施工质量。

最后,为了增强墙体的稳定性,可以采用加固措施。

常见的加固方法包括钢筋混凝土挡土墙、土钉墙、土石墙等。

这些措施能够增加墙体的抗滑移和抗倾覆能力,保证地下连续墙的稳定性和安全性。

三、地下连续墙的应用场景地下连续墙广泛应用于房屋建设、地铁隧道、桥梁基础等工程领域。

具体的应用场景包括:1. 城市基建项目:地下连续墙在城市基础设施建设中发挥重要作用,用于支撑地铁隧道、地下通道和公路桥梁等工程,保证基础设施的稳定和安全运行。

2. 河岸防护工程:地下连续墙可用于河堤的防护和加固,以防止河水侵蚀和冲刷土壤,保护河岸的安全。

3. 山体工程:地下连续墙是山体工程中常用的一种支护结构,可以有效地防止山体滑坡和崩塌,保护周围环境的安全。

地下连续墙作为主体结构的设计_王卫东

地下连续墙作为主体结构的设计_王卫东
(2) 刚性接头 刚性接头在工程中应用的主要有 穿孔钢板接头和钢筋搭接接头 。
以穿孔钢板作为相邻槽段连接构件的接头形式在 工程中已大量应用 ,穿孔钢板接头可承受地下连续墙 垂直接缝上的剪力 ,使相邻地下连续墙槽段共同承担 上部结构的垂直荷载 ,协调槽段的不均匀沉降 ;同时穿 孔钢板接头亦具备较好的止水性能 。穿孔钢板接头的 设计 计 算 在《地 基 基 础 设 计 规 范》( DBJ —08 —11 — 89) [4]第 915110 条中已有明确规定 。穿孔钢板接头平 面形式见图 2 。
这种连接形式在接头位置有地墙钢筋通过 ( 水平
钢筋和纵向主筋) ,为完全的刚性连接 。有关试验研究
表明其结构连接刚度和接头抗剪能力均优于穿孔钢板
接头 。日本道路协会《地下连续壁基础设计施工指针》
中 ,依据不同的钢筋搭接长度 、钢筋直径以及钢筋的间
距所做的试验结果 ,建议接缝处的单位允许应力采用
地下连续墙墙体允许应力的 80 %来设计 。 21 结构接头 在设计地下连续墙和主体结构的连接接头时 ,可
(3) 不完全刚接接头 若结构板与地墙厚度相差 较小 ,可在板内布置一定数量的钢筋 ,以承受一定的弯
矩 ,但在板筋不能配置很多以形成刚性连接时 ,宜采用 不完全刚接形式 。
首先假定此处为刚接 。计算出地墙和板中的弯矩
M1 , M2 , M3 ,如图 6 所示 。对于不完全刚接的接头来
说 ,板所承受的弯矩 M2′是 M2 的一部分 。即 M2′= ηM 2 (0 < η < 1)
置钢筋后现浇 ,使板与地墙形成榫接连接 。
(4) 构造连接 槽段之间如采用刚性施工接头可
使地下连续墙各槽段形成一片整体的墙体 ,共同承受
3

【精】地下连续墙完整版课件

【精】地下连续墙完整版课件

第七章地下连续墙■概述■地下连续墙的承载力与变形■地下连续墙的设计与计算■地下连续墙的施工7.1概述714地下连续墙的特点及适用条件■地下连续墙地下连续墙是在地面用专用设备,在泥浆护壁的情况下,开挖一条狭长的深槽,在槽内放置钢筋笼并浇灌混凝土,形成一段钢筋混凝土墙段。

各段墙顺次施工并连接成整体,形成一条连续的地下墙体。

■作用:基坑开挖时防渗、掛土”邻近建筑物的支护,以及作为基础的一部分。

■地下连续墙的/地下连续墙施工技术于1950年出现在意大利:Santa Malia 大坝下深达40来的防渗墙及Venafro附近的储水池及引水工程中深达3 5 m的防渗墙。

"日本于1959年引进该技术,广泛应用于建筑物.地铁及市政下水道的基坑开挖及支护中”并作为地下室外墙承受上部结构的垂直荷载。

/我国将地下连续墙首次用于主体结构是在唐山大地震(1976 )后,在天津修复一项受震害的岸壁工程中实施。

/1977年”上海研制成功导板抓斗和多头钻成槽机/适用于多种土质条件(除岩溶地区和承压水头很高的沙砾层外,美国no层的世界贸易中心大厦)/可减少工程施工对周围环境的影响,无噪音.振动少, 适用于城市与密集建筑群中施工墙体/刚度大.整体性好,用于深基坑支护时,变形较小,基坑周围地面沉降小”在建筑物、构筑物密集地区可以施工,对邻近建筑物和地下设施影响小(法国最小距离O.5m ,日本0.2 m)/土方量小,无需井点降水”造价低”施工速度快”适用于各种地质条件/屋防渗.截水.承重.挡土.抗滑、防爆等,耐久性好。

/作为主体结构外墙”可实行逆作法施工,能加快施工进度.降低造价■不足及局限性/弃土及废弃泥浆的处理问题,增加工程费用,如处理不当,造成环境污染/施工不当或土质条件特殊时,易出现不规则超挖或槽壁坍塌>轻则引起混凝土超方和结构尺寸超出容许的界限,重则引起相邻地面沉降.坍塌,危害邻近建筑和地下管线安全/与板桩.灌注桩及水泥土搅拌桩相比,地下连续墙造价高,选用时必须经过技术经济比较,合理时采用/施工机械设备价格昂贵,施工专业化程度高■地下连续墙的/处于软弱地基的深大基坑,周围又有密集的建筑群或重要地下管线>对周围地面沉降和建筑物沉降要求需严格限制时"围护结构亦作为主体结构的一部分,且对抗渗有较严格要求时/采用逆作法施工”地上和地下同步施工时7.12地下连续墙的类型■工程应用中的连续墙形式"板壁式:应用最多,适用于各种直线段和圆弧段墙体 /T 形和TT 形地下连续墙:直间距大的情况 “格形地下连续墙:设支撑,靠其自重维持墙体的稳定/预应力U 形折板地下连续墙:新式地下连续墙,是一种 空间受力结构”刚度大、变形小.能节省材料-匸 --------------- 1板壁式JI 形U 形折板/分为临时挡土墙.用作主体结构兼做临时挡土墙的地下连续墙和用作多边形基础兼做墙体的地下连续墙/按墙身材料分为土质墙、腔墙、钢筋腔墙及组合墙:曲下连.又兼做地下工程永久性结构的_部分时,按构造形:分离壁式■整体壁式・单独壁式・重壁式。

地下连续墙课程设计.doc

地下连续墙课程设计.doc

地下连续墙课程设计一、支护方案选取场地周围邻近建筑物较多,必须控制好施工对周围引起的振动和沉降。

考虑该工程开挖深度13m,较深,要保持地铁深基坑支护结构万无一失的话,要求进入中风化板岩。

综上所述,最佳支护方案是选择地下连续墙围护。

地下连续墙工艺具有如下优点:1 墙体刚度大,整体性好,因而结构和地基变形都较小,既可用于超深围护结构,也可用于主体结构;2 适用各种地质条件,对中风化岩层时,钢板桩难以施工,但可采用合适的成槽机械施工的地下连续墙结构;3 可减少工程施工时对环境的影响,施工时振动少,噪音低,对周围相邻的工程结构和地下管线的影响较低,对沉降和变位较易控制;4 可进行逆筑法施工,有利于加快施工进度,降低造价。

二、设计原则与设计方法基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。

基坑支护结构极限状态可分为下列两类:(1)承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏;(2)正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。

基坑支护结构设计应根据表1选用相应的侧壁安全等级及重要性系数。

表1 基坑侧壁安全等级及重要性系数支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。

当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。

当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。

根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算。

1、基坑支护结构均应进行承载能力极限状态的计算,计算内容应包括:1)根据基坑支护形式及其受力特点进行土体稳定性计算;2)基坑支护结构的受压、受弯、受剪承载力计算;3)当有锚杆或支撑时,应对其进行承载力计算和稳定性验算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五 槽幅设计
(三)槽幅稳定性验算 梅耶霍夫经验公式法
连续墙为整体连续结构,耐久性和抗渗性好; 可实行逆作法施工,有利于施工安述
三 地下连续墙的特点及适用条件
缺点
弃土和废泥浆处理。除增加工程费用外,若处理不当,还会造成 新的环境污染。
地质条件和施工的适应性问题。 槽壁坍塌问题。 现浇地下连续墙的墙面通常较粗糙,如果对墙面要求较高,虽可
槽壁长度应与成槽机械尺寸成模数关系,最小不小于机 械的尺寸,最大尺寸由槽壁稳定性确定。
目前常用为3~6m,一般不超过8m。 影响因素
地质条件影响、周围环境 起重能力、混凝土供应量 泥浆池体积、连续作业时间
五 槽幅设计
(三)槽幅稳定性验算
梅耶霍夫经验公式法
① 临界深度Hcr
H cr
N cu
K0 1
下的强度和变形
第二节 结构设计
二 结构体系的破坏形式
稳定性破坏 整体失稳 基坑底隆起 管涌及流沙
强度破坏 支撑强度不足或压屈 墙体强度不足
变形过大
三 地下连续墙设计计算的主要内容
(1)确定在施工过程和使用阶段各工况的荷载,即作用于连 续墙的土压力、水压力以及上部传来的垂直荷载。
(2)确定地下连续墙所需的入土深度,以满足抗管涌、抗隆 起,防基坑整体失稳破坏以及满足地基承载力的需要。
(N 4(1 B / L))
、1 ——黏土、泥浆的有效重度,kN/m3;
N ——条形基础的承载力系数。 B、L ——槽壁的平面宽度、长度,m。
五 槽幅设计
(三)槽幅稳定性验算
梅耶霍夫经验公式法
② 槽壁坍塌安全系数 Fs
FS
N cu P0m P1m
P0m ——开挖外侧(土压力)槽底水平压力强度; P1m ——开挖内侧(泥浆压力)槽底水平压力强度。
第一节 概 述
一、地下连续墙的发展概况 深圳地铁1号线国贸站地下连续墙
标准段宽度:车站为20.25m,连续墙总长度541m,成墙面积1.47m2 。 连续墙划分为标准中幅(幅度6m)69幅,非标准幅13幅及特殊幅14幅, 共计96幅,
第一节 概 述
地下连续墙的概念
利用挖槽机械,借助于泥浆的护壁作用,在地下挖 出窄而深的沟槽,并在其内浇注混凝土而形成一道具有 防渗(水)、挡土和承重功能的连续的地下墙体,称为地 下连续墙。
施工阶段和使用阶段几种典型的工作状态: 槽段土方开挖阶段 槽段侧壁的稳定性 地下连续墙浇筑形成 开挖前的受力状态 基坑第一层开挖 悬臂受力状态、地面侧向位移 基坑土方开挖阶段 墙的结构强度、基坑稳定及变形量 基坑土方工程结束 基坑底部隆起、基坑整体失稳 工程竣工 水土压力和上部地面建筑的垂直载荷共同作用
第七章 地下连续墙结构
第一节 第二节 第三节
概述 结构设计 接头设计
第一节 概 述
一、地下连续墙发展概况 槽壁法 ,1950年首次应用于意大利的米兰水坝工程中。 我国的水电部门于1958年开始,在山东青岛月子口水库工
程中采用这种技术修建防渗墙,随后又在北京、云南、贵州 、广东、广西、甘肃、吉林、江西等省市,五十多项工程中 采用地下连续墙技术,取得良好的技术、经济效果。
(3)验算开挖槽段的槽壁稳定,必要时重新调整槽段长、宽 、深度的尺寸。
(4)地下连续墙结构体系(包括墙体和支撑)的内力分析和变 形验算。
(5)地下连续墙结构的截面设计,包括墙体和支撑的配筋设 计、截面强度验算、接头的联结强度验算和构造处理。
四 荷载确定 (一)施工阶段
基坑开挖水土压力; 施工荷载,若采用逆作法考虑上部结构自重。
使用喷浆或喷砂等方法进行表面处理或另作衬壁来改善,但增加 工作量; 地下连续墙如用作施工期间的临时挡土结构,不如采用钢板桩尚 可拔出重复使用来得经济。
第一节 概 述
三 地下连续墙的特点及适用条件
适用场合: 基坑深度大于10m; 软土地基或砂土地基; 在密集的建筑群或重要的地下管线条件下施工,对基坑工 程周围地面沉降和位移值有严格限制的地下工程。 围护结构与主体结构相结合,对抗渗有严格要求时; 采用逆作法施工,内衬与护壁形成复合结构的工程。
四 地下连续墙的技术要点
1)如何在各种复杂地基中开挖出符合设计要求(如几何尺寸 、偏斜度等)的槽孔来?
2)如何保证槽孔在开挖和回填过程中的稳定? 3)如何用适宜的材料回填到槽孔中,形成一道连续的、不
透水的并能承受各种荷载的墙体来? 4)如何解决各个墙段之间的接缝连接问题?
第二节 结构设计
一 地下连续墙受力特点
第一节 概 述
二、地下连续墙的施工方法
第一节 概 述
导墙施工
泥浆制备厂
第一节 概 述
成槽机挖土
钢筋笼制作
钢筋笼起吊
钢筋笼吊放
浇注混凝土
第一节 概 述
三 地下连续墙的特点及适用条件 优点
施工时对环境影响小。没有噪音,无振动,不必放坡,可 紧邻相近的建筑和地下设施施工;
墙体刚度大,整体性好,结构和地基变形都较小,即可用 于超深围护结构,也可用作主体结构;
土压力类别
土压力类别
静止土压力
0 / H 0.2%
降低的被动 土压力
0 / H 0.2%
提高的主动 土压力
0.2% / H 0.4%
被动土压力
0.2% / H 0.5%
主动土压力 0.4% / H 1%
五 槽幅设计
(一)槽幅:一次成槽的槽壁长度
槽壁长度 槽段划分
(二)槽壁长度确定规定
近期在城市基坑工程中得到普遍应用。如北京王府井宾馆 (基坑深度16.0m,墙厚0.6m,深20m),上海金茂大厦(基坑 深度15.0m,墙厚1.0m,深36m)等。
最深地下连续墙140m(日本),最厚达3.2m,最薄20cm。
第一节 概 述
一、地下连续墙的发展概况 深圳地铁1号线国贸站地下连续墙
左、右线上下重叠地下三层侧式站台车站, 基坑总长238.49m,深约25m,
(二)使用阶段
水土压力; 主体结构传递的恒载和活载。
水土压力的确定是荷载确定的关键!!!
水土压力计算规定
某些规范规定土压力分布应按入土深度和墙体侧向位移选用。如《 港口工程地下连续墙结构设计与施工规程》(JTJ 303- 2003),《上海 市基坑工程设计规程》等。
土压力类别与墙体位移δ/基坑深度H 的关系
相关文档
最新文档