动力电池重要参数定义及测量计算方法

动力电池重要参数定义及测量计算方法

动力电池重要参数定义及测量计算方法

1.概述

本文档的编写主要是为了方便公司内部研发人员更加快速清楚地认识电池的一些重要特性参数及其测量计算方法。主要包括动力电池的荷电状态SOC,电池健康状态SOH,内阻R等。

此文档主要参考了动力电池的国家标准与行业标准,以及网上的一些权威资料信息,同时结合自身工作经验整合编写而成。

2.电池荷电状态SOC及估算方法

2.1 电池荷电状态SOC的定义

电池的荷电状态SOC被用来反映电池的剩余电量情况,其定义为当前可用容量占初始容量的百分比(国标)。

美国先进电池联合会(USABC)的《电动汽车电池实验手册》中将SOC定义如下:在指定的放电倍率下,电池剩余电量与等同条件下额定容量的比值。

SOC=Q O/Q N

日本本田公司的电动汽车(EV Plus)定义SOC如下:

SOC = 剩余容量/(额定容量-容量衰减因子) 其中剩余容量=额定容量-净放电量-自放电量-温度补偿

动力电池的剩余电量是影响电动汽车的续驶里程和行驶性能的主要因素,准确的SOC估算可以提高电池的能量效率,延长电池的使用寿命,从而保证电动汽车更好的行驶,同时SOC也是作为电池充放

电控制和电池均衡的重要依据。

实际应用中,我们需要根据电池的可测量值如电压电流结合电池内外界影响因素(温度、寿命等)来实现电池SOC的估算算法。但是SOC受自身内部工作环境和外界多方面因素而呈非线性特性,所以要实现良好的SOC估算算法必须克服这些问题。目前,国内外在电池SOC估算上已经部分实现并运用到工程上,如安时法、内阻法、开路电压法等。这些算法共同特点是易于实现,但是对实际工况中的内外界影响因素缺乏考虑而导致适应性差,难以满足BMS对估算精度不断提高的要求。所以在考虑SOC受到多种因素影响后,一些较为复杂的算法被提出,例如:卡尔曼滤波算法、神经网络算法、模糊估计算法等新型算法,相比于之前的传统算法其计算量大,但精度更高,其中卡尔曼滤波在计算精度和适应性上都有很好的表现。

2.2几种SOC估算算法简介

(1)安时法

安时法又被称为电流积分法,也是计算电池SOC的基础。假设当前电池SOC初始值为SOC0,在经过t时间的充电或放电后SOC为:

Q0是电池的额定容量,i(t)是电池充放电电流(放电为正)。

事实上,SOC定义为电池的荷电状态,而电池荷电状态就是电池电流的积分,所以理论上讲安时法是最准确的。同时,它也易于实现,只需测量电池充放电电流和时间,而在实际工程应用时,采用离散化计算公式如下:

在电池实际工作中使用安时法计算SOC,受到测量误差和噪声干扰因素会对测量结果造成影响从而无法正确估算SOC(自放电及温度等因素也没有考虑),同时电池的初始SOC值无法通过安时法得到。通常,安时法使用上次电池充放电保留的SOC值作为下次计算初始值,但这样会使SOC误差不断累积。所以实际工程上安时法一般作为其他算法的基础或结合其他算法来进行估算。

(2)开路电压法

锂离子电池的电动势与电池的SOC之间存在一定的函数关系,由此可以通过开路电压进行测量从而得到电池的SOC值。要通过开路电压法得到电池电动势的准确值,首先需要电池静置一段时间,此时的开路电压(OCV)的值可以认为与其电动势数值相等,这样就可以得到电池电动势并以此得到电池的SOC。通过实验获得锂电池充放电的SOC-OCV曲线,然后根据SOC-OCV曲线查询不同开路电压的SOC值。开路电压法需要电池在一段时间静置下以消除电池电压、容量在外界因素影响下造成的误差,不适用于电池SOC的实时测量。另外,电池SOC在中间段开路电压变化很小,导致中间SOC测量及估算误差较大。(3)卡尔曼滤波法

卡尔曼滤波法是利用系统和测量动态的知识、假设的系统噪声和测量误差的统计特性,以及初始条件信息,对测量值进行处理,求得系统状态的最小误差估计。电动汽车用的电池组,可看作是由输入和输出组成的动态系统。在了解系统一定先验知识的前提下,建立系统

的状态参数方程,再利用输出的校验作用,获得对系统包括荷电状态在内无法直接测量的内部参数估计。在电池等效电路模型或电化学模型的基础上,建立系统的状态方程和测量方程。根据电池组放电试验数据,应用卡尔曼滤波算法估计电池组的开路电压,实现对电池荷电状态的估计。其优点是能够根据采集到的电压电流,由递推法法得到SOC的最小方差估计,解决SOC初值估计不准和累计误差的问题;缺点是对电池模型依赖性很强,对系统处理器的速度要求较高。

3.电池健康状态(SOH)定义与计算

3.1 电池健康状态SOH的定义

电池SOH的标准定义是在标准条件下动力电池从充满状态以一定倍率放电至截止电压所放出的容量与其所对应的标称容量(实际初始容量)的比值,该比值是电池健康状况的一种反映。

简单来说,也就是电池使用一段时间后某些直接可测或间接计算得到的性能参数的实际值与标称值的比值,用来判断电池健康状况下降后的状态,衡量电池的健康程度,其实际表现在电池内部某些参数(如内阻、容量等)的变化上。故根据电池特征量定义电池健康状态SOH具体有如下几种方法:

(1)从电池剩余电量的角度定义SOH:

SOH=Q aged/Q new

其中,Q aged为电池当前可用的最大电量,Q new为电池未使用时的最大电量。

(2)从电池容量的角度定义SOH:

SOH=C M/C N

其中,C M为电池当前测量容量,C N为电池标称容量。

(3)从电池内阻的角度定义SOH:

SOH=(R EOL-R)/(R EOL-R new)

其中,R EOL为电池寿命终结时的电池内阻,R new为电池出厂时的内阻,R为电池当前状态下的内阻。

注:上面从电池剩余电量或电池容量来定义SOH的公式并不是SOH的实际计算公式,这只是一种定义的方法,即这种定义的方法有唯一的对应函数来与实际的SOH对应。比如,基于单体电池的容量,SOH实际可用下面公式计算:

SOH=(C M-C EOL)/(C N-C EOL)

其中C EOL为电池寿命终止(报废)时的容量,是一个常数。上面SOH的计算公式其实与(2)中的定义是等效的。下面简单给出推导:

设定义中SOH= C M/C N=X, 计算公式中SOH=(C M-C EOL)/(C N-C EOL)=Y,假设C EOL=pC N,则Y=( XC N-pC N)/(C N- pC N)=(X-p)/(1-p),即Y是关于X的一个函数(线性关系),其中p为常数。

3.2 几种常见的SOH估算方法

(1)完全放电法

完全放电测试需要对电池进行一个完全的放电循环,然后测试出放电容量与新电池的标称容量进行比较。这个方法是目前公认最可靠的方法,但是这种方法的缺点也很明显,需要电池离线测试和较长的

测试时间,测试完之后需对电池重新充电。

(2)内阻法

通过建立内阻与SOH之间的关系来进行SOH估算,大量研究表明电池内阻和SOH之前存在一定的对应关系。随着电池使用时间的增长,电池的内阻会随之增加,电池的可用电量同时会不断减少,通过这点来进行SOH估算。

这种方法也有缺点:大量研究表明,当电池容量下降到原来的70%—80%时电池的欧姆内阻才会发生显著变化,这与一般规定的80%可能有相当的差距。同时电池的内阻本来就是毫欧级别的数值,它的在线准确测量也是一个难点。

(3)电化学阻抗法

这是一种较复杂的方法,通过对电池施加多个不同频率的正弦信号,然后根据模糊理论对已经采集的数据进行分析,从而获得此电池的特性,预测当前电池的性能。使用这种方法需要大量阻抗及阻抗谱相关理论,且需要较为昂贵的器材,故暂不推荐。

4.电池内阻R

电池的内阻很小,我们一般用毫欧(mΩ)的单位来定义它。内阻是衡量电池性能的一个重要技术指标。正常情况下,内阻小的电池的大电流放电能力强,内阻大的电池放电能力弱。

电池的内阻包括欧姆内阻(RΩ)和电化学极化内阻(R e)。对于锂离子电池来说,电池的欧姆内阻(RΩ),主要有锂离子通过电解质时受到阻力所形成的电阻、隔膜电阻、电解质-电极界面的电阻和集

电体(铜铝箔、电极)电阻等;电化学极化内阻(R e)包括锂离子嵌入、脱嵌和离子扩散转移过程中的极化电阻、浓差极化电阻等。

欧姆内阻(RΩ)服从欧姆定律,电化学极化内阻(R e)不服从欧姆定律。不同类型的电池内阻不同。相同类型的电池,由于内部化学特性的不一致,内阻也不一样。另外,无论是RΩ还是R e都会随着电池使用条件的不同而变化(随SOC、SOH、温度等变化)。

目前对电池内阻的测量主要有直流测试法与交流测试法两种,分别对应测得电池的交流内阻和直流内阻。由于电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值;而测交流内阻可免除极化内阻的影响,得出真实的内值(主要为欧姆内阻)。

直流放电内阻测量法:根据物理公式R=ΔV/ΔI,测试设备让电池在短时间内通过一个较大的恒定直流电流(目前一般使用40A-80A 的大电流),测量此时电池两端的电压变化,并按公式计算出当前的电池内阻。此法控制得当精确度可以控制在0.1%以内,但也有明显的不足:(1)只能测量大容量电池,小容量电池无法负荷如此大电流;(2)当电池通过大电流时,电池内部发生极化现象,产生极化内阻。故测量时间必须很短,否则测出的内阻值误差很大。

交流内阻测试一般使用专门的测试仪器,其方法原理如下:利用电池等效于一个有源电阻的特点,给电池施加一个固定频率和固定电流大小的交流信号(目前一般使用1kHz频率、50mA小电流),然后对其电压进行采样,经过整流、滤波等一系列处理后通过运放电路

计算出该电池的内阻值。交流内阻测试法有如下特点:(1)可以测量几乎所有的电池,包括小容量电池,且对电池本身不会有太大损坏;(2)精度可能受纹波/谐波电流干扰,对测量仪器电路的抗干扰能力要求高;(3)无法实时在线测量。

5.动力电池自放电率测试

电池的自放电又称荷电保持能力,它是指在开路状态下,电池存储的电量在一定环境条件下的保持能力(或内部的自发反应而引起的化学能损失)。一般来说,自放电主要受电池制造工艺、材料、储存条件的影响。

自放电=[(初始容量—搁置后容量)/(初始容量×搁置时间)]×100% 通常电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用。一般地说,常规电池要求储存温度范围为-20~45℃。电池充满电开路放置一段时间后,一定程度的自放电属于正常现象。锂离子电池的自放电率相对于其他类型电池来说还是微不足道的,且引起的容量损失大部分都可以恢复,这是由锂电池结构所决定的。但是在不适宜的环境温度下,锂电池的自放电率还是很惊人的,这会对电池的使用寿命产生很大影响。同时,单体电池自放电的不一致性是影响电池组一致性的重要因素,自放电差别大,使用过程中电池的不一致性会较快体现出来。

6.温度特性

动力电池的容量、充放电内阻与开路电压都受温度的影响。

(1)环境温度对磷酸铁锂电池容量的影响很大,低温时容量迅速衰减,在一定范围内温度升高时容量迅速增大,但其变化速率小于低温时,超出某一范围后容量又随温度升高出现衰减。

(2)环境温度对电池欧姆内阻和总内阻的影响很明显,一般地,温度越低内阻越大,欧姆内阻比极化内阻对温度更敏感,欧姆内阻的变化对低温更敏感。

(3)电池的SOC-OCV曲线在不同温度下的差异较小,温度越低,SOC-OCV曲线越低。且低温下曲线的偏离速度更大。

平面度常识及测量方法

平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。 2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

自定义眼高测量

力科示波器自定义眼高测量方法 美国力科公司深圳代表处 曹刘 前言 示波器的五大基本功能之一就是测量,通过示波器的测量功能可以直观地体现波形的基本特征,如波形的上升下降时间,幅值,周期,频率等等。测量的方法包括使用光标,使用示波器自带的测量参数,必要时需使用其他特别的测量方法。 对于目前GHz 以上的信号,最常表征信号特征的方式就是使用眼图,通过观察,测量以及分析眼图就可以非常直观地了解信号质量,如比如幅度(包括噪声,过冲等)和时序(上升下降时间,抖动等)特征。下面我们以眼高测量为例来介绍一台高端示波器在测量上的特点。 眼高参数定义 与眼图相关的最重要的测量参数包括眼高,眼宽,1电平,0电平等等。这些参数的定义,如下图所示,1电平与0电平表示选取眼图中间部分20%的UI 向垂直轴做直方图,其中出现概率最大点的高低电平分别定义为1点平和0电平,眼幅度即为“1”电平与“0”电平差值。眼幅度减去高低电平标准偏差值的3倍即为眼高。 光标光标测量方法测量方法 对于眼高的测量,示波器提供不同的方法,若用户对测试的准确度要求不高可以使用光标直接测量。光标测量是从模拟示波器沿用过来的,特点时容易设置,直观,但是测试精度有限但是测试精度有限但是测试精度有限,,它无法利用示波器的处理精度与处理速度它无法利用示波器的处理精度与处理速度,,不同的使用者测量出来的结果的使用者测量出来的结果可能会差别很大可能会差别很大可能会差别很大。。我们可以说这种方法并不能真正反映真实的眼高,但在客户要求测量精度不高的情况下可以使用,非常直观。 One(Eye) Zero(Eye)

自定义眼高测量 有经验的工程师可能遇到过这种情况,就是眼图质量很差的情况下,比如眼图即将闭合时,眼高的测试有时候无法进行,或者说无法准确的测量出来,这个时候需要用户使用其他的方法来测试,下面我就给大家介绍一下自定义眼高测量,或称为手动测试方法。 1)如下图所示,示波器生成眼图之后,我们对眼图做垂直直方图,F8=Phistogram(Eye); Step1:设置F8为eye的垂直直方图 Step2:设为

检测平面度的方法介绍

检测平面度的方法介绍

一、平面度的定义 平面度是指基片具有的宏观凹凸高度相对理想平面的偏差。 平面的平面度公差符号、基本表示方法,如图1所示。 图1 二、平面度误差的检测方法 平面度误差是指被测实际表面相对其理想表面的变动量,理想平面的位置应符合最小条件,平面度误差属于形位误差中的形状误差。 平面度误差的测量方法: 直接测量法 间接测量法 利用太友科技数据采集仪连接百分表法 1、直接测量法 通过测量可直接获得平面上各点坐标值或能直接评定平面度误差值的方法。具体如下: 平晶干涉法 测微表测量法 光轴法、液面法等。 1)平晶干涉法 干涉法测量平面度误差,是把平晶放在它所能覆盖的整个被测平面上,用平晶工作面体现理想平面,根据测量时出现的干涉条纹形状和数目,由计算所得的结果作为平面度误差值,如图所示。

该方法只适合测量精研小平面及小光学元件。 2)测微表测量法 用3个可调支承将被测件支撑在标准平板上,用测微仪指示。调整可调支承,用三点法或四点法(对角线法)进行测量。然后用测微仪读出被测表上各点的最大与最小读数差作为平面度误差值的测量结果。该测量方法适用于车间较低精度、中等尺寸的工件。 3)光轴法 光轴法测量平面度误差是利用准直类仪器2、以它的光轴经转向棱镜3扫描的平面作为测量基准,将瞄准靶1放置在实际被测平面4上,按选定的布点,测出各测点相对于该测量基准的偏离量,再经数据处理评定平面误差值。

2、间接测量法 特点:测量精度高,但数据处理麻烦。因被测平面需测若干个截面,而各截面内的偏差值在测量时不是由同一基准产生,故须经复杂的数据后,才能获得各测量截面相对统一基准的坐标值。 适用于中大平面的测量。 测量方法:水平仪法、自准仪法、互检法 1)水平仪法 原理:以自然水平面作为测量基础。测量时,先把被测表面调到基本水平,然后把水平仪放在桥板上,再把桥板置于被测表面上,按照一定的布线逐渐测量,同时记录各测点的读数,根据测得的读数通过数据处理,即可得平面度误差值。 分类:依布线方法不同又分为水平面法和对角线法。 2)水平面法 采用网格布点,基准平面为过被测表面上的某给定点且与水平面平行的几何平面:测量时应采用同一桥板,各测点的同一坐标值用累积法求得,计算比较简单。测量时选择不同的起始点和不同的测量线,其数据处理的方法、结果不同。存在一个最佳结果。 3)对角线法 采用对角线布点。 过渡基准平面是:过被测表面的一条对角线,且平行于被测表面的另一条对角线的平面。测量时常须用三块长度不同的板桥。数据处理较麻烦。 4)自准仪法

自定义眼图模板

自定义眼图模板 美国力科公司万力劢 一、眼图模板的电气特性意义 眼图模板测试是评估高速信号质量的重要方法。力科示波器串行数据分析功能已经内置了业界主流高速信号的模板,多达50种以上。但是以下几种情况可能无法直接套用示波器已经内置的标准模板:被测信号是新出标准定义的,或者芯片的电气特性没有严格符合标准,或者实际测试点和标准要求的测试点不一致。这时需要示波器用户自定义模板。一个典型模板的形状如下图深色图形: 模板水平方向一般占一个UI的宽度。上有“天花板”,下有“地板”,中间一般为六边形或菱形。通常用X1~X4,Y1~Y4几个坐标刻度定义“天花板”、“地板”以及中间图形的位置和形状。对信号的眼图套用模板,可以快速评估信号的电气特性是否满足要求。 1)垂直方向Y1~Y4四个刻度用于限定信号幅度上的特性,对于差分信号,限定的是差分电 压的摆幅范围。 Y1:信号允许的最小电压(或光功率,以下同理)。 Y4:信号允许的最大电压。 ——对于差分信号,Y1和Y4为允许的最大差分摆幅,Y1为负值,Y4为正值。 Y2:信号低电平允许的最大电压,如果信号幅度超过此电压,信号可能不会被器件当作低电平。电气特性规格很多以Vol(max)、Vil(max)表示此参数。 Y3:信号高电平允许的最小电压,如果信号幅度小于此电压,信号可能不会被器件当作高电平。电气特性规格很多以Voh(min)、Vih(min)表示此参数 ——对于差分信号,Y2和Y3为允许的最小差分摆幅,Y2为负值,Y3为正值。 也就说,信号的高电平必须在Y3和Y4之间,低电平必须在Y1和Y2之间

2)水平方向X1~X4四个刻度用于限定信号时域上的特性。 实际信号的眼图,两侧跳变沿的余辉可能较粗,这是抖动的直观反映。抖动越大、跳变沿余辉就越粗、眼宽也越小。如下图,眼图两侧跳变沿交叉处余辉的宽度反映了信号的总体抖动Tj (准确的总体抖动值需要一定算法来测量和统计,直接在眼图上测量余辉宽度不准确,它只是直观的反映)。X1和X4两个刻度用来限定两侧抖动的范围。抖动范围往内不超过X1,X4,说明抖动大小满足相关电气特性要求。 X2,X3两个刻度用来限定信号上升/下降时间,用以验证信号的最大上升/下降时间是否满足要求。 二、根据芯片电气特性规格定义模板

平面度测量与评定形位公差之二

平面度测量与评定形位 公差之二 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

二)、平面度误差的测量和评定方法1、平面度公差: 被测平面对理想平面的允许变动量。 2、平面度公差带:距离为公差值t的两平行平面之间的区域。 3、平面度误差的测量方法 1)直接方法 (1)间隙法:刀口尺、平尺等 (2)指示表法: 调整被测表面与平板平行(即确定理想平面的位置),一般有两种方法: A、对角线法(四点法): 调整支撑使被测表面两端点等高,即1点与2点等高,3 点与4 B、三点法: 调整支撑使被测表面最远三点等高(结果不唯一且不符合 示表的最大读数与最小读数之差近似地做为被测平面的平面度误

差。必要时可根据记录的示值用计算法(图解法)按最小条件计算平面度误差。 (3)光轴法 :自准直仪 将反射镜放在被测表面上,并把自准值仪调整到与被测表 面平行,沿对角线按一定布点测量、重复上述方法分别测量另一条对角线和被测表面上其他各直线上的各布点。把各点示值换算成线值,记录在图表上,通过中心点建立参考平面,由计算法(图解法)按对角线法计算平面度误差。必要时按最小条件计算平面度误差。标准27页 (4)干涉法 :平晶 将平晶放在被测表面上,观测它们之间的干涉条纹。平面度误差为: 对于封闭环形:平面度误差等于干涉条 纹数×光波波 长之半(图a ), 即 2f n λ =? 对于不封闭图形:平面度误差等于条纹 的 弯曲度与相邻两条纹间距之比再乘以光波波 长之半(图b )2v f λ ω=?

2)间接方法 (1)布点形式 矩形平面的布点形式:网格布点、对角线布点 园形平面的布点形式:网格布点、对角线布点 园环形平面的布点形式:对于较宽的环形平面,其圆环测量线不得少于两圈,对于较窄的环形平面,可采用单圈测量线的形式。 3)水平仪法 4)斑点法 4、平面度误差的评定方法 1)最小包容区域法; 对被测平面的偏差进行旋转和平移,不改变被测平面的平面度评定 结果,是以构成平面度最小包容区域的两平行平面之一作为理想平面。 最小包容区域面的判定准则 A、三角形准则 有三个高极点(极点是实际被测平面与最小包容区域面的接触点)与一个极低点,或相反有三个低极点与一个高极

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

ddr2信号和协议测试分析方案_图文

DDR2/3信号和协议测试分析方案 -BJLK 目前在计算机主板和各种嵌入式的应用中,DDR3已经逐渐要取代DDR2成为市场的主流。DDR3相对于DDR2的主要优势再有更高的数据速率和更低的功耗,例如DDR2的数据速率最高到800MT/s,DDR3的最高数据速率可以到 1600MT/s,而在有些嵌入式的应用中还有可能使用更高速率,因此对于设计和测试都提出了更高的要求。 DDR2/3信号测试分析方案 为了进行可靠的探测,对于示波器器和探头的要求也非常高。对于DDR3的信号,由于JEDEC 没有给出信号上升/下降时间的参数,因此用户只有根据使用芯片的实际最快上升/下降时间来估算需要的示波器带宽,对于DDR3的信号,20 - 80%的上升时间大约在80~120ps左右。对于传统的高斯频响的示波器,为了保证测量精度,通常需要示波器带宽是被测信号带宽的3~5倍,而对于Agilent 的90000系列示波器,由于其优异的类似砖墙的频响特性,可以保证带内比较好的平坦度,因此可以使用以下公式: Scope bandwidth required = 1.4x maximum signal frequency for 3% accuracy measurements Scope bandwidth required = 1.2x maximum signal frequency for 5% accuracy measurements Scope bandwidth required = 1.0x maximum signal frequency for 10% accuracy measurements 根据这个公式计算出来的示波器带宽通常都在4~8GHz,因此对于DDR3信号的测试,通常推荐的示波器和探头的带宽在8GHz 。 对于DDR2和DDR3信号的测试,除了我们所熟知的双边沿采样以外,最主要的挑战在于2个方面,第一是如何进行读写信号的分离,第二是JEDEC 规定了很多DDR3的参数,如何进行方便可靠的测量。下面分别进行介绍: 1、读写信号分离

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

平面度的测量分解

平面度测量 工作单位:广东技术师范学院机电学院机械精度检测实验室作者:刘涵章关键词:平面度平面度误差三远点法三角形准则对角线准则对角线法 目录 一、什么是平面度 二、平面度误差值的各种评定方法 三、误差值评定的步骤: 四、实验教学中的实验仪器和实验步骤: 五、平面度误差值的各种评定方法应用举例 六、总结

一、什么是平面度 首先谈一谈什么是平面度,平面度就是实际平面相对理想平面的变动量。换句话说,就是被测平面具有的宏观凹凸高度相对理想平面的偏差。也可以说成是平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是用以限制实际表面加工误差所允许的变动范围。这个变动范围可以在图样上给出。(可以插入一个图) 二、平面度误差值的各种评定方法 1. 最小区域判别准则: 由两个平行平面包容实际被测平面S时,S上至少有四个极点分别与这两个平行平面接触,且满足下列条件之一:(1)至少有三个高(低)极点与一个平面接触,有一个低(高)极点与另一个平面接触,并且这一个极点的投影落在上述三个极点连成的三角形内(三角形准则);(2)至少有两个高极点和两个低级点分别与这两个平行平面接触,并且高极点连线和低极点连线在空间呈交叉状态(交叉准则);这两个平行平面之间的区域即为最小区域,该区域的宽度即为符合定义的平面度误差值。就是最高点与最低点的差值。如下图所示: 2.三远点平面法和对角线平面法: 平面度误差值还可以用对角线平面法和三远点法评定。对角线平面法是指以通过实际被测平面一条对角线(两个角点的连线)且平行另一条对角线(其余两个角点的连线)的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之差作为平面误差值。 三远点平面法是指以通过被测平面上相距最远的三个点构成的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之值差作为平面度误差值。应当指出,由于从实际被测平面上选取相距最远的三个点有多种可能,因此按三远点平面法评定的平面度误差值不是唯一的,有时候差别颇大。 评定过程就是根据上述判别准则去寻找符合最小条件的理想平面位置的过程。可有多种数据处理方法,其中旋转法为最基本的方法。此法适用于前述各种测量方法获得的统一坐标值的数据处理。 三、误差值评定的步骤:

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

通信原理实验报告眼图

部分响应系统 一、实验目的 1.通过实验掌握第一类部分响应系统的原理及实现方法; 2.掌握基带信号眼图的概念及绘制方法。 二、实验原理 1.部分响应系统 为了提高系统的频带利用率,减小定时误差带来的码间干扰,升余弦传输特性在这两者的选择是有矛盾的。理想低通传输特性可以有最高的频带利用率 2=s η,但拖尾的波动比较大,衰减也比较慢。若能改善这种情况,并保留系统 的带宽等于奈奎斯特带宽,就能在保证一定的传输质量前提下显著地提高传输速率。这是有实际意义的,特别是在高速大容量传输系统中。部分响应传输系统就具有这样的特点。 部分响应传输系统是通过对理想低通滤波器冲激响应的线性加权组合,来控制整个传输系统冲激响应拖尾的波动幅度和衰减。当然,这样做会引入很强的码间干扰,但这种码间干扰是可控制的,是已知的,因此很容易从接收信号的抽样值中减去。由于这种组合并不影响系统的传输带宽,因此频带利用率高。 第一类部分响应系统是在相邻的两个码元间引入码间干扰。由于理想低通系统的传递函数为 其冲激响应为s s T t T t t h //sin )(ππ= ,如果用)(t h 以及)(t h 的时延s T 的波形作为系统的 冲激响应,那么它的系统带宽肯定限制在??? ? ? ?-s s T T 21,21,也就是说,系统的频带利用率为2bit/Hz 。 接着来看系统的冲激响应函数)(t g : s s s s s s s T t T t T t T T t c T t c T t h t h t g /11 sin )(sin sin )()()(-= ?? ????-+=-+=ππππ s T f 21 ||< 其他 ???=0 )(s T f H

PLL带宽对高速串行数据眼图测试结果的影响

日益普及的串行数据传输有两个主要特点:1.广泛采用差分信号进行数据传输;2.没有专门的时钟传输线路,时钟嵌入在数据里。因此,在系统接收端内部需要时钟恢复电路。接收端时钟恢复方法最常用的是锁相环(PLL)和相位内插(PI)两种方法。相对而言,PLL方法应用更为广泛。图2是一种典型的基于PLL的时钟恢复电路框图。 CDR与PLL简介 PLL的作用简单的来说是产生一个内部信号,去锁住输入信号的相位。讨论两个信号相位的前提是该两个信号的频率一致,这样才有意义,因此锁相环也是锁频回路。假定一固定频率信号: 输入PLL,PLL的输出信号为: 由上述结论得到: 但相位是否相等呢?答案是否定的。实际上,两个信号的相位差是一个定值,其值和起始频率差有关。所以有了第二个重要概念:“锁相不是指相位相同,而是相位差为定值”。PLL的组成如图3所示。 鉴相器(PD)将输入信号与VCO(压控振荡器)输出信号进行对比。环路滤波器对差异进行过滤波,然后用来调整VCO。由于LPF是低通滤波器,只能将相位差的低频部分传输到VCO。因此,PLL仅跟踪低频变化。也就是说,由串行数据的CDR电路恢复得到的Recover Clock 只包含低频抖动,这个低频抖动在数据中同时存在,因此这些低频抖动成分对于接收端SerDes电路在以Recover Clock作为参考边沿判决数据0或1时不会产生影响(前提条件是低频抖动分量不得超过系统的抖动容限)。而数据中还包含传输系统中的高频抖动分量,由于CDR电路中的低通滤波器的缘故,这部分恢复出的Clock是不包含的。因此接收端SerDes电路在以Recover Clock作为参考边沿判决数据0或1时可能会由于这些高频的抖动分量导致采样点偏移而出现误码。因此只有在PLL截止频率或带宽以下的低频抖动是接收端可以跟随的抖动。相对而言,经过PLL传递出的抖动都为高频抖动,是不能被系统跟

平面度常识及测量方法

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。

2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。 4、光束平面法:光束平面法是采用准值望远镜和瞄准靶镜进行测量,选择实际表面上相距最远的三个点形成的光束平面作为平面度误差的测量基准面。 除上述方法可测量平面度误差外,还有采用平面干涉仪、水平仪、自准直仪等用于测量大型平面的平面度误差。 二、平面度误差的评定方法 平面度误差的评定方法有:三远点法、对角线法、最小二乘法和最小区域法等四种。 1、三远点法:是以通过实际被测表面上相距最远的三点所组成的平面作为评定基准面,以平行于此基准面,且具有最小距离的两包容平面间的距离作为平面度误差值。 2、对角线法:是以通过实际被测表面上的一条对角线,且平行于另一条对角线所作的评定基准面,以平行于此基准面且具有最小距离的两包容平面间的距离作为平面度误差值。 3、最小二乘法:是以实际被测表面的最小二乘平面作为评定基准面,以平行于最小

平面度误差的测量(精)

实验五平面度误差的测量 一、实验目的 1. 了解平面度误差的测量原理及千分表的使用方法。 2. 掌握平面度误差的评定方法及数据处理。 二、实验内容 用千分表测量平面度误差。 三、测量原理 平面度公差用以限制平面的形状误差。其公差带是距离为公差值的两平行平面之间的区域。并规定,理想形状的位置应符合最小条件,常见的平面度测量方法有用指示表测量、用光学平晶测量平面度、用水平仪测量平面度及用自准仪和反射镜测量平面度误差,用各种不同的方法测得的平面度测值,应进行数据处理,然后按一定的评定准则处理结果。平面度误差的评定方法有; 1. 最小包容区域法,由两平行平面包容实际被测要素时,实现至少四点或三点接触。且具有下列形式之一者,即为最小包容区域,其平面度误差值最小。最小包容区域的判别方法有下列三种形式。 (1)两平行平面包容被测表面时,被测表面上有3个最低点(或3个最高点)及1个最高点(或1个最低点)分别与两包容平面接触,并且最高点(或最低点)能投影到3个最低点(或3个最高点)之间,则这两个平行平面符合最小包容区原则。见图1(a)所示。 (2)被测表面上有2个最高点和2个最低点分别与两个平行的包容面相接触,并且2个最高点投影于2个低点连线之两侧。则两个平行平面符合于平面度最小包容区原则。见图1(b)所示。 (3)被测表面的同一截面内有2个最高点及1个低点(或相反)分别和两个平行的包容面相接触。则该两平行平面符合于平面度最小包容区原则,如图1(c)所示。 图1 平面度误差的最小区域判别法 三角形法是以通过被测表面上相距最远且不在一条直线上的3个点建立一个基准平面,各测点对此平面的偏差中最大值与最小值的绝对值之和为平面度误差。实测时,可以在被测表面上找到3个等高点,并且调到零。在被测表面上按布点测量,与三角形基准平面相距最远的最高和最低点间的距离为平面度误差值。 2. 对角线法是通过被测表面的一条对角线作另一条对角线的平行平面,该平面即为基准平面。偏离此平面的最大值和最小值的绝对值之和为平面度误差。

工程师必须懂得眼图分析方法解读

信号完整性分析基础系列之一 ——关于眼图测量(上) 汪进进美国力科公司深圳代表处 内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。全分为上、下两篇。上篇包括一、二部分。下篇包括三、四部分。 您知道吗?眼图的历史可以追溯到大约47年前。在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。 您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。 在我2004年来力科面试前,我也从来没有听说过眼图。那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。 网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无 法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适 当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。 二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。眼图是 由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器 上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图

位置度平面度的定义标注及测量

位置度平面度的定义标注及测量 笔者在数年建筑工程施工图审查工作中,通过多项建筑工程的施工图审查,发现了建筑设计中总平面图设计、建筑说明、建筑平面、立面、剖面、建筑构件有关深度设计及强制性条文等内容设计中较为常见的问题,现分别总结如下:一、总平面布置图送审的施工图文件中,总平面布置图基本上都有,但表达深度差别较大,大部分工程只做到平面定位图,不符合《建筑工程设计文件编制深度规定》的有关要求。主要问题有:1.总平面图要有一定的范围。只有用地范围不够,要有场地四邻原有规划的道路、建筑物、构筑物,多数施工图只有用地范围内的布置图。2.保留原地形和地物。场地测量坐标网及测量标高,包括场地四邻的测量坐标或定位尺寸,有些工程的总图设计往往无保留。3.竖向设计。往往只有标注建筑物的±0.000 设计标高的相对场地的测量标高数值,有的只有标注室内外高差数而已。结果是:1竖向设计标高不符合规划部门的控制标高。2场地内与场地外围的城市道路标高不衔接,不合理。3场地及其道路的标高不利于排水。4场地内道路无设计标高,特别是交接处、建筑物的入口处,也无标注道路坡长、坡向、坡度以及地面的关键性标高,也无路面的设计断面。4.没土方工程平衡设计。盲目的竖向设计,往往会带来不必要的挖方或填方,增加造价,造成经济损失。5.总图设计没有必要的详图设计。比如道路横断面、路面结构,反映管线上下、左右尺寸关系的剖面图,以及挡土墙、护坡排水沟、广场、活动场地、停车场、花坛绿地等详图,场地的排水、场地内道路与城市道路的关系,给施工带来困难,也无法保证总图的合理性。 6.消防车道宽度不满足消防要求。消防车道距离高层建筑外墙小于5 米,不满足消防登高面要求。二、建筑设计说明部分1.装饰做法光是文字说明表达不完整。最好是有各种材料做法一览表各部位装修材料一览表方能完整地表达清楚,少数能做到,多数工程还只是文字说明。总说明中占地面积一般都缺标注。2.门窗表。一般都有,但关键对一些组合窗,非标准窗表示不清楚,对组合窗及非标窗,应画出立面图,并应把拼接件选择、固定件、窗扇的大小、开启方式等内容标注清楚,如组合窗面积过大,请注明要经有资质的门窗生产厂家设计方可,还有就是对门窗性能,如防火、隔声、抗风压、保温、空气渗透、雨水渗透等技术要求应加以说明。比如建筑物1-6 层和七层及七层以上对门窗气密性要求不一样1-6 层为3 级,七层及以上为 4 级。3.防火设计说明普遍存在问题。按《建筑工程设计文件编制深度规定》要求每层建筑平面中要注明防火分区面积和分区分隔位置示意图,宜单独成图,如为一个防火分区,可不注防火分区面积。4.有关夏热冬冷地区节能设计的说明,也普遍存在问题居住建筑的节能设计:1外窗,特别东西窗缺保温隔热措施。2导热系数的主体部位值与平均值概念不清,把建筑主体部位的K 值作为平均K 值说明。3缺节能设计计算书及节能设计审查文件,造成节能设计不经济。5.幕墙工程。包括玻璃幕墙、金属幕墙、石材幕墙等及特殊的屋面工程,与其它特殊构造,对其设计、制作、安装等技术要求未加说明。6.缺电梯自动扶梯,选择及性能说明包括功能、载重量、速度、停站数、提升高度等等。 7.墙体预留孔及楼板预留孔,管道井楼层的封堵方式等未说明。 8.屋面防水等级未说明,或屋面具体做法不符合相应的防水等级要求。常见问题为:把屋面砼结构层作为一道防水设防,或卷材厚度不符合相应防水等级要求

简化USB设计

简化USB设计的调试和验证 应用文章 介绍 USB2.0的历史 通用串行总线已经成为了连接个人电脑和外部设备的事实上的工业标准。USB2.0最初是在2000年左右进入市场,提供了比USB1.1快40倍数传速度。USB2.0彻底开启了大数据量高速传输应用的大门。USB1.0低速(1.5Mbps) 和USB1.1全速 (12Mbps) 满足对于像键盘、鼠标这类的外设的连接;高速USB2.0 (480Mbps) 主要支持多媒体、数据存储和传输以及高速I/O接口等应用。

应用文章 图2:TDSUSB2测试报告图1:TDSUSB2高速一致性测试软件 USB2.0构架、测试方法和方案 USB2.0是4线的串行系统:VBus, D-, D+和地线。D-和D+是数据传输线。有三大类USB2.0的设备:主机(Host)、设备 (Device) 和集线器 (Hub)。USB2.0的设备 (Device) 还分为总线供电 (从主机抽取电流) 和自供电 (有自己的供电模块) 两种方式。 USB应用者论坛 (USB-IF) 为了确保产品能够通过鲁棒性和互操作性的验证,指定了一系列的规定的一致性测试。如果产品能够满足USB-IF一致性流程所要求的最低性能,那么该产品会被USB-IF添加到集成供应商列表中。这本电子书主要阐述了如何进行物理电气层性能测试以及提供调试和解决问题的指导。图1描述了在Tektronix DPO7254数字荧光示波器上使用USB一致性测试软件包所进行的操作。这个测试包完全实现了信号质量的自动化测试,让产品设计人员最直接、简单的得到测试的数据。在测试之前,设计人员要选择要被测设备的速度 (低速、全速还是高速),然后示波器按照USB2.0规范自动进行示波器设置、波形选择、波形采集和分析以及测试结果与标准的对比,最大程度上减少手动干预。测试结果将自动的显示在报表中,如图2所示。 2 https://www.360docs.net/doc/6e1833901.html,

眼图——概念与测量

眼图——概念与测量 中文名称:眼图 英文名称:eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: 眼图的重要性质 (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。 ”

相关文档
最新文档