河北衡中2019-2020学年高三10月小二调考理数

合集下载

衡水中学2019-2020学年度高三年级下学期第二次模拟考试 理数试卷(含答案)

衡水中学2019-2020学年度高三年级下学期第二次模拟考试 理数试卷(含答案)

4
故选:A.
12.【答案】D
【解析】由题意可知 f ′(= x)
aex (x
−1)
+
1 x

x= 12
0
有两个不等根.即
ae
x
(
x

1)
=−
x− x2
1
,
x ∈ (0, 2) ,有一根 x = 1 .另一根在方程 1 = −x2ex , x ∈ (0, 2) 中,令 h(x) = x2ex , x ∈ (0, 2) , a
上式对 n = 1 也成立,
可得数列
{an
}
是首项为
1,公比为
1 2
的等比数列,
可= 得 S5
1= − 215 1− 1
31

16
2
故答案为: 31 . 16
15. ①②
16.【答案】 6π 【解析】如图,设球心 O 在平面 ABC 内的射影为 O1 ,在平面 BCD 内的射影为 O2 则二面角 A − BC − D 的平面角为∠AMD ,点 A 在截面圆 O1 上运动,点 D 在截面圆 O2 上运 动,由图知,当 AB = AC ,BD = CD 时,三棱锥 A − BCD 的体积最大,此时 ∆ABC 与 ∆BDC
是等边三角形,
高三数学理科试题 第 1 页(共 10 页)
高三数学理科试题 第 2 页(共 10 页)
设 BC = a ,则 A= M D= M
3 2
a , S∆BCD
=
3 a2 . 4
=h AM sin(π −= ∠AMD)
6 3
a
, VA− B= CD
1 3
S∆DBC= ⋅ h

衡水中学2019-2020学年高三上学期二调考试数学(理)试题(解析版)

衡水中学2019-2020学年高三上学期二调考试数学(理)试题(解析版)

2019-2020学年度上学期高三年级二调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟.第Ⅰ卷(选择题)一、选择题(本题共12小题,从每小题给出的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.若3cos 5x =-,且2x ππ<<,则tan sin x x +的值是( ) A. 3215-B. 815-C. 815D.3215【答案】B 【解析】 【分析】由已知利用同角三角函数基本关系式可求sinx ,tanx 的值,即可得解.【详解】由题意,知3cosx 5=-,且πx π2<<,所以4sinx 5==,则sinx 4tanx cosx 3==-, 448tanx sinx 3515∴+=-+=-.故选:B .【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题. 2.设30.2a =,2log 0.3b =,3log 2c =,则( ) A. a b c >> B. a c b >> C. b a c >> D. c a b >>【答案】D 【解析】 【分析】利用函数的单调性,并结合取中间值法即可判断大小. 【详解】由于300.20.2<<,22log 0.3log 10<=,331log 2log 2>=, 则323log 0.30.2log 2<<,即c a b >>.故选:D.【点睛】本题主要考查对数与对数函数和指数与指数函数,利用函数的单调性比较大小是常用手段,属基础题.3.已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( ) A. 43- B.2332 C.34D. 38-【答案】A 【解析】 【分析】利用周期性和奇函数的性质可得,()()()222log 12log 1244log 12f f f =-=--,再根据指数运算和对数运算即可求得结果.【详解】由题意()(4)f x f x =+,故函数()f x 是周期为4的函数, 由23log 124<<,则21log 1240-<-<,即204log 121<-<, 又函数()f x 是定义在R 上的奇函数,则()()()2244log 12222log 1224log 12log 1244log 12223f f f -=-=--=-=-=-,故选:A.【点睛】本题主要考查对数函数,奇函数,周期函数,以及抽象函数的性质,综合性较强,属中档题. 4.已知圆22:4O x y +=与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动3π弧长达到点N ,以x 轴的正半轴为始边,ON 为终边的角即为α,则sin α=( ) A.3B.12C .D.【答案】D 【解析】 【分析】画图分析,根据弧长公式求出旋转的角的弧度数,则可求出α的值,从而得到结果. 【详解】由题意得M (0,2),并画出图象如图所示.由点M 沿圆O 顺时针运动3π弧长到达点N ,则旋转的角的弧度数为326ππ=,即以ON 为终边的角3πα=,所以3sin α=. 故选:D .【点睛】本题考查三角函数的定义和弧长公式,注意仔细审题,认真计算,属基础题.5.函数(),,00,2s ()()in x xe ef x x xππ-+=∈-的图象大致为( )A.B. C. D.【答案】A 【解析】 【分析】根据函数的奇偶性可排除B ,再根据()0,x π∈时()f x 的符号可排除D ,再根据x π→时,()+f x →∞可排除C ,从而得到正确的选项.【详解】函数的定义域关于原点对称,且()()()2sin x xe ef x f x x -+-==--, 故()f x 为奇函数,其图像关于原点对称,所以排除B. 又当()0x π∈,时,sin 0,0xxx e e->+>,所以()0f x >,故排除D.又当x π→时,()+f x →∞,故排除C , 综上,选A.【点睛】本题为图像题,考查我们从图形中扑捉信息的能力,一般地,我们需要从图形得到函数的奇偶性、单调性、极值点和函数在特殊点的函数值,然后利用所得性质求解参数的大小或取值范围. 6.如图是函数sin()0,02y x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,将该图象向右平移(0)m m >个单位长度后,所得图象关于直线4x π=对称,则m 的最小值为( )A.12πB.6π C.4π D.3π 【答案】B 【解析】 【分析】根据三角函数的图象与性质求出()sin 23f x x π⎛⎫=+⎪⎝⎭,再根据右移得到函数()sin 223g x x m π⎛⎫=+- ⎪⎝⎭,利用对称轴的性质,得到m 的表达式,从而求得m 的最小值. 【详解】令()sin()f x y x ωϕ==+,由三角函数图象知,566T πππ=+=,所以2ππω=,所以2ω=.因为函数()f x 过点,06π⎛⎫-⎪⎝⎭,且02πϕ<<,则206πϕ-⨯+=,即3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,将该函数图象向右平移m 个单位后,所得图象的解析式是()sin 223g x x m π⎛⎫=+- ⎪⎝⎭, 因为函数()g x 的图象关于直线4x π=对称,所以22()432m k k Z ππππ⨯+-=+∈,解得()62k m k Z ππ=-∈,又m >0,所以m 的最小值为6π.【点睛】本题考查三角函数的图象与性质,解题的关键在于根据图象正确求出函数解析式,并熟练掌握正弦函数的性质,属中档题. 7.已知函数()()xxf x x e e-=-,对于实数a b ,,“0a b +>”是“()()0f a f b +>”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】 【分析】先判断出函数为奇函数,且为R 的单调增函数,结合单调性与奇偶性利用充分条件与必要条件的定义判断即可.【详解】因为()()()()xx x x f x x e e x e e f x ---=--=--=-,所以()f x 为奇函数,0x >时,()1x x f x x e e ⎛⎫=- ⎪⎝⎭,()f x 在()0,∞+上递增,所以函数()f x 在R 上为单调增函数, 对于任意实数a 和b ,若0a b +>,则()(),a b f a f b >-∴>-, 函数()f x 为奇函数,()()f a f b ∴>-,()()0f a f b ∴+>,充分性成立;若()()0f a f b +>,则()()()f a f b f b >-=-, 函数在R 上为单调增函数,a b ∴>-,0a b ∴+>,必要性成立,∴对于任意实数a 和b ,“0a b +>”,是“()()0f a f b +>”的充要条件,故选C.【点睛】本题主要考查函数的单调性与奇偶性以及充分条件与必要条件的定义,属于综合题. 判断充分条件与必要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 8.已知0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且sin 1cos 2cos 2cos sin 2βαβαα+=+,则tan 24παβ⎛⎫++= ⎪⎝⎭( ) A. -1 B. 1C.3D. 3-【答案】A 【解析】 【分析】利用二倍角公式和三角函数的商数关系对1cos 22cos sin 2ααα++进行化简变形,从而可得tan tan 42παβ⎛⎫=- ⎪⎝⎭,再根据0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,0,424παπ⎛⎫-∈ ⎪⎝⎭,结合正切函数的单调性,则42παβ=-,代入所求表达式从而可求得结果.【详解】2sin 1cos 22cos cos 2cos sin 22cos 2sin cos βααβααααα+==++ 222cos sin cossin1tancos 22222tan 1sin 42sin cos 1tan sin cos 22222ααααααπααααααα---⎛⎫=====- ⎪+⎝⎭⎛⎫+++ ⎪⎝⎭, 故tan tan 42παβ⎛⎫=-⎪⎝⎭,又0,2πα⎛⎫∈ ⎪⎝⎭,0,424παπ⎛⎫-∈ ⎪⎝⎭,42παβ∴=-,故22πβα=-,则3tan 2tan 144ππαβ⎛⎫⎛⎫++==- ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查二倍角公式,三角函数的商数关系和正切函数的性质,综合性强,要求一定的计算化简能力,属中档题.9.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的个数是( ) ①函数()f x 的值域与()g x 的值域相同;②若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点; ③把函数()f x 的图像向右平移2π个单位长度,就可以得到()g x 的图像; ④函数()f x 和()g x 在区间,44ππ⎛⎫- ⎪⎝⎭内都是增函数. A. 0 B. 1C. 2D. 3【答案】B 【解析】【分析】求出函数f (x )的导函数g (x ),再分别判断f (x )、g (x )的值域、极值点和零点,图象平移和单调性问题即可一一做出判断,从而得到答案.【详解】()sin cos 4f x x x x x x π⎫⎛⎫=-=-=-⎪ ⎪⎪⎝⎭⎭, ()sin +cos ++224g x x x x x x π⎫⎛⎫===⎪ ⎪⎪⎝⎭⎭, ①, ()4f x x π⎛⎫=- ⎪⎝⎭,()4g x x π⎛⎫=+ ⎪⎝⎭,两函数的值域相同,都是[,故①正确;②,若0x 是函数()f x 的极值点,则042x k πππ-=+,k Z ∈,解得034x k ππ=+,k Z ∈,()03044g x k πππ⎛⎫=++= ⎪⎝⎭,0x ∴也是函数()g x 的零点,故②正确;③,把函数()f x 的图象向右平移2π个单位,得sin cos cos sin ()222f x x x x x g x πππ⎛⎫⎛⎫⎛⎫-=---=--≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故③错误;④,,44x ππ⎛⎫∈- ⎪⎝⎭时,,042x ππ⎛⎫-∈- ⎪⎝⎭,()f x 是单调增函数,0,42x ππ⎛⎫+∈ ⎪⎝⎭,()g x 也是单调增函数,故④正确.综上所述,以上结论中错误的个数是1. 故选:B.【点睛】本题考查了两角和与差的正弦公式,正弦函数的单调性,以及三角函数图象的变换,熟练掌握公式和正弦函数的性质是解本题的关键,属中档题. 10.已知函数()cos f x x =,若存在实数12,,,n x x x ,满足1204n x x x π≤<<<≤,且()()()()()()122318n n f x f x f x f x f x f x --+-++-=,2n ≥,n *∈N ,则n 的最小值为( )A. 3B. 4C. 5D. 6【答案】C 【解析】 【分析】由余弦函数的有界性可得,对任意x i ,x j (i ,j =1,2,3,…,n ),都有()()max min ()()2i jf x f x f x f x --=,要使n 取得最小值,尽可能多让x i (i =1,2,3,…,n )取得最高点和最低点,然后作图可得满足条件的最小n 值.【详解】∵()cos f x x =对任意x i ,x j (i ,j =1,2,3,…,n ), 都有()()max min ()()2i jf x f x f x f x --=,要使n 取得最小值,尽可能多让x i (i =1,2,3,…,n )取得最高点和最低点, 考虑0≤x 1<x 2<…<x n ≤4π,()()()()()()122318n n f x f x f x f x f x f x --+-++-=,按下图取值即可满足条件,则n 的最小值为5. 故选:C.【点睛】本题考查三角函数与数列的综合,考查了余弦函数的图象与性质,审清题意,画出图象是解决本题的关键,属中档题.11.设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( )A. 4B. 5C. 6D. 7【答案】 C 【解析】 试题分析:,转化为如图,画出函数和的图像,当时,有一个交点, 当时,,,此时,是函数的一个零点, ,,满足,所以在有两个交点,同理,所以在有两个交点, ,所以在内没有交点,当时,恒有,所以两个函数没有交点所以,共有6个.考点:1.分段函数;2.函数的零点.3数形结合求函数零点个数. 12.已知0>ω,2πϕ≤,在函数()sin()f x x ωϕ=+,()cos()g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当(,)64x ππ∈-时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A. (,)63ππB. ,63ππ⎡⎤⎢⎥⎣⎦C. (,)32ππD. ,32ππ⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】令F (x )=()sin x ωϕ+﹣()cos x ωϕ+=0求出零点,利用相邻两个交点的横坐标之差的绝对值为2π得ω值,然后根据当,64x ππ⎛⎫∈-⎪⎝⎭时,f(x)>0恒成立即可得到ϕ的取值范围. 【详解】由题意,函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象中相邻两个交点的横坐标之差的绝对值为2π. 令F (x )=()sin x ωϕ+﹣()cos x ωϕ+=0sin (4x πωϕ+-)=0,即4x πωϕ+-=k π,k ∈Z .当k =0时,可得一个零点x 1=4πω-∅当k =1时,可得二个零点x 2=54πω-∅, ω>0, 那么|x 1﹣x 2|=|544|2ππππωωω-∅-∅-==,可得ω2=,则()()sin 2f x x ϕ=+, 又当,64x ππ⎛⎫∈-⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方, 当f(x)>0时2k π2x φ2k ππ,<+<+解得k πx k π222ϕπϕ-<<+-,只需26224k k ϕπππϕππ⎧-≤-⎪⎪⎨⎪+-≥⎪⎩即2k π2,32k ππϕπ+≤≤+又2πϕ≤,则当k=0时,ϕ的取值范围是,32ππ⎡⎤⎢⎥⎣⎦故选:D .【点睛】本题考查三角函数图像的性质,考查恒成立问题,属于中档题.第Ⅱ卷(非选择题)二、填空题(本题共4小题)13.已知曲线3y x x =-在点()00,x y 处的切线平行于直线220x y --=,则0x =______. 【答案】-1 【解析】 【分析】求出函数的导数,代入x 0求得切线的斜率,再由两直线平行的条件可得到关于x 0的方程,解方程即可得到所求值,注意检验.【详解】3y x x =-的导数为231y x '=-,即在点()00,x y 处的切线斜率为2031k x =-,由切线平行于直线220x y --=,则2k =,即20312x -=,解得01x =或1-.若01x =,则切点为(1,0),满足直线220x y --=,不合题意. 若01x =-,则切点为(1,0)-,不满足直线220x y --=,符合题意. 故答案为:1-.【点睛】本题考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,同时考查两直线平行的问题,属基础题.14.设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为__________.【答案】(1,)+∞ 【解析】 【分析】根据条件构造函数F (x )()xf x e=,求函数的导数,利用函数的单调性即可得到结论.【详解】设F (x )()xf x e=,则F ′(x )()()'xf x f x e-=,∵()()f x f x '>,∴F ′(x )>0,即函数F (x )在定义域上单调递增. ∵()()121x ef x f x -<-∴()()2121xx f x f x ee--<,即F (x )<F (2x 1-)∴x 2x 1-<,即x >1 ∴不等式()()121x ef x f x -<-的解为()1,+∞故答案为:()1,+∞【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.15.如图,阴影部分是由曲线22y x =和223x y +=及x 轴围成的封闭图形,则阴影部分的面积为______.【答案】328π-【解析】 【分析】首先求出曲线的交点,然后求直线3y x =与22y x =围成的面积1S ,利用扇形的面积公式,求得扇形AOB 的面积2S ,则阴影部分的面积为21S S S =-,计算即可求得结果.【详解】曲线22y x =和圆223x y +=的在第一象限的交点为33,2A ⎛⎫⎪ ⎪⎝⎭, 则直线OA 的方程为:3y x =, 如图,则直线OA 与抛物线22y x =所围成的面积()3322231032332333322324388S x x dx x x ⎛⎫=-=-=-⨯= ⎪ ⎪⎝⎭⎰,又扇形AOB 圆心角为3πα=,则扇形AOB 的面积221132232S r ππα==⨯⨯=, 所以阴影部分的面积2132S S S π=-=. 故答案为:328π-. 【点睛】本题考查了利用定积分求阴影部分的面积,关键是利用定积分正确表示对应的面积,属中档题. 16.设ABC ∆的内角A B C ,,的对边长a b c ,,成等比数列,()1cos cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为__________. 【答案】34【解析】 【分析】由()1cos cos 2A C B --=,可得1cos cos 4A C =,由,,a b c 成等比数列,结合正弦定理 可得2sin sin sinB AC =,两式相减,可求得3B π=,从而得ABC ∆为正三角形,设正三角形边长为a ,ACD S ∆ ()2a =-,利用基本不等式可得结果. 【详解】()cos cos A C B -- ()()1cos cos 2A C A C =-++=, 1cos cos 4A C ∴=,① 又,,a b c 成等比数列,2b ac ∴=,由正弦定理可得2sin sin sin B A C =,② ①-②得21sin cos cos sin sin 4B AC A C -=- ()cos cos A C B =+=-,21cos 1cos 4B B ∴+-=-,解得1cos ,23B B π==, 由()1cos cos 2A C B --=,得()1cos cos 12A C B -=+=,0,A C A B -==,ABC ∆为正三角形,设正三角形边长为a , 则2CD a =-,1sin1202ACD S AC CD ∆=⋅()()122224a a a a =-⨯=- ()224a a ⎡⎤+-⎣⎦≤=,1a =时等号成立。

河北省衡水中学2020届高三下学期第二次调研数学(理)试题

河北省衡水中学2020届高三下学期第二次调研数学(理)试题

河北省衡水中学2020届高三下学期第二次调研数学(理)试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合{1,3,4,5}A =,集合2{}450|B x Z x x =∈--<,则A B 的子集个数为( ) A .2B .4C .8D .162.如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等,若复数z 所对应的点为1Z ,则复数•z i (i 是虚数单位)的共轭复数所对应的点为( )A .1ZB .2ZC .3ZD .4Z3.下列四个函数,在0x =处取得极值的函数是( ) ①3y x = ②21y x += ③y x = ④2x y = A .① ②B .② ③C .③ ④D .① ③4.已知变量,x y 满足:20{2300x y x y x -≤-+≥≥,则2x y z +=的最大值为( )A B .C .2 D .45.执行如图所示的程序框图,输出的结果是( )A .5B .6C .7D .86.两个等差数列的前n 项和之比为51021n n +-,则它们的第7项之比为( )A .2B .3C .4513D .70277.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( )A .0.05B .0.1C .0.15D .0.28.函数()sin (0,0)f x A x A ωω=>>的部分图象如图所示,(1)(2)(3)(2015)f f f f ++++的值为( )A .0B.C.D.9.若(1)x +7280128(12)x a a x a x a x -=++++,则127a a a +++的值是( )A .-2B .-3C .125D .-13110.已知圆1C :2220x cx y ++=,圆2C :2220x cx y -+=,c 是椭圆C :22221x y a b +=的半焦距,若圆1C ,2C 都在椭圆内,则椭圆离心率的范围是( )A .1,12⎡⎫⎪⎢⎣⎭B .10,2⎛⎫ ⎪⎝⎭C.2⎫⎪⎪⎣⎭ D.0,2⎛ ⎝⎦11.定义在R 上的函数()f x 对任意1212,()x x x x ≠都有1212()()0f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,2t ss t-+的取值范围是( ) A .1[3,)2--B .1[3,]2--C .1[5,)2--D .1[5,]2--12.正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C时四面体ABCD 外接球表面积为( ) ABC .7πD .19π第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.一个几何体的三视图如图所示,该几何体体积为__________.14.已知向量AB 与AC 的夹角为60,且2AB AC ==,若AP AB AC λ=+且AP BC ⊥,则实数λ的值为__________.15.已知双曲线22221(0,0)x y a b a b-=>>的半焦距为c ,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线24y cx =的准线被双曲线截得的弦长是23(e为双曲线的离心率),则e 的值为__________.16.用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,(9)9g =,10的因数有1,2,5,10,(10)5g =,那么2015(1)(2)(3)(21)g g g g ++++-=__________.三、解答题17.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知a =3b =,sin B A +=(1)求角A 的大小; (2)求ABC ∆的面积.18.某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)当3a b ==时,记甲型号电视机的“星级卖场”数量为m ,乙型号电视机的“星级卖场”数量为n ,比较,m n 的大小关系;(2)在这10个卖场中,随机选取2个卖场,记X 为其中甲型号电视机的“星级卖场”的个数,求X 的分布列和数学期望;(3)若1a =,记乙型号电视机销售量的方差为2s ,根据茎叶图推断b 为何值时,2s 达到最小值.(只需写出结论)19.如图1,在边长为4的菱形ABCD 中,60BAD ∠=,DE AB ⊥于点E ,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A D DC ⊥,如图2.(1)求证:1A E ⊥平面BCDE ; (2)求二面角1E A B C --的余弦值;(3)判断在线段EB 上是否存在一点P ,使平面1A DP ⊥平面1A BC ?若存在,求出EPPB的值;若不存在,说明理由.20.如图,已知椭圆2214x y +=,点,A B 是它的两个顶点,过原点且斜率为k 的直线l与线段AB 相交于点D ,且与椭圆相交于,E F 两点.(1)若6ED DF =,求k 的值; (2)求四边形AEBF 面积的最大值. 21.设函数f(x)=x 2−(a −2)x −alnx .(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点,求满足条件的最小正整数a 的值; (3)若方程f(x)=c(c ∈R),有两个不相等的实数根x 1,x 2,比较f ′(x 1+x 22)与0的大小.22.如图,直线PQ 与⊙O 相切于点A ,AB 是⊙O 的弦,∠PAB 的平分线AC 交⊙O 于点C ,连结CB ,并延长与直线PQ 相交于点Q ,若AQ=6,AC=5.(Ⅰ)求证:QC 2﹣QA 2=BC ⋅QC ; (Ⅱ)求弦AB 的长.23.在平面直角坐标系xOy 中,直线l的参数方程为322x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C的方程为ρθ=. (1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P坐标为,圆C 与直线l 交于,A B 两点,求||||PA PB +的值. 24.选修4-5:不等式选讲(1)已知函数()|1||3|f x x x =-++,求x 的取值范围,使()f x 为常函数;参考答案1.C 【解析】试题分析:由2450x x --<,解得15x -<<,所以{}0,1,2,3,4B =,所以{}1,3,4A B ⋂=,所以A B ⋂的子集个数为328=,故选C .考点:1、不等式的解法;2、集合的交集运算;3、集合的子集. 2.B 【解析】试题分析:z i ⋅为将复数z 所对应的点逆时针旋转90得2Z ,选B. 考点:复数几何意义【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)a bi c di ac bd ad bc i a b c d R ++=-++∈. 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b .a bi - 3.B 【解析】 【分析】 【详解】试题分析:能不能取得极值要看函数在这个导函数的零点处的两边是否异性单调.通过检验②③这两个函数在处的左右两边情况是:左边是减函数,右边是增函数,因此是极值点. 而①④两个函数都是单增的,所以应选B . 考点:函数极值的定义. 4.D 【解析】试题分析:作出满足不等式组的平面区域,如图所示,由图知目标函数12z x y =+经过点(1,2)A 时取得最大值,所以212max 4z ⨯+==,故选D .考点:简单的线性规划问题. 5.B 【解析】 【分析】按照流程图运行到第五次循环后停止循环,由此可得答案. 【详解】1i =,12n =,第一次循环: 8n =,2i =, 第二次循环:31n =,3i =, 第三次循环:123n =,4i =, 第四次循环:119n =,5i =,第五次循环:475n =,6i =,停止循环, 输出6i =. 故选:B. 【点睛】本题考查了循环结构流程图和条件结构流程图,属于基础题. 6.B 【解析】试题分析:设这两个数列的前n 项和分别为,n n S T ,则1131377113137713()132513102313()13221312a a S a ab b T b b +⨯⨯+=====+⨯⨯-,故选B .考点:1、等差数列的前n 项和;2、等差数列的性质.7.B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.8.A 【解析】试题分析:由函数的图象可得:22,2(62)8A T w π==-==,解得4w π=,可得函数的解析式为()sin4f x x π=,所以()()()()()()122,340,562,f f f f f f ======- ()()()780,9f f f ===,观察规律可知函数()f x 的值以8为周期,且()()()()()()()12345780f f f f f f f ++++++=,由于201525187=⨯+,故可得()()()()()()()()()()12320151234570f f f f f f f f f f ++++=+++++=,故选A.考点:三角函数的周期性.【方法点晴】本题主要考查了三角函数sin()y A wx ϕ=+部分图象确定函数的解析式、数列的周期性、数列的求和扥知识点的综合应用,其中根据三角函数的图象,求出函数的解析式,进而分析出函数的性质和数列的周期性,进而求解数列的和是解答本题的关键,着重考查了学生分析和解答问题的能力及转化与化归思想的应用. 9.C 【解析】试题分析:令0x =,得01a =;令1x =,得01282a a a a -=++++,即1283a a a +++=-.又7787(2)128a C =-=-,所以12783125a a a a +++=--=,故选C .考点:二项式定理. 10.B 【解析】 【分析】首先求出两圆的圆心和半径,可得两圆的位置关系.则问题等价于圆2C 上的点()()2,0,,c c c都在椭圆的内部,列不等式组,即可求出椭圆离心率的范围. 【详解】把圆1C :2220x cx y ++=,圆2C :2220x cx y -+=化为标准式得,圆()2212:C c x c y ++=,圆()2222:C x c y c -+=,则圆1C 和圆2C 关于原点对称. 圆1C ,2C 都在椭圆内等价于圆2C 上的点()()2,0,,c c c 都在椭圆的内部,222222221c a c c a b b a c<⎧⎪⎪∴+<⎨⎪=-⎪⎩,解得102c a <<,即102e <<.故选:B . 【点睛】本题考查圆与椭圆的位置关系,根据图形找出临界值,列出关于,a c 的不等式组即可求解. 11.D 【解析】试题分析:由已知条件知函数()f x 为奇函数且在R 上为减函数,由22(2)(2)f s s f t t -≤--有22(2)(2)f s s f t t -≤-,所以2222s s t t -≥-,()(2)0s t s t -+-≥,若以s 为横坐标,t 为纵坐标,建立平面直角坐标系,如图所示,阴影部分为不等式()(2)0{14s t s t s -+-≥≤≤表示的平面区域,即ABC ∆及其内部,(1,1),(4,4),(4,2)A B C -,令2t sz s t -=+,则21z t s z +=-,求出1,12OC AB k k =-=,所以,解得152z -≤≤-,∴2t s s t -+的取值范围是15,2⎡⎤--⎢⎥⎣⎦,选D.考点:1.函数的基本性质;2.线性规划.【方法点睛】本题主要考查了函数的性质:单调性和奇偶性,以及线性规划的相关知识,属于中档题. 利用已知条件得出函数()f x 是R 上的减函数,由函数(1)=-y f x 的图象关于(1,0)成中心对称,根据图象的平移,得出()y f x =的图象关于原点成中心对称,所以()f x 为奇函数,解不等式22(2)(2)f s s f t t -≤--,得出()(2)0s t s t -+-≥,画出不等式组表示的平面区域,2t sz s t -=+,则21z t s z+=-,通过图形求关于s 的一次函数的斜率得出z 的范围,从而求出2t ss t-+的范围. 12.C 【解析】分析:三棱锥B ACD -的三条侧棱,BD AD DC DA ⊥⊥,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥B ACD -的三条侧棱,BD AD DC DA ⊥⊥,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面BDC ∆,1,BD CD BC ===120BDC ︒∴∠=,BDC ∴∆的外接圆的半径为112=,由题意可得:球心到底面的距离为2∴球的半径为r ==外接球的表面积为:274474S r πππ==⋅=. 故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.13 【解析】该几何体可以看作是一个四棱锥,四棱锥底面是边长为22123V =⨯=. 14.1 【解析】试题分析:因为AP BC ⊥,所以0AP BC ⋅=.2()()AP BC AB AC AC AB AB AC AC λλ⋅=+⋅-=⋅+-2AB AB AC λ-⋅=22(1)cos60||AB AC AC AB λλ-︒+-=2(1)44220λλλ-+-=-+=,解得1λ=.考点:1、向量的数量积运算;2、向量的线性运算.15.2【解析】试题分析:由题意,得抛物线的准线为x c =-,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为22b a ,所以22222b be a =,即22b e a =,所以,整理,得422910e e -+=,解得62e =或3e =.又过焦点且斜率为1的直线与双曲线的右支交于两点,所以62e =. 考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系.【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中,,a b c 的关系式,求值问题就是建立关于,,a b c 的等式,求取值范围问题就是建立关于,,a b c 的不等式.16.2015413-【解析】由题意得(),(),()(),(),2n g n n n g n g n ==为奇数为偶数 所以20152015201521(1)(2)(3)(4)(22)(21)S g g g g g g -=+++++-+-20142015(1)(1)(3)(2)(21)(21)g g g g g g =+++++-+-20142015(1)(2)(3)(21)13(21)g g g g =+++++-++++-201420142013201420152014201320142121212(121)4442S S S ---+-=+=+=++1201520151201320141201320142114414441444.143S ---==++++=++++==-17.(1)3A π=;(2)2ABC S ∆=. 【解析】试题分析:(1)先由正弦定理求得sin B 与sin A 的关系,然后结合已知等式求得sin A 的值,从而求得A 的值;(2)先由余弦定理求得c 的值,从而由cos B 的范围取舍c 的值,进而由面积公式求解.试题解析:(1)在ABC ∆中,由正弦定理sin sin a b A B =3sin B=,即3sin B A =.sin B A +=sin A =. 因为ABC ∆为锐角三角形,所以3A π=.(2)在ABC ∆中,由余弦定理222cos 2b c a A bc+-=,得219726c c +-=,即2320c c -+=.解得1c =或2c =.当1c =时,因为222cos 0214a c b B ac +-==-<,所以角B 为钝角,不符合题意,舍去.当2c =时,因为222cos 0214a cb B ac +-==>,又,,b c b a B C B A >>⇒>>,所以ABC ∆为锐角三角形,符合题意.所以ABC ∆的面积11sin 3222S bc A ==⨯⨯=. 考点:1、正余弦定理;2、三角形面积公式. 18.(1)m n =;(2)X 的分布列为∴252()0121999E X =⨯+⨯+⨯=;(3)0b =. 【解析】试题分析:(1)根据茎叶图,得2数据的平均数为101014182225273041432410+++++++++=.乙组数据的平均数为1018202223313233334326.510+++++++++=.由茎叶图,知甲型号电视剧的“星级卖场”的个数5m =,乙型号电视剧的“星级卖场”的个数5n =,所以m n =.(2)由题意,知X 的所有可能取值为0,1,2.且()025*******C C P X C ===,()()11025555221010521299C C C C P X P X C C ======,, 所以X 的分布列为所以()25201+2=1999E X =⨯+⨯⨯. (3)当0b =时,2s 达到最小值.试题解析:(1)根据平均数的定义分别求出甲、乙两组数据的平均数,从而得到“星级卖场”的个数进行比较;(2)写出X 的所有可能取值,求出相应概率,列出分布列,求得数学期望;(3)根据方差的定义求解.考点:1、平均数与方差;2、分布列;3、数学期望. 19.(1)详见解析;(2)7;(3)不存在. 【解析】(1)∵DE ⊥BE ,BE ∥DC , ∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D , ∴DC ⊥平面A 1DE , ∴DC ⊥A 1E .又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE .(2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =2,则A 1(0,0,2),B (2,0,0),C (4,2,0),D (0,2,0), ∴1BA =(−2,0,2),BC =(2,2,0), 易知平面A 1BE 的一个法向量为n =(0,1,0). 设平面A 1BC 的法向量为m =(x ,y ,z ), 由1BA ·m =0,BC ·m =0,得令y =1,得m =(−,1,−),∴cos 〈m ,n 〉===.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC . 设P (t ,0,0)(0≤t ≤2),则1A P =(t ,0,−2),1A D =(0,2,−2), 设平面A 1DP 的法向量为p =(x 1,y 1,z 1), 由110A D p A P p ⎧⋅=⎪⎨⋅=⎪⎩得令x 1=2,得p =.∵平面A 1DP ⊥平面A 1BC , ∴m·p =0,即2−+t =0,解得t =−3. ∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC . 20.(1)23k =或38k =;(2) 【解析】试题分析:(1)先由两点式求得直线AB 的方程,然后设l 的方程为y kx =.设()00,D x kx,()11,E x kx ,()22,F x kx ,联立直线l 与椭圆的方程,得到12,x x 间的关系,再由6ED DF=与点D 在线段AB 上求得k 的值;(2)由点到直线的距离公式分别求得点,A B 到线段EF 的距离,从而得到四边形AEBF 的面积的表面式,进而求得其最大值.试题解析:(1)依题设得椭圆的顶点()()2,0,0,1A B ,则直线AB 的方程为220x y +-=. 设直线EF 的方程为()0y kx k =>.设()()()001122,,,,D x kx E x kx F x kx ,,其中12x x <,联立直线l 与椭圆的方程221{4x y y kx+==,消去y ,得方程()22144k x +=.(3分)故21x x =-=,由6ED DF =知,()02206x x x x -=-,得()021215677x x x x =+==D 在线段AB 上,知00220x kx +-=,得021+2x k=,所以21+2k ,化简,得2242560k k -+=,解得23k =或38k =. (2)根据点到直线的距离公式,知点,A B 到线段EF的距离分别为12h h ==又EF =所以四边形AEBF 的面积为()1221212k S EF h h +=+====≤ 当且仅当14k k=,即12k =时,取等号,所以四边形AEBF 面积的最大值为考点:1、直线与圆的位置关系;2、点到直线的距离公式;3、基本不等式. 21.(1) 单调增区间为(a2,+∞),单调减区间为(0,a2). (2) a =3,(3)详见解析【解析】试题分析: (1)先求函数导数,再求导函数零点−1,a ,根据定义域舍去−1,对a 进行讨论, a ≤0时,f ′(x)>0,单调增区间为(0,+∞).a >0时,有增有减;(2) 函数f(x)有两个零点,所以函数必不单调,且最小值小于零 ,转化研究最小值为负的条件:a +4ln a2−4>0,由于此函数单调递增,所以只需利用零点存在定理探求即可,即取两个相邻整数点代入研究即可得a 的取值范围,进而确定整数值,(3)根据f ′(a2)=0,所以只需判定x 1+x 22与a2大小,由f(x 1)=f(x 2)可解得a =x 12+2x 1−x 22−2x2x 1+lnx 1−x 2−lnx 2,代入分析只需比较ln x1x 2与2x 1−2x 2x 1+x 2大小, 设t =x 1x 2,构造函数g(t)=lnt −2t−2t+1,利用导数可得最值,即可判定大小.试题解析:(1)解:f ′(x)=2x −(a −2)−ax=2x 2−(a−2)x−ax=(2x−a)(x+1)x(x >0).当a ≤0时,f ′(x)>0,函数f(x)在(0,+∞)上单调递增,函数f(x)的单调增区间为(0,+∞). 当a >0时,由f ′(x)>0,得x >a2;由f ′(x)<0,得0<x <a2. 所以函数f(x)的单调增区间为(a2,+∞),单调减区间为(0,a2).(2)解:由(1)得,若函数f(x)有两个零点则a >0,且f(x)的最小值f(a2)<0,即−a 2+4a −4aln a2<0.因为a >0,所以a +4ln a2−4>0.令ℎ(a)=a +4ln a2−4,显然ℎ(a)在(0,+∞)上为增函数, 且ℎ(2)=−2<0,ℎ(3)=4ln 32−1=ln8116−1>0,所以存在a 0∈(2,3),ℎ(a 0)=0.当a >a 0时,ℎ(a)>0;当0<a <a 0时,ℎ(a)<0.所以满足条件的最小正整数a =3 (3)证明:因为x 1,x 2是方程f(x)=c 的两个不等实根,由(1)知a >0.不妨设0<x 1<x 2,则x 12−(a −2)x 1−alnx 1=c ,x 22−(a −2)x 2−alnx 2=c . 两式相减得x 12−(a −2)x 1−alnx 1−x 22+(a −2)x 2+alnx 2=0,即x 12+2x 1−x 22−2x 2=ax 1+alnx 1−ax 2−alnx 2=a(x 1+lnx 1−x 2−lnx 2).所以a =x 12+2x 1−x 22−2x2x 1+lnx 1−x 2−lnx 2.因为f ′(a2)=0,当x ∈(0,a 2)时,f ′(x)<0, 当x∈(a2,+∞)时,f ′(x)>0, 故只要证x 1+x 22>a2即可,即证明x 1+x 2>x 12+2x 1−x 22−2x2x 1+lnx 1−x 2−lnx 2,即证明x 12−x 22+(x 1+x 2)(lnx 1−lnx 2)<x 12+2x 1−x 22−2x 2,即证明ln x1x 2<2x 1−2x 2x 1+x 2.设t =x1x 2(0<t <1).令g(t)=lnt −2t−2t+1,则g ′(t)=1t−4(t+1)2=(t−1)2t(t+1)2.因为t >0,所以g ′(t)≥0,当且仅当t =1时,g ′(t)=0,所以g(t)在(0,+∞)上是增函数.又g(1)=0,所以当t ∈(0,1)时,g(t)<0总成立.所以原题得证点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数ℎ(x)=f(x)−g(x).根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 22.(Ⅰ)证明见解析;(Ⅱ)AB =103【解析】试题分析:(Ⅰ)由于PQ 与⊙O 相切于点A ,再由切割线定理得:QA 2=QB ⋅QC=(QC ﹣BC )⋅QC=QC 2﹣BC ⋅QC 从而命题得到证明(Ⅱ)解:PQ 与⊙O 相切于点A ,由弦切角等于所对弧的圆周角∠PAC=∠CBA ,又由已知∠PAC=∠BAC ,所以∠BAC=∠CBA ,从而AC=BC=5,又知AQ=6,由(Ⅰ)可得△QAB ∽△QCA ,由对应边成比例,求出AB 的值. 试题解析:(Ⅰ)证明:∵PQ 与⊙O 相切于点A ,∴由切割线定理得:QA 2=QB ⋅QC=(QC ﹣BC )⋅QC=QC 2﹣BC ⋅QC . ∴QC 2﹣QA 2=BC ⋅QC .(Ⅱ)解:∵PQ 与⊙O 相切于点A ,∴∠PAC=∠CBA , ∵∠PAC=∠BAC ,∴∠BAC=∠CBA ,∴AC=BC=5又知AQ=6,由(Ⅰ) 可知QA 2=QB ⋅QC=(QC ﹣BC )⋅QC ,∴QC=9 由∠QAB=∠ACQ ,知△QAB ∽△QCA ,∴ABAC =QAQC ,∴AB =103.考点:切割线定理及三角形相似.【方法点睛】(1)从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角;(2)判断三角形相似:一是平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似;二是如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似;三是如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似;四是如果两个三角形的三组对应边的比相等,那么这两个三角形相似;五是对应角相等,对应边成比例的两个三角形叫做相似三角;(3)切割线定理:切割线定理,是圆幂定理的一种,从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 视频 23.(1)(2)32【解析】试题分析:(1)由加减消元得直线l 的普通方程,由222sin ,y x y ρθρ==+得圆C 的直角坐标方程;(2)把直线l 的参数方程代入圆C 的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t 1|+|t 2|=t 1+t 2,再根据韦达定理可得结果试题解析:解:(Ⅰ)由得直线l 的普通方程为x+y ﹣3﹣=0又由得 ρ2=2ρsinθ,化为直角坐标方程为x 2+(y ﹣)2=5;(Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程, 得(3﹣t )2+(t )2=5,即t 2﹣3t+4=0 设t 1,t 2是上述方程的两实数根, 所以t 1+t 2=3 又直线l 过点P,A 、B 两点对应的参数分别为t 1,t 2,所以|PA|+|PB|=|t 1|+|t 2|=t 1+t 2=3. 24.(1)[]3,1x ∈-;(2)3. 【解析】试题分析:(1) 利用零点分段法求解;(2)利用柯西不等式求解.试题解析:(1) ()22,313{4,3122,1x x f x x x x x x --<-=-++=-≤≤+>.则当[]3,1x ∈-时,()f x 为常函数.(2)由柯西不等式得())2222222x y z ⎡⎤++++≥++⎢⎥⎣⎦,所以33-≤++≤,==即x y z ===时,取最大值,因此m 的最大值为3.考点:1、零点分段法;2、柯西不等式.。

河北衡水中学2019—2020学年高三年级下学期第二次质检考试数学试题(理)

河北衡水中学2019—2020学年高三年级下学期第二次质检考试数学试题(理)

河北衡水中学2019—2020学年高三年级下学期第二次质检考试数学试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和II卷(非选择题)两部分,满分150分,考试时间120分钟。

2.答题前请仔细阅读答题卡(纸)上的“注意事项”,按照“注意事项”的规定答题。

3.选择题答案涂在答题卡上,非选择题答案写在答题卡上相应位置,在试卷和草稿纸上作答无效。

第Ⅰ卷选择题(共60分)一.选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上。

1.已知集合A={x|x2﹣3x﹣4<0},B={y|y=2x+3},则A∪B=()A.[3,4)B.(﹣1,+∞)C.(3,4)D.(3,+∞)2.已知复数z1=3﹣bi,z2=1﹣2i,若是实数,则实数b的值为()A.6 B.﹣6 C.0 D.3.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B. C. D.4.设1tan2α=,4cos(π)((0,π))5ββ+=-∈,则tan(2)αβ-的值为()A.724-B.524-C.524D.7245.大衍数列来源于我国古代文献《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,…,则大衍数列中奇数项的通项公式为() A.22n n-B.212n -C.212n(-)D.22n6.如图所示,某几何体的正视图与俯视图均为边长为4的正方形,其侧视图中的曲线为圆周,则该几何体的体积为()A.B.C.D.7.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(4x+4﹣x)|x| B.f(x)=(4x﹣4﹣x)log2|x|C.f(x)=(4x+4﹣x)log2|x| D.f(x)=(4x+4﹣x )|x |8.五声音阶是中国古乐的基本音阶,故有成语“五音不全”。

河北省衡水市第二中学2019届高三上学期期中考试理科数学试题(含答案)

河北省衡水市第二中学2019届高三上学期期中考试理科数学试题(含答案)

an bn an 1 bn 1
19. 如图, 在四面体 ABCD 中, AD AB ,平面 ABD 平面 ABC , AB BC
2 AC ,且 AD BC 4 .
2
( 1)证明: BC 平面 ABD ; ( 2)设 E 为棱 AC 的中点,当四面体 ABCD 的体积取得最大值时,求二面角 C BD E 的余弦值 .
则在命题 q1 : p1 p2 , q2 : p1 p2 , q3 : p1 p2 和 q4 : p1
p2 中,真命题是(

A. q1 , q3
B. q2 , q3
C. q1 , q4
D. q2 , q4
9. 已知 0
a ,且 sin cos
4
2
5 , sin 5
4 则 sin( 45
)( )
3 10
衡水市第二中学高三调研考试
数学(理科)
考生注意: 1. 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 150 分 . 考试时间 120 分钟 . 2. 请将各题答案填在答题卡上 . 3. 本试卷主要考试内容:高考全部内容 .
第Ⅰ卷 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是
11. 数列 { an} 中的项按顺序可以排列成如图的形式,第一行
1项,排 a1;第二行 2 项,从作到右分别排 a2 , a3 ;
第三行 3 项,……以此类推,设数列 { an} 的前 n 项和为 Sn ,则满足 Sn 2000 的最小正整数 n 的值为( )
A. 27 C. 21
B. 26 D. 20
12. 已知函数 f ( x) 1 x2 a ln x ,若对 x1, x2 [2, 2

河北省衡水中学2019届高三上学期二调考试数学(理)试卷含答案解析

河北省衡水中学2019届高三上学期二调考试数学(理)试卷含答案解析

河北省衡水中学2019届高三上学期二调考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设集合,集合,则()M ={x |log 2(x−1)<0}N ={x |x ≥−2}M ∩N =A. B. C. D. {x |−2≤x <2}{x |x ≥−2}{x |x <2}{x |1<x <2}【答案】D 【解析】由题意得,M ={x|0<x ‒1<1}={x |1<x <2}∴.选D .N ∩M ={x |1<x <2}2.已知,则()sin (π5−α)=14cos (2α+3π5)=A. B. C. D.−787818−18【答案】A 【解析】由题意可得:cos (2α+3π5)=cos 2(α+3π10)=cos 2[π2−(π5−α)]=2cos 2[π2−(π5−α)]−1=2sin 2(π5−α)−1=−78.本题选择A 选项.3.等差数列的前n 项和为,若,,则 {a n }S n a 3+a 7‒a 10=5a 11‒a 4=7S 13=(A. 152B. 154C. 156D. 158【答案】C 【解析】【分析】利用等差数列的通项公式和前n 项和公式即可得出.【详解】设公差为d ,由,,可得,解出,.a 3+a 7‒a 10=5a 11‒a 4=7{a 1‒d =57d =7a 1=6d =1.∴S 13=13×6+13×122×1=156故选:C .【点睛】熟练掌握等差数列的通项公式和前n 项和公式是解题的关键.4.要得到函数的图象,只需将函数的图象上所有的点y =2sin 2x y =2cos (2x−π4)A. 再向左平行移动个单位长度B. 再向右平行移动个单位长度π4π8C. 再向右平行移动个单位长度D. 再向左平行移动个单位长度π4π8【答案】B 【解析】【分析】现将两个函数变为同名的函数,然后利用三角函数图像变换的知识得出珍贵选项.【详解】由于,故需将的图象上所有的点,向右平行移动个单位长y =2sin 2x =2cos (2x−π2)y =2cos (2x ‒π4)π8度得到.故选B.2cos [2(x−π8)−π4]=2cos (2x−π2)=2sin 2x【点睛】本小题主要考查三角函数图像变换,考查三角函数诱导公式,考查化归与转化的数学思想方法,属于基础题.5.若关于的方程有解,则实数的最小值为( )x log 13(a−3x )=x−2a A. 4 B. 6C. 8D. 2【答案】B 【解析】方程有解等价于,所以实数的最小log 13(a ‒3x )=x ‒2(13)x−2=a−3x ⇒a =(13)x−2+3x ≥2(13)x−2×3x =6a 值为66.已知数列的前n 项和为,,,且对于任意,,满足,{a n }S n a 1=1a 2=2n >1n ∈N ∗S n +1+S n ‒1=2(S n +1)则的值为 S 10A. 90 B. 91 C. 96 D. 100【答案】B 【解析】【分析】对于任意,,满足,可得,可得n >1n ∈N ∗S n +1+S n ‒1=2(S n +1)S n +1‒S n =S n ‒S n ‒1+2利用等差数列的通项公式与求和公式即可得出.a n +1‒a n =2.【详解】对于任意,,满足,∵n >1n ∈N ∗S n +1+S n ‒1=2(S n +1),∴S n +1‒S n =S n ‒S n ‒1+2.∴a n +1‒a n =2数列在时是等差数列,公差为2.,,∴{a n }n ≥2a 1=1a 2=2则.S 10=1+9×2+9×82×2=91故选:B .【点睛】本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种S n a n a n S n−1方法需要检验n=1时通项公式是否适用。

衡水中学2019-2020学年高三上学期二调考试数学(理)试题(原卷版)

2019-2020学年度上学期高三年级二调考试数学(理科)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试时间120分钟.第Ⅰ卷(选择题)一、选择题(本题共12小题,从每小题给出的四个选项中,选出最佳选项,并在答题纸上将该项涂黑)1.若3cos 5x =-,且2x ππ<<,则tan sin x x +的值是( ) A. 3215-B. 815-C. 815D.32152.设30.2a =,2log 0.3b =,3log 2c =,则( ) A. a b c >> B. a c b >> C. b a c >>D. c a b >>3.已知奇函数()f x 满足()(4)f x f x =+,当(0,1)x ∈时,()2x f x =,则()2log 12f =( ) A. 43- B.2332 C.34D. 38-4.已知圆22:4O x y +=与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动3π弧长达到点N ,以x 轴的正半轴为始边,ON 为终边的角即为α,则sin α=( ) A.3 B.12C.22D.3 5.函数(),,00,2s ()()in x xe ef x x xππ-+=∈-图象大致为( )A. B.C. D.6.如图是函数sin()0,02y x πωϕωϕ⎛⎫=+><<⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,将该图象向右平移(0)m m >个单位长度后,所得图象关于直线4x π=对称,则m 的最小值为( )A.12πB.6π C.4π D.3π 7.已知函数()()xxf x x e e-=-,对于实数a b ,,“0a b +>”是“()()0f a f b +>”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且sin 1cos 2cos 2cos sin 2βαβαα+=+,则tan 24παβ⎛⎫++= ⎪⎝⎭( ) A. -1 B. 1C.223D. 223-9.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的个数是( ) ①函数()f x 的值域与()g x 的值域相同;②若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点; ③把函数()f x 的图像向右平移2π个单位长度,就可以得到()g x 的图像; ④函数()f x 和()g x 在区间,44ππ⎛⎫- ⎪⎝⎭内都是增函数. A. 0B. 1C. 2D. 310.已知函数()cos f x x =,若存在实数12,,,n x x x ,满足1204n x x x π≤<<<≤,且()()()()()()122318n n f x f x f x f x f x f x --+-++-=,2n ≥,n *∈N ,则n最小值为( )A 3B. 4C. 5D. 611.设函数11,(,2)(){1(2),[2,)2x x f x f x x --∈-∞=-∈+∞,则函数()()1F x xf x =-的零点的个数为( )A. 4B. 5C. 6D. 712.已知0>ω,2πϕ≤,在函数()sin()f x x ωϕ=+,()cos()g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当(,)64x ππ∈-时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A. (,)63ππB. ,63ππ⎡⎤⎢⎥⎣⎦C. (,)32ππD. ,32ππ⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题)二、填空题(本题共4小题)13.已知曲线3y x x =-在点()00,x y 处的切线平行于直线220x y --=,则0x =______. 14.设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x ef x f x -<-的解集为__________.15.如图,阴影部分是由曲线22y x =和223x y +=及x 轴围成的封闭图形,则阴影部分的面积为______.16.设ABC ∆的内角A B C ,,的对边长a b c ,,成等比数列,()1cos cos 2A CB --=,延长BC 至D ,若2BD =,则ACD ∆面积的最大值为__________.三、解答题(解答应写出必要的文字说明、证明过程或演算步骤)17.将函数3sin 2y x =的图像向左平移6π个单位长度,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到()f x 的图像. (1)求()f x 的单调递增区间; (2)若对于任意的,22x ππ⎡⎤∈-⎢⎥⎣⎦,不等式()3f x m 恒成立,求实数m 的取值范围.18.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且22sin sin sin sin A B A C +=. (1)求证:sin sin 2cos CA A=;(2)若B 为钝角,且ABC ∆的面积S 满足2(sin )S b A =,求角A 的大小. 19.设函数()sin cos ,[0,]2f x a x x x x π=-∈. (Ⅰ)当1a =时,求证:()0f x ≥;(Ⅱ)如果()0f x ≥恒成立,求实数a 的最小值.20.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆b ,c 的值;(2)若sin sin (0)B k C k =>,且ABC ∆为钝角三角形,求实数k 的取值范围. 21.已知函数22()x f x e ax =-,a ∈R .(1)若()f x 在区间(0,)+∞内单调递增,求a 的取值范围; (2)若()f x 在区间(0,)+∞内存在极大值M ,证明:4a M <. 22.已知函数1()(ln 1)f x a x x =-+的图像与x 轴相切,21()(1)log 2b x g x b x -=--.(1)求证:2(1)()x f x x-≤;(2)若21x b <<,求证:2(1)0()2b g x -<<.。

【全国百强校】河北省衡水中学2019届高三上学期小二调考试数学(理)试题(扫描版)

2018-2019学年度高三年级小二调考试c- [T'U D-[J」]数学(理科)试卷! 7.定义在火上的偶函数/(X)满足/(x+l) = -/(x),当xe[o,l]时,,(x) = —2x+l,设函数命题人:康彦华审核人:王战普第I卷(选择题共60分)I g(x) = (;)'" (一1 <X < 3),则函数/(x)与g(x)的图象交点个数为( )B.4C.5D.6一、选择题(本大题共12小题,每题5分,共60分,下列每小题所给选项只有一项符合题意, 将正确答案的序号填涂在答题卡上)1.设集合A = {x\x)-1}\ 5 = {x|x>l};则a xeA^xiB ff成立的充要条件是(A. -1<X<1B. X<1C. x>-lD. -1<X<12.曲线/(" = 一平¥+2在x = l处的切线倾斜角是( )A. 1 … 1 5 2 —nB.—勿C.—兀D. —7t 6 3 63下列命题中的假命题是( )A. Vx > 093X > 2XB. Vr c(0,+oo),e* >l + xC. 3x0 6(0/+8), X。

< sin x0D. 3x0 G/?,lgx0 <0i A. 3请:;8.己知/\x)是定义在(0,*o)上的单调函数,且对任意的xe(O,+a>)都有/(/(x)-X3) = 2,则方程/(x)-尸(x) = 2的一个根所在的区间是( )! A. (0 1) B. (1,2) C. (2,3) D・(3,4)• 9.若函数r(x) = /T +2x — log^ a x(a > 0)在区间(0,2)内有两个不同的零点,则实数。

的取值范围为( )A. (72,22)B. (0,2]e+2c. (292~]10.己知函数/(x) = —+xln x9g(x) = x3-x2 -5,若对任意的x p x2 e 1?2 '都有4. 若/(a) = 4,则实数Q的值为( )1D. n5.设m,neR,己知w = log o2,n = log b2,且a + Z» = 2j万(。

河北省衡水中学2020届高三数学下学期第二次调研试题理(含解析)


uuur uuur uuur AB AC 且 AP
uuur BC ,
则实数 的值为__________.
【答案】1
【解析】
试题分析:因为 AP BC ,所以 AP BC 0 .
AP
BC
(
AB
AC)
( AC
AB)
AB
AC
2 AC

2 AB
AB
AC

( 1) AB AC cos 60 AC |2 AB |2 = 2( 1) 4 4 2 2 0 ,解得 1 .
【解析】
试题分析:令 x 0 ,得 a0 1;令 x 1 ,得 2 a0 a1 a2 a8 ,即
a1 a2 a8 3 .又 a8 (2)7 C77 128 ,所以 a1 a2 a7 3 a8 125 ,
故选 C.
考点:二项式定理.
10.已知圆 C1 : x2
2cx
它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离, 就是球的半径,
三棱柱中,底面 BDC , BD CD 1, BC 3 , BDC 120 ,
BDC
的外接圆的半径为
1 2
sin
3 120
1

3 由题意可得:球心到底面的距离为 2 .
r 3 1 7
球的半径为
y2
0 ,圆 C2 : x2
2cx
y2
x2 0 , c 是椭圆 C : a2
y2 b2
1

半焦距,若圆 C1 , C2 都在椭圆内,则椭圆离心率的范围是( )
A.
1 2
,1
【答案】B
B.
0,
1 2

衡水中学2019届高三二诊数学(理科)试题(解析版)

衡水中学2019届高三二诊数学(理科)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题作答用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试卷和草稿纸上无效。

3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。

答在试卷和草稿纸上无效。

考生必须保持答题卡的整洁。

考试结束后,只需上交答题卡。

一、选择题(本大题共12小题,共60.0分)1.已知集合,则()A. B. C. D.【答案】A【解析】【分析】先求出集合B,然后根据集合的交集的运算求出.【详解】解:B={x|-3<x<3},又∴A∩B={1}.故选:A.【点睛】本题考查集合列举法、描述法的定义,交集的运算,属于基础题.2.=()A. B. C. D.【答案】C【解析】【分析】先对分母实数化,然后按照复数代数形式的乘除运算法则化简.【详解】=,故选C.【点睛】本题考查复数代数形式的乘除运算,属于基础题.3.已知,则tan2α=()A. B. C. D. 【答案】B【解析】【分析】直接由正切函数的倍角公式,代入求出答案即可.【详解】由正切函数倍角公式:故选B【点睛】本题主要考查了正切倍角公式,属于基础题.4.是成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】解出关于x的不等式,再结合充分必要条件的定义找出两者之间的关系.【详解】解:lnx>1⇔x>e∵x>3⇒x>e,x>e推不出x>3,∴x>3是lnx>1成立的充分不必要条件故选:A.【点睛】本题考查了充分必要条件的判断,解不等式,属于基础题.5.几何体的三视图如图所示,则这个几何体的直观图可以是【答案】B【解析】试题分析:由正视图排除A,C;由侧视图排除D,故B正确.考点:三视图.【此处有视频,请去附件查看】6.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是()A. B. C. D.【答案】D【解析】不妨设两条直角边为,故斜边,即大正方形的边长为,小正方形边长为,故概率为.7.在△ABC中|+|=|-|,AB=3,AC=4,则在方向上的投影是()A. 4B. 3C.D. 5【答案】C【解析】解:在中,,平方整理可得,在方向上的投影是.点晴:平面向量的数量积的相关计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.8.设,,,则的大小关系是()A. B. C. D.【答案】C【解析】【分析】先确定,然后将利用对数的运算,求得,从而得到的大小关系.【详解】由于,所以为三个数中最大的.由于,而,故.综上所述,故选C.【点睛】本小题主要考查指数式和对数式比较大小.解决的方法是区间分段法,如本题中的“和”作为分段的分段点.在题目给定的三个数中,有一个是大于的,有一个是介于和之间的,还有一个是小于的,由此判断出三个数的大小关系.在比较过程中,还用到了对数和指数函数的性质.9.若函数为常数,)的图象关于直线对称,则函数的图象()A. 关于直线对称B. 关于直线对称C. 关于点对称D. 关于点对称【答案】D【解析】【分析】利用三角函数的对称性求得a的值,可得g(x)的解析式,再代入选项,利用正弦函数的图象的对称性,得出结论.【详解】解:∵函数f(x)=a sin x+cos x(a为常数,x∈R)的图象关于直线x=对称,∴f(0)=f(),即,∴a=,所以函数g(x)=sin x+a cos x=sin x+cos x=sin(x+),当x=﹣时,g(x)=-,不是最值,故g(x)的图象不关于直线x=﹣对称,故A错误,当x=时,g(x)=1,不是最值,故g(x)的图象不关于直线x=对称,故B错误,当x=时,g(x)=≠0,故C错误,当x=时,g(x)=0,故D正确,故选:D.【点睛】本题考查三角恒等变形以及正弦类函数的对称性,是三角函数中综合性比较强的题目,比较全面地考查了三角函数的图象与性质,属于中档题.10.三棱锥中,底面,若,则该三棱锥外接球的表面积为()A. B. C. D.【答案】C【解析】【分析】先利用正弦定理计算出△ABC的外接圆直径2r,再结合三棱锥的特点,得出球心的位置:过△ABC外接圆圆心的垂线与线段SA中垂面的交点.再利用公式可计算出该三棱锥的外接球直径,最后利用球体表面积公式可得出答案.【详解】解:由于AB=BC=AC=3,则△ABC是边长为3的等边三角形,由正弦定理知,△ABC的外接圆直径为,由于SA⊥底面ABC,所以,△ABC外接圆圆心的垂线与线段SA中垂面的交点为该三棱锥的外接球的球心,所以外接球的半径,因此,三棱锥S﹣ABC的外接球的表面积为4πR2=4π×=21π.故选:C.【点睛】本题考查球体表面积的计算,解决本题的关键在于找出球心的位置,考查计算能力,属于中等题.11.双曲线的左、右焦点分别为,过的直线与圆相切,与的左、右两支分别交于点,若,则的离心率为()A. B. C. D.【答案】A【解析】【分析】由双曲线的定义可得|AF1|=2a,则|AF2|=|AF1|+2a=4a,运用直角三角形的余弦函数定义和余弦定理,可得a,c的方程,再由离心率公式,解方程可得所求值.【详解】解:由双曲线的定义可得|BF1|﹣|BF2|=2a,|AB|=|BF2|,可得|AF1|=2a,则|AF2|=|AF1|+2a=4a,cos∠BF1F2==,化简可得c4﹣10a2c2+13a4=0,由e=可得e4﹣10e2+13=0,解得e2=5+2,可得e=,故选:A.【点睛】本题考查双曲线的定义、方程和性质,考查离心率的求法,注意运用直角三角形中三角函数和余弦定理,考查化简整理的运算能力,属于中档题.12.已知函数,则满足恒成立的的取值个数为()A. 0B. 1C. 2D. 3【答案】B【解析】【分析】由f(x)=(e x﹣a)(x+a2)≥0,对a分类讨论,可知a≤0时不合题意,当a>0时,f(x)的两个因式同正同负,则需在同一x处等0,则转化为﹣a2=lna的根的个数求解.【详解】解:f(x)=(e x﹣a)(x+a2)≥0,当a=0时,f(x)=(e x﹣a)(x+a2)≥0化为e x•x≥0,则x≥0,与x∈R矛盾;当a<0时,e x﹣a>0,则x+a2≥0,得x≥﹣a2,与x∈R矛盾;当a>0时,令f(x)=0,得x=lna或x=﹣a2,要使f(x)≥0恒成立,则﹣a2=lna,作出函数g(a)=﹣a2与h(a)=lna的图象如图:由图可知,a的取值个数为1个.故选:B.【点睛】本题考查恒成立问题,考查数学转化思想和分类讨论的思想,是中档题.二、填空题(本大题共4小题,共20.0分)13.的展开式中x2的系数为__________.(用数字作答)【答案】【解析】试题分析:展开式通项为,令,,所以的.故答案为.考点:二项式定理14.已知实数满足约束条件,则的最大值为_____.【答案】4【解析】【分析】作出不等式组表示的平面区域,由z=2x-y可得y=﹣2x+z,则z表示直线y=2x-z在y轴上截距的相反数,截距越小,z越大,结合图象即可求解z的最大值.【详解】解:作出实数x,y满足约束条件表示的平面区域,由z=2x-y可得y=2x-z,则z表示直线y=2x-z在y轴上截距的相反数,截距越大,z越小,作直线2x-y =0,然后把该直线向可行域平移,当直线经过的交点(2,0)时,z最大,代入z=2x-y=4 故答案为:4.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z的几何意义,属于基础题.15.抛物线上的点到的距离与到其准线距离之和的最小值是_____.【答案】【解析】【分析】先求出抛物线的焦点坐标,根据定义把p到准线的距离转化为p到焦点的距离,再由抛物线的定义可得d=|PF|+|P A|≥|AF|,再求出|AF|的值.【详解】解:∵抛物线y2=4x,∴F(1,0),如图:设p在准线上的射影A″,依抛物线的定义知P到该抛物线准线的距离为|P A″|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|P A|≥|AF|=.故答案为:.【点睛】本题考查抛物线定义的转化,考查数学转化的思想和数形结合的思想,属于基础题.16.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.【答案】【解析】【分析】由已知利用正弦定理可以得到b=2sin B,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sin B,c=2sin(﹣B),∴S△ABC=bc sin A=×2sin B×2sin(﹣B)×=sin B(cos B+sin B)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和S n满足2a n=2+S n.(1)求证:数列{a n}是等比数列;(2)设b n=log2a2n+1,求数列{b n}的前n项和T n.【答案】(1)见解析;(2)【解析】【分析】(1)运用数列的递推式和等比数列的定义,即可得证;(2)运用等比数列的通项公式和等差数列的求和公式,计算即可得到所求和.【详解】(1)证明:数列{a n}的前n项和S n满足2a n=2+S n,可得2a1=2+S1=2+a1,解得a1=2;n≥2时,2a n-1=2+S n-1,又2a n=2+S n,相减可得2a n-2a n-1=2+S n-2-S n-1=a n,即a n=2a n-1,可得数列{a n}是首项、公比均为2的等比数列;(2)由(1)可得a n=2n,b n=log2a2n+1=log222n+1=2n+1,数列{b n}的前n项和T n=(3+2n+1)n=n2+2n.【点睛】本题考查数列的通项公式的求法,考查数列的递推式,考查等比数列和等差数列的通项公式和求和公式的运用,考查运算能力,属于基础题.18.为了解一款电冰箱的使用时间和市民对这款电冰箱的购买意愿,研究人员对该款电冰箱进行了相应的抽样调查,得到数据的统计图表如下:(1)根据图中的数据,估计该款电冰箱使用时间的中位数;(2)完善表中数据,并据此判断是否有的把握认为“愿意购买该款电冰箱“与“市民年龄”有关;(3)用频率估计概率,若在该电冰箱的生产线上随机抽取3台,记其中使用时间不低于4年的电冰箱的台数为,求的期望.附:【答案】(1);(2)有;(3).【解析】【分析】(1)依题意,该款电冰箱使用时间在区间[0,4)的频率为0.20,在区间[4,8)内的频率为0.36.可得该款电冰箱使用时间的中位数在区间[4,8内,根据条形图计算中位数的方法求解.(2)依题意,完善表中的数据,然后利用独立性检验计算公式可得K2,进而得出结论.(3)使用时间不低于4年的频率.电冰箱的台数为X~B(3,),则可得出期望.【详解】解:(1)依题意,该款电冰箱使用时间在区间[0,4)的频率为0.05×4=0.20,在区间[4,8)内的频率=0.09×4=0.36.∴该款电冰箱使用时间的中位数=0.05×4+0.09×(x﹣4)=0.5,解得x=.(2)依题意,完善表中的数据如下所示:故K2=≈243.06>10.828;故有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关.(3)使用时间不低于4年的频率=1﹣4×0.05=.∴电冰箱的台数为X~B(3,),∴X的期望E(X)=3×=.【点睛】本题考查了二项分布列的计算公式及其期望、独立性检验计算公式及其原理、频率分布直方图的性质及其应用,考查了推理能力与计算能力,属于中档题.19.如图,三棱锥中,.(1)求证:;(2)若,求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)取AC的中点O,连结BO,DO,推导出AC⊥DO,AC⊥BO,从而AC⊥平面BOD,由此能证明BD⊥AC.(2)以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出直线BC与平面ABD所成角的正弦值.【详解】证明:(1)取AC的中点O,连结BO,DO,∵AB=BC=CD=DA,∴△ABC,△ADC均为等腰三角形,∴AC⊥DO,AC⊥BO,∵DO∩BO=O,∴AC⊥平面BOD,∵BD⊂平面BOD,∴BD⊥AC.解:(2)∵CA=AB,AB=BC=CD=DA,∴OD=OB=,∴OD2+OB2==BD2,∴,∵∠DOB是二面角D﹣AC﹣B的平面角,∴平面DAC⊥平面BAC,如图,以O为原点,OB为x轴,OC为y轴,OD为z轴,建立空间直角坐标系O﹣xyz,设A(0,﹣1,0),则C(0,1,0),B(,0,0),D(0,0,),∴=(﹣,1,0),=,=(0,1,),设平面ABD的法向量=(x,y,z),则,取x=1,得=(1,﹣,1),设直线BC与平面ABD所成角为θ.则直线BC与平面ABD所成角的正弦值为:sinθ=.【点睛】本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.已知椭圆,点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设是椭圆上的动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率存在,并记为,试问的面积是否为定值?若是,求出该值;若不是,请说明理由.【答案】(1);(2).【解析】【分析】(1)根据对称性可知椭圆C经过P3,P4两点,则图象不经过点P1,故P2在椭圆上,代入点坐标可求出椭圆方程,(2)由直线OP:y=k1x,OQ:y=k2x与圆M相切,运用圆心到直线的距离为半径,即可得到k1,k2为方程(x02﹣2)k2﹣2x0y0k+y02﹣2=0的两个不等的实根,运用韦达定理和点M在椭圆上,满足椭圆方程,化简即可得到k1k2=﹣,设P(x1,y1),Q(x2,y2),表示出△OPQ的面积S=|x1x2|•|k1﹣k2|,代值计算即可求出【详解】解:(1)由于P3,P4两点关于原点对称,故由题设可知C经过P3,P4两点,∵,则图象不经过点P1,故P2在椭圆上,∴b=,,解得a2=6,b2=3,故椭圆C的方程为.(2)∵直线OP:y=k1x,OQ:y=k2x,与圆M相切,由直线和圆相切的条件:d=r,可得,即有(x02﹣2)k12﹣2x0y0k1+y02﹣2=0,同理:直线OQ:y=k2x与圆M相切,可得(x02﹣2)k22﹣2x0y0k2+y02﹣2=0,即k1,k2为方程(x02﹣2)k2﹣2x0y0k+y02﹣2=0的两个不等的实根,可得k1k2=,∵点R(x0,y0)在椭圆C上,∴,∴k1k2==,设P(,P(x1,y1),Q(x2,y2),∴|OP|=•|x1|点Q到直线OP的距离d=,∵|x1|=,|x2|=,∴△OPQ的面积S=|x1x2|•|k1﹣k2|=••,=.【点睛】本题考查了椭圆的简单性质、点与圆的位置关系等基础知识与基本技能方法,考查了运算求解能力,转化与化归能力,属于难题.21.已知函数.(1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围;(2)求证:时,.【答案】(1);(2)证明见解析.【解析】【分析】(1)求得f(x)的导数,可得切线斜率和切点,以及切线方程,可令y=0,求得横坐标x,由题意可得x >0,解不等式可得所求范围;(2)求得f′(x)=﹣e x+a.设g(x)=f′(x)=﹣e x+a.判断g(x)递减,由函数零点存在定理可得g(x)存在零点x0,求得f(x)≤f(x0),求得a,结合分析法和不等式的性质、函数的单调性,即可得证.【详解】解:(1)函数f(x)=lnx﹣e x+a的导数为f′(x)=﹣e x+a.曲线f(x)在点(1,f(1))处的切线斜率为1﹣e1+a,切点为(1,﹣e1+a),可得切线方程为y+e1+a=(1﹣e1+a)(x﹣1),可令y=0可得x=,由题意可得>0,可得e1+a<1,解得a<﹣1;(2)证明:f′(x)=﹣e x+a.设g(x)=f′(x)=﹣e x+a.可得g′(x)=﹣(+e x+a),当x>0时,g′(x)<0,g(x)递减;由a>1﹣,e x+a>e x.若e x>,g(x)<﹣e x<0,当0<x<1时,e x+a<e1+a.若e1+a<,即x<e﹣1﹣a,故当0<x<e﹣1﹣a时,g(x)>0,即g(x)=f′(x)有零点x0,当0<x<x0时,f′(x)>0,f(x)递增;当x>x0时,f′(x)<0,f(x)递减,可得f(x)≤f(x0),又f(x0)=lnx0﹣e x0+a,又e x0+a=,可得f(x0)=lnx0﹣,在x0>0递增,又a=ln﹣x0=﹣(lnx0+x0),a>1﹣⇔﹣(lnx0+x0)>1﹣=﹣(ln+),所以lnx0+x0<ln+,由于lnx0+x0递增,可得0<x0<,故f(x)≤f(x0)<f()=﹣1﹣e.【点睛】本题考查导数的运用:求切线方程和单调性、极值和最值,考查分类讨论和构造函数法,考查函数零点存在定理的运用,考查变形能力和推理能力,属于难题.22.在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.【答案】(1);(2).【解析】【分析】(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.23.已知函数.(1)若,解不等式;(2)对任意满足的正实数,若总存在实数,使得成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)先利用1的代换求最小值,再根据绝对值三角不等式求的最小值,最后解不等式可得实数的取值范围.试题解析:(1)当时,由得,则;当时,恒成立;当时,由得,则.综上,不等式的解集为(2)由题意,由绝对值不等式得,当且仅当时取等号,故的最小值为.由题意得,解得.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档