高一下学期数学人教A版必修4第一章1.4.3 正切函数的性质与图象 教学设计
高中数学教案 必修4教案 第一章 三角函数 1.4.3正切函数的性质与图象

1.4.3正切函数的性质与图象教学目的:知识目标:1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;能力目标:1.理解并掌握作正切函数图象的方法;2.理解用函数图象解决有关性质问题的方法;教学重点:用单位圆中的正切线作正切函数图象; 教学难点:正切函数的性质。
教学过程:一、复习引入:问题:1、正弦曲线是怎样画的? 2、练习:画出下列各角的正切线:.下面我们来作正切函数的图象. 二、讲解新课:1.正切函数tan y x =的定义域是什么? ⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ 2.正切函数是不是周期函数? ()tan tan ,,2x x x R x k k z πππ⎛⎫+=∈≠+∈ ⎪⎝⎭且,∴π是tan ,,2y x x R x k k z ππ⎛⎫=∈≠+∈ ⎪⎝⎭且的一个周期。
π是不是正切函数的最小正周期?下面作出正切函数图象来判断。
3.作tan y x =,x ∈⎪⎭⎫⎝⎛-2,2ππ的图象说明: (1)正切函数的最小正周期不能比π小,正切函数的最小正周期是π;(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”。
(3)正切曲线是由被相互平行的直线()2x k k Z π=+∈所隔开的无穷多支曲线组成的。
4.正切函数的性质 引导学生观察,共同获得: (1)定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ; (2)值域:R 观察:当x 从小于()z k k ∈+2ππ,2π+π−→−k x 时,tan x −−→+∞ 当x 从大于()z k k ∈+ππ2,ππk x +−→−2时,-∞−→−x tan 。
(3)周期性:π=T ;(4)奇偶性:由()x x tan tan -=-知,正切函数是奇函数;(5)单调性:在开区间z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2内,函数单调递增。
高中数学必修四《正切函数的性质和图象》优秀教学设计

1.4.3 正切函数的性质和图象一.学习目标1、掌握正切函数的性质及其应用2、理解并掌握作正切函数图象的方法;3二、复习引入 (1)画出下列各角的正切线:三.探究新知 探究一 )1、利用正切函数的定义xy=αtan 2、正切函数的周期性:由诱导公式()=+πx tanx R ∈且,2x k k Z ππ≠+∈, 可知 ,函数tan y x =(,2x k k Z ππ≠+∈)是 函数,且它的周期是 .3、正切函数的奇偶性:由诱导公式tan()x -= x R ∈且,2x k k Z ππ≠+∈,所以正切函数tan y x =(,2x k k Z ππ≠+∈)是 函数.4、正切函数的单调性由图(Ⅰ)、(Ⅱ)正切线的变化规律可以得出,正切函数在(,)22ππ-内是 函数,又由正切函数的周期性可知,正切函数在开区间 内都是增函数. 5、 正切函数的值域由图(Ⅰ)可知,当x 大于2π-且无限接近于2π-时,正切线AT 向y 轴的负方向无限延伸;由图(Ⅱ)可知,当x 小于2π且无限接近于2π时,正切线AT 向y 轴的正方向无限延伸.因此,tan y x =在(,)22ππ-内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是 .探究二 正切函数的图像1.复习如何用正弦线作正弦函数图象,类比可不可以用正切线作正切函数tan y x = 的图象?2.利用正切线画出tan y x =,x ∈⎪⎭⎫⎝⎛-2,2ππ的图象:3.根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数tan y x =,x R ∈且()z k k x ∈+≠ππ2的图象,称“正切曲线”.4、如何快速作出正切函数的简图?(三点两线法)5、根据图像讨论验证正切函数的性质。
四、新知运用例1.求函数tan()23y x ππ=+的定义域、值域、周期和单调区间. 例2.比较下列每组数的大小(1)tan138与tan143 (2)tan (411π-)与tan (513π-) 例3.解不等式3tan ≥x五、课堂练习1、求函数y=tan3x 的定义域,值域,周期,单调区间。
人教A版数学必修4第一章1.4.3 正切函数的性质和图象 教案

1.4.3正切函数的性质与图象一、教学目标:1、借助单位圆中的正切线,能画出y=tanx 的图象,了解正切函数的周期性;2、引导学生利用正切函数已有的知识研究其性质,然后再根据性质研究正切函数的图象,使数形结合的思想体现的更加全面。
3、借助图象理解正切函数在⎪⎭⎫ ⎝⎛-2,2ππ上的性质(如单调性、周期性、值域、图象与x 轴的交点等),并能解决一些简单问题。
二、教学重点、难点重点:通过引导学生利用正切函数已有的知识研究其性质,然后再根据性质研究正切函数的图象,学会用“三点两线法”画正切函数的简图。
难点:借助单位圆中的正切线,研究正切函数的单调性和值域,并利用正切函数的性质,对正切曲线的特征作出解释。
三、教学方法与教学手段教学方法:“问题发现”和启发探究式教学方法学法指导: 分组合作、互动探究、搭建平台、分散难点教学手段: 计算机、投影仪四、教学过程(一)明确目标,提出问题复习1、正弦函数的图象是通过什么方法作出的?复习2、正、余弦函数的基本性质包括哪些内容?这些性质是怎样得到的?问题1:三角函数包括正、余弦函数和正切函数,你能否根据研究正、余弦函数的图象和性质的经验,以同样的方法进一步研究正切函数的性质与图象?(二)自主学习,解决问题复习3、我们学习了正弦线、余弦线、正切线.你能画出图中的正切线吗?思考1:正切函数是如何定义的? 其定义域是什么?思考2: 正切函数是否为周期函数?思考3:根据相关诱导公式,你能判断正切函数具有奇偶性吗?(三)合作学习,探究问题 思考4:观察下图(课本43页图1.4-8)中的正切线,当角x 在 ⎪⎭⎫ ⎝⎛-2,2ππ内增加时,正切函数值发生什么变化?由此反映出一个什么性质?思考5: 观察下图(课本43页图1.4-8(I )和(II ))中的正切线,正切函数的值域是什么?(四)引导提升,得出结论 思考1:类比正弦函数图象的作法,可以利用正切线作正切函数在区间(2π-,2π) 的图象,具体应如何操作?思考2:结合正切函数的周期性, 如何画出正切函数在整个定义域内的图象?思考3:正切函数还具有怎样的对称性?思考4:在正切函数的图象上,起关键作用的点或直线有哪几个?如何画出正切函数图象的简图?(五)归纳整理,总结方法则y=Atan(ωx+φ)(ω>0)的周期T πω=. 例1.求下列函数的周期:(1)3tan 5y x π⎛⎫=+ ⎪⎝⎭ 答:T π=。
高中数学必修4人教新课标a版1.4.3正切函数的图像与性质教案

§1.4.3正切函数的图像与性质【教材分析】正切函数的图象和性质》 它前承正、余弦函数,后启必修五中的直线斜率问题。
研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。
教材单刀直入,直接进入画图工作,没有给出任何提示。
正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。
教材上直接圈定了区间(2,2ππ-),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。
这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。
在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。
【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。
本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。
3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
【教学重点难点】教学重点:正切函数的图象及其主要性质。
教学难点:利用正切线画出函数y =tan x 的图象,对直线x =2ππ+k ,Z k ∈是y =tan x 的渐近线的理解,对单调性这个性质的理解。
人教版高中数学必修4-1.4《正切函数的图象与性质》教学设计

1.4.3正切函数的性质与图象一、教学目标(一)核心素养通过这节课的学习,了解研究正切函数图象的方法,掌握正切函数的图象特征与性质,并运用性质解决一定的实际问题.(二)学习目标学生已经有了研究正弦函数余弦函数的图象与性质的经验,正切函数在研究方法与研究内容上与前者类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题.本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.知识目标:1)能用单位圆中的正切线画出正切函数的图象.2)熟练根据正切函数的图象推导出正切函数的性质.3)掌握利用数形结合思想分析问题解决问题的技能.2.能力目标:1)通过类比,联系正弦函数图象的作法.2)能学以致用,结合图象分析得到正切函数的诱导公式和正切函数的性质.(三)学习重点正切函数的图象及其主要性质(包括周期性单调性奇偶性值域);深化研究函数性质的思想方法.(四)学习难点正切函数图象与性质的应用二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第48页至第51页,填空.正切函数的周期是_2π_,是 增 函数,在开区间,22k k ππππ⎛⎫-+ ⎪⎝⎭内都是 增函数,它的值域是__R __.2.预习自测(1)画出下列各角的正切线:【知识点】正切线【数学思想】数形结合 【思路点拨】注意第二、三象限正切线的变化,投影到第四、一象限做正切线.【解题过程】【答案】略(2)复习相关诱导公式tan(x+π)= x tan ;tan(-x )= x tan - .【知识点】任意角三角函数诱导公式【数学思想】转化思想【思路点拨】“奇变偶不变,符号看象限”【解题过程】tan(x+π)中,根据=22ππ⋅,系数为偶数2,三角函数名不变.假定x 为锐角,x π+为第三象限角,其正切为正,∴()tan tan x x π+=.同理,()tan tan x x -=-.【答案】tan(x+π)= x tan ;tan(-x )= x tan - .(二)课堂设计1.知识回顾(1)任意角α的终边与单位圆交于点()P x y ,(0x ≠),则α的正切tan α=y x tan y xα=. (2)下图1中,有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.。
人教版数学必修四第一章1.4.3 正切函数的性质和图象 经典教案

1.4.3正切函数的性质与图象一、教材分析《正切函数的图象和性质》是人教A版高中《数学》必修4第一章第四单元第三节内容,本节课既是对前面正余弦函数图象和性质知识的延展、对三角函数内容的进一步完善,也为学习后续知识直线的斜率作了铺垫.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后从代数角度对性质作出严格表述.但对正切函数,教材采用了先根据已有的知识(正切函数定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的思想体现得更加全面.二、教学目标(一)知识与技能1.理解并掌握正切函数的定义域、周期性、奇偶性、单调性、值域等性质;2.能利用正切线画出正切函数的准确图象,利用“三点两线”画出正切函数的简图,掌握正切函数图象结构、特征;3.能根据正切函数图象观察性质,根据性质理解图象,用数形结合的思想理解和解决一些简单的三角问题.(二)过程与方法1.通过复习回顾正、余弦函数图象与性质的探究过程,引导学生将本节课要学习的内容与之建立起联系,培养学生的“类比”思维能力;2.利用诱导公式、正切线等探究正切函数的性质;3.经历由正切函数的性质推测图象,再由图象理解性质的过程,渗透了“由数到形和由形到数”的“数形结合”的思想,从而培养学生自觉运用“数形结合”的思想从不同角度解决问题的能力;4.在正切函数的图象分析中,让学生体会、感知无限逼近(极限)的思想;5.通过讲解例题,总结方法,巩固练习等,学会用数形结合的思想理解和处理问题.(三)情感态度与价值观在得到正切函数图象的过程中,学会一类周期性函数的研究方式,通过自己动手得到图象让学生亲身经历数学研究的过程,体验探索的乐趣.通过数形结合,培养学生勇于探索、勤于思考的习惯,渗透由抽象到具体的思想方法,让学生理解动与静的唯物辨证观,进一步培养学生合作学习和数学交流的能力,增强对数学的应用意识,同时,正切曲线的中心对称性让学生感受到数学的美学魅力,增强学生的学习兴趣.三、学情分析学生在知识上已经掌握了三角函数的定义,诱导公式,三角函数线,正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.四、教学重难点教学重点:正切函数的性质,用单位圆中的正切线作正切函数图象.教学难点:1.利用单位圆中的正切线探究正切函数的单调性;2.利用正切线及正切函数的奇偶性、单调性作⎪⎭⎫ ⎝⎛-∈=2,2,tan ππx x y 图象; 3.正切函数性质的简单应用.五、教学用具直尺,三角板,圆规,多媒体设备(PPT ).六、教学过程(一)复习回顾(0.5分钟)回忆:在前面已经学习了哪几种三角函数的图象和性质?研究了它们的哪些性质?学生自由发言,互相补充,之后教师作口头梳理.设计意图:复习巩固已学知识,为后面教学作铺垫.(二)问题引入(4.5分钟)思考1:我们是先研究的正余弦函数的图象还是性质?能否采用同样的方法研究正切函数的图象与性质呢?学生口答后,教师指出:本节课我们将不从图象研究性质,而是从一个“全新”的角度来研究正切函数的性质.(给出课题,同时板书课题)设计意图:主要是为了给学生提供研究函数问题更多的视角,加强了理性思考的成分,并使数形结合的思想体现得更加全面,同时培养学生的类比思维能力,引出这节课的课题和明确研究方向.思考2:我们学过有关正切函数的哪些性质?学生简单的口答后,提问学生回顾正切函数的定义、诱导公式、正切线等,教师在PPT 上给出单位圆,引导学生进行回顾,同时板书正切函数的定义域并强调用集合或区间表示.设计意图:为后面研究正切函数的性质、画图象作铺垫.思考3:要研究一个函数的性质,我们一般从哪些方面入手?学生自由发言,互相补充,之后教师给出下一个问题.思考4:在这众多的性质中,我们先研究哪个性质更好呢?教材中是先研究的哪个性质?(周期性)学生自由发言,教师稍作等候后对给出不同回答的同学进行提问,并做补充解释,让学生明白先研究周期性的原因:如果一个函数具有周期性,那么当研究清楚该函数在一个周期内的性质之后,就可以推广到整个定义域上,可以降低探究难度.在本节中,对探究单调性和图象等有所帮助..设计意图:周期性是学生刚刚接触到的一个函数性质,相对其他性质还比较陌生,这样设计能让学生进一步体会到周期性在函数性质研究中的地位与作用.(三)探究新知1.性质(共12分钟)(1)周期性(3分钟)引导性提问:正切函数有没有周期性?→周期是多少?→如何得到的?(tanx π)tan(x =+)→正切函数的周期是π.学生自由口答,教师可视情况进行提问,引导学生结合周期性的定义对正切函数的周期是π做一强调,指出与正余弦函数周期的不同,并板书性质.(2)奇偶性(3分钟)引导性提问:正切函数有没有奇偶性?→是奇函数还是偶函数,为什么?→I x x x ∈∀=-,tan )tan(,→定义域关于原点对称→正切函数是奇函数.学生自由口答,若学生没提到检验定义域,则教师提醒学生要先检验定义域是否关于原点对称,并师生共同完成正切函数定义域的检验,为直观起见,可借助数轴.设计意图:强调判断奇偶性要先看定义域,同时先探究奇偶性对探究单调性有所帮助. (3)单调性(5分钟)思考5:既然正切函数的周期是π,那么我们只需要研究一个长度为多少的区间上的单调性?选择哪个区间好呢? 学生思考后自由回答,若回答不准确,则教师引导学生选择包含原点的区间⎪⎭⎫ ⎝⎛22-ππ,,因为原点附近的角是我们常见的角.思考6:这个区间能否根据我们已经得到的某一条性质进一步缩小呢?学生自由口答,教师较有指向性的提问,能使学生很容易发现“由于正切函数是奇函数,只需要探究它在⎪⎭⎫ ⎝⎛20π,上的单调性”. 思考7:如何探究正切函数在⎪⎭⎫ ⎝⎛20π,上的单调性?已掌握的有关正切函数的知识中,可以用来比较正切值大小是什么?给学生充足的时间相互探讨,由于已学过的有关正切函数的知识只有“定义、诱导公式和正切线”,所以学生在简单的讨论交流之后应该很容易想到是正切线.教师引导学生借助正切线探究正切函数在单调性⎪⎭⎫ ⎝⎛20π,上的单调性,再根据奇偶性将结论推广到⎪⎭⎫ ⎝⎛22-ππ,,再根据周期性将结论推广到整个定义域.设计意图:正切函数单调性的探究是本节课的难点,在本节课中利用已经得到的奇偶性和周期性,将需要研究的单调区间一步步缩小,之后再利用奇偶性和周期性,还原出正切函数在定义域上的单调情况,让学生体会到函数性质之间的联系,培养学生“从特殊到一般”“从局部到整体”的数学思维.另外,当明确了单调性之后,值域也能很容易得到.(4)值域(1分钟)正切函数在⎪⎭⎫ ⎝⎛-2,2ππ上的值域是R→正切函数的值域是R→无最大值和最小值. 2.图象(共11分钟)猜想:根据我们已经探究出的正切函数的性质,请同学们先猜想、想象一下正切函数的图象会如何呢?学生想象,稍后教师提问一名学生,让他口头表述自己想象的正切函数的图象,之后教师引导学生画图验证猜想.设计意图:猜想图象可使学生对性质进行整合,培养学生的想象能力.思考8:利用已知的性质,如何画函数的图象?可以先画怎样的一个区间内的图象? 教师较有提示性的提问,学生很容易做出回答:由于正切函数的是周期为,所以只需要画出一个周期内的图象,然后通过平移就可以得到在整个定义域内的图象.由于在探究单调性时就选取的⎪⎭⎫ ⎝⎛-2,2ππ,所以学生也能很容易想到先画出⎪⎭⎫ ⎝⎛-2,2ππ上的函数图象. 类比正弦函数图象的作法,利用单位圆中的正切线绘制()Z k k x x y ∈+≠=,2,tan ππ图象.(1)教师借助PPT ,引导学生按照下列步骤作图:(5分钟)①作直角坐标系,并在直角坐标系轴左侧作单位圆; ②选取特殊角:34606-4-3-ππππππ,,,,,,,分别在单位圆中作出正切线,以6π为例进行详细的步骤说明;③描点;(纵坐标是相应的正切线)④连线:当x 趋近于22-ππ或时,图象的走势如何?思考之后学生自由回答,教师引导学生理解22-ππ==x x 和是正切函数的两条渐进线.思考9:有时不需要画出正切函数精确的图象,只需画出简图,只需确定哪些点或线就能画出函数⎪⎭⎫ ⎝⎛∈=22-,tan ππ,x x y 的简图? 学生可看出有三个点很关键(0,0),),(14--π,),(14π,还有两条渐近线:2π-=x ,2π=x .即“三点两线”.学生回答之后,教师板演画出草图.思考10:如何得到函数在⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2322-23-ππππ,,,上的图象?整个定义域上的图象呢? 学生自由回答,根据正切函数的周期性,我们可以把上述图象左右平移,得到正切函数()Z k k x x y ∈+≠=,2,tan ππ的图象,称为“正切曲线”.教师板演画出⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2322-23-ππππ,,,上的草图.这时,学生可以拿出先前由性质推测的图象进行对比,自己找出问题,加以体会.设计意图:培养学生运用类比的方法解决问题的能力,形成对正切函数图象的感知.(2)观察图象,验证、丰富性质(4分钟)从图中可以看出,正切曲线是被相互平行的直线()Z k k x ∈+=,2ππ所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;从y 轴方向看,上下无限延伸,得到它的哪一性质——值域为R ;图象关于原点中心对称,得到它的哪一性质——奇函数;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是Z k k k ∈⎪⎭⎫ ⎝⎛++,22-ππππ,,没有减区间. 设计意图:形与数的结合,更能加深对性质的认识,对比正切函数的性质和图象,分析各个性质在图象上的反映,得出:函数的性质有利于画函数的图象,函数的图象是其性质的直观反应,培养学生的识图能力,利用正切函数的图象进一步加深对性质的理解,体会“数形结合”的思想,同时,由渐近线感知无限逼近的思想.追问:在整个定义域上是增函数吗?注意:只能说在某个区间单调递增,不能说在整个定义域单调递增.设计意图:避免一些错误认识,进一步加深对正切函数单调性的理解.它的图象是关于原点对称的,得到是哪一性质——奇函数.追问:认真观察图象还有其它的对称中心吗?有没有对称轴? 通过图象我们还能发现是中心对称,对称中心是Z k k ∈⎪⎭⎫ ⎝⎛,,02π,无对称轴. 强调:正切函数的对称中心是图象和渐近线与x 轴的交点.3.例题分析(8分钟)例1.求函数y =tan (2πx +3π)的定义域、周期和单调区间. 教师板演讲解,说明可将2πx +3π作为一个整体来处理,而不必设元,并写出解题过程,以规范学生的解题步骤. 设计意图:巩固正切函数的定义域、周期性和单调性,渗透换元的思想.例2.比较大小()︒167tan 1︒173tan ()⎪⎭⎫ ⎝⎛-411tan 2π 513tan π 学生思考后,举手发言,说明理由.教师提醒学生注意利用诱导公式将角度转化为同一单调区间后才能进行比较,并结合正切函数的图象加以说明.设计意图:深化对正切函数的单调性的理解和转化的思想.练习:(5分钟)1.观察正切函数的图象,写出使不等式3tan ≥x 成立的x 的集合.2.求函数x y 3tan =的定义域、值域、周期和单调区间.(学生板演)(四)小结1.正切函数的性质与图象;2.性质有助于更有效的作图,图象有助于更直观的研究性质;3.数形结合的思想方法;设计说明:从知识,方法,思想三个方面对本节课进行总结.(五)布置作业习题1.4,A组,8,9题,B组2题:其他题完成在书上.七、板书设计。
2020-2021学年高一下学期数学人教A版必修4第一章1.4.3 正切函数的性质与图象 教学设计
《正切函数的性质与图象》教学设计一、教材内容分析:1、教学内容人教版A版,数学必修4,第一章,1.4.3“正切函数的性质与图象”《普通高中课程标准实验教科书·数学 4 (必修)》第一章第四节第三课时内容2、教材分析:本节课是研究了正弦、余弦函数的图象与性质后,又一具体的三角函数.正切函数的性质和图象是对前面已学函数以及三角函数知识的深化运用。
教材紧扣课题,先探究正切函数的性质,再作图,这与前面对正弦函数、余弦函数的研究恰好相反。
本节课提出先推导函数性质,再作图,又由图形发现新性质,再理性反思的处理方式,这样既能在性质的指导下,可以更加有效地作图,数形结合相得益彰,又能给学生提供更多研究数学问题的视角。
二、学习者特征分析:学生已经学习了正切的定义、单位圆中的正切线、诱导公式、正弦函数的图象和性质等,具备了学习本节课的知识基础.并且在学习基本初等函数时,已然形成了稳定的函数研究模式,即先画图、再性质.选择恰当的方法和过程来研究正切函数的性质,对学生来说也是一种考验。
三、教学策略选择与设计:我们知道研究函数常见两种方式,第一种方式是先根据函数解析式作出整体的函数图象.通过观察图象获得对函数性质的直观感性的认识,然后再把直观想象的内容用代数的语言加以抽象概括,进一步加以推理证明。
这种研究过程体现的思维模式是由“直观想象”到“抽象概括”,研究方法是由“整体”到“局部”;第二种方式是先用代数的语言抽象概括出函数的局部性质,再根据性质画出函数的整体图象,这种研究过程体现的思维模式是由“抽象概括”到“直观想象”,研究方法是由“局部”到“整体”;前面主要研究了正余弦函数的图象和性质,我们的研究方法是先画出函数的图象,观察图象得到函数的性质.这节课研究正切函数过程中要体会另一种思维模式,先研究函数的一些局部的抽象的性质,再通过性质画出函数的整体的直观的图象.使学生的研究函数的思维模式从“直观到抽象、整体到局部”突破到“抽象到直观、局部到整体”,研究过程也从“先图象后性质”突破到“先性质后图象”,这也是今后研究一个不熟悉的函数时的常用方法。
1.4.3 正切函数的性质与图象 教案(新人教A版必修4)
1.4.3 正切函数的性质与图象整体设计教学分析本节课的背景是:这之前我们已经用了三节课的时间学习了正弦函数和余弦函数的性质.函数的研究具有其本身固有的特征和特有的研究方式.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后再从代数的角度对性质作出严格表述.但对正切函数,教科书换了一个新的角度,采取了先根据已有的知识(如正切函数的定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.这样处理,主要是为了给学生提供研究数学问题更多的视角,在性质的指导下可以更加有效地作图、研究图象,加强了理性思考的成分,并使数形结合的思想体现得更加全面.教师要在学生探究活动过程中引导学生体会这种解决问题的方法.通过多媒体教学,让学生通过对图象的动态观察,对知识点的理解更加直观、形象.以提高学生的学习兴趣,提高课题教学质量.从学生的实际情况为教学出发点,通过各种数学思想的渗透,合理运用各种教学课件,逐步培养学生养成学会通过对图象的观察来整理相应的知识点的能力,学会运用数学思想解决实际问题的能力.这样既加强了类比这一重要数学思想的培养,也有利于学生综合运用能力的提高,有利于学生把新旧知识前后联系,融会贯通,提高教学效果.由于学生已经有了研究正弦函数、余弦函数的图象与性质的经验,这种经验完全可以迁移到对正切函数性质的研究中,因此,我们可以通过“探究”提出,引导学生根据前面的经验研究正切函数的性质,让学生深刻领悟这种迁移与类比的学习方法.三维目标1.通过对正切函数的性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知识的能力.学会通过对图象的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力.2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.重点难点教学重点:正切函数的性质与图象的简单应用.教学难点:正切函数性质的深刻理解及其简单应用.课时安排1课时教学过程导入新课思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗? 你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性. (1)周期性 由诱导公式tan(x+π)=tanx,x∈R ,x≠2π+k π,k∈Z 可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性. (2)奇偶性 由诱导公式tan(-x)=-tanx,x∈R ,x≠2π+k π,k∈Z 可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(2πk ,0)k∈Z . (3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(2π-,2π)内是增函数,又由正切函数的周期性可知,正切函数在开区间(2π-+k π,2π+k π),k∈Z 内都是增函数.(4)定义域根据正切函数的定义tan α=xy,显然,当角α的终边落在y 轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y 轴上的所有角可表示为k π+2π,k∈Z ,所以正切函数的定义域是{α|α≠k π+2π,k∈Z },而不是{α≠2π+2k π,k∈Z },这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x 大于2π-且无限接近2π-时,正切线AT 向Oy 轴的负方向无限延伸;当x 小于2π且无限接近2π时,正切线AT 向Oy 轴的正方向无限延伸.因此,tanx 在(2π-,2π)内可以取任意实数,但没有最大值、最小值. 因此,正切函数的值域是实数集R .问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-2π,2π]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-2π,2π)的图象为好.这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠2π+k π(k∈Z )的图象,我们称正切曲线,如图3.图2 图3问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(2π-,2π)的简图.学生可看出有三个点很关键:(4π-,-1),(0,0),(4π,1),还有两条竖线.因此,画正切函数简图的方法就是:先描三点(4π-,-1),(0,0),(4π,1),再画两条平行线x=2π-,x=2π,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法. 提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质. ②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=2π+k π,k∈Z 所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y 轴方向看,上下无限延伸,得到它的哪一性质——值域为R ;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(2π-+k π,2π+k π),k∈Z ,没有减区间.它的图象是关于原点对称的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(2πk ,0),k∈Z . 问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性. 讨论结果:①略. ②略. 应用示例例1 比较大小.(1)tan138°与tan143°;(2)tan(413π-)与tan(517π-). 活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y=tanx 在90°<x<180°上为增函数, ∴由138°<143°,得tan138°<tan143°.(2)∵tan(413π-)=-tan 413π=-tan(3π+4π)=-tan 4π, tan(517π-)=-tan 517π=-tan(3π+52π)=-tan 52π.又0<4π<52π<2π,而y=tanx 在(0, 2π)上是增函数, ∴tan 4π<tan 52π.∴-tan 4π>-tan 52π,即tan(413π-)>tan(517π-).点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可.例2 用图象求函数y=3tan -的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4 图5解:由tanx-3≥0,得tanx≥3, 利用图4知,所求定义域为[k π+3π,k π+2π)(k∈Z ). 点评:先在一个周期内得出x 的取值范围,然后再加周期即可,亦可利用单位圆求解,如图5.本节的重点是正切线,但在今后解题时,学生哪种熟练就用哪种. 变式训练根据正切函数的图象,写出使下列不等式成立的x 的集合. (1)1+tanx≥0;(2)tanx+3<0. 解:(1)tanx≥-1,∴x∈[k π-4π,k π+2π),k∈Z ; (2)x∈[k π-2π,k π-3π),k∈Z .例3 求函数y=tan(2πx+3π)的定义域、周期和单调区间.活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将2πx+3π作为一个整体.教师可让学生自己类比地探究,只是提醒学生注意定义域. 解:函数的自变量x 应满足2πx+3π≠k π+2π,k∈Z , 即x≠2k +31,k∈Z . 所以函数的定义域是{x|x≠2k+31,k∈Z }. 由于f(x)=tan(2πx+3π)=tan(2πx+3π+π)=tan[2π(x+2)+ 3π]=f(x+2), 因此,函数的周期为2. 由-2π+k π<2πx+3π<2π+k π,k∈Z ,解得35-+2k<x<31+2k,k∈Z .因此,函数的单调递增区间是(35-+2k,31+2k ),k∈Z .点评:同y=Asin(ωx+φ)(ω>0)的周期性的研究一样,这里可引导学生探究y=Atan(ωx+φ)(ω>0)的周期T=ωπ. 变式训练求函数y=tan(x+4π)的定义域,值域,单调区间,周期性. 解:由x+4π≠k π+2π,k∈Z 可知,定义域为{x|x∈R 且x≠k π+4π,k∈Z }.值域为R .由x+4π∈(k π-2π,k π+2π),k∈Z 可得,在x∈(k π-43π,k π+4π)上是增函数. 周期是π,也可看作由y=tanx 的图象向左平移4π个单位得到,其周期仍然是π.例4 把tan1,tan2,tan3,tan4按照由小到大的顺序排列,并说明理由.活动:引导学生利用函数y=tanx 的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有: 错解1:∵函数y=tanx 是增函数,又1<2<3<4,∴tan1<tan2<tan3<tan4.错解2:∵2和3的终边在第二象限,∴tan2,tan3都是负数.∵1和4的终边分别在第一和第三象限,∴tan1,tan4都是正数.又∵函数y=tanx 是增函数,且2<3,1<4,∴tan2<tan3<tan1<tan4.教师可放手让学生自己探究问题的解法.发现错解后不要直接纠正,立即给出正确解法,可再让学生讨论分析找出错的原因.图6 解法一:∵函数y=tanx 在区间(2π,23π)上是单调递增函数, 且tan1=tan(π+1),又2π<2<3<4<π+1<23π,∴tan2<tan3<tan4<tan1.解法二:如图6,1,2,3,4的正切函数线分别是AT 1,AT 2,AT 3,AT 4, ∴tan2<tan3<tan4<tan1.点评:本例重在让学生澄清正切函数单调性问题,这属于学生易错点.把正切函数y=tanx 的单调性简单地说成“在定义域内是增函数”是不对的. 知能训练课本本节练习1—5. 解答:1.在x 轴上任取一点O 1,以O 1为圆心,单位长为半径作圆,作垂直于x 轴的直径,将⊙O 1分成左右两个半圆,过右半圆与x 轴的交点作⊙O 1的切线,然后从圆心O 1引7条射线把右半圆分成8等份,并与切线相交,得到对应于83π-,4π-,8π-,0,8π,4π,83π等角的正切线.相应地,再把x 轴上从2π-到2π这一段分成8等份.把角x 的正切线向右平行移动,使它的起点与x 轴上的点x 重合,再把这些正切线的终点用光滑的曲线连结起来,就得到函数y=tanx,x∈(2π-,2π)的图象. 点评:可类比正弦函数图象的作法. 2.(1){x|k π<x<2π+k π,k∈Z };(2){x|x=k π,k∈Z };(3){x|2π-+k π<x<k π,k∈Z }.点评:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式. 3.x≠6π+3πk ,k∈Z . 点评:可用换元法. 4.(1)2π;(2)2π. 点评:可根据函数图象得解,也可直接由函数y=Atan(ωx+φ),x∈R 的周期T=ωπ得解. 5.(1)不是.例如0<π,但tan0=tan π=0.(2)不会.因为对于任何区间A 来说,如果A 不含有2π+k π(k∈Z )这样的数,那么函数y=tanx,x∈A 是增函数;如果A 至少含有一个2π+k π(k∈Z )这样的数,那么在直线x=2π+k π两侧的图象都是上升的(随自变量由小到大).点评:理解正切函数的单调性. 课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义? 作业课本习题1.4 A 组6、8、9.。
高中数学必修四《正切函数的性质与图象教案》优秀教学设计
利用正切线研究正切函数的单调性及值域
教学方法:
多媒体、讲授法
教学过程:
复习回顾:1、我们是怎样研究正、余弦函数的性质的?
图像-----性质
2、如何作出正弦函数图像的?
引入:一般来说对于函数性质的研究总是先作图,通过图像获得对函数性质的直观认识,然后从代数角度给出证明,对于正切函数,我们看看能不能换个角度,在性质的指导下作正切函数图像
讲授新课:
一、正切函数 的性质
1.定义域:
<注>从单位圆中直观看到,探究
2.奇偶性:
强调定义域问题,由一般到特殊
3.周期性:
不用证明
4.单调性:通过单位圆中的正切线的变化直观引入
例:已知 , ,求 的值.
A、 B、 C、 D、
探究:足球场子边线队员射门的角度
5.值域:由正切线观察-----体会逼近的思想
1.4.3正切函数的性质与图象教案
教学目标:
1、知识与技能
理解并掌握正切函数的同期性等相关性质
会利用正切线及正切函数的性质作图像
2、过程与方法
培养学生的作图能力,运用函数图像分析、探究问题的能力
3、情感、态度与价值观
经历根据正切函数的性质描绘图函数图像的过程,进一步体会函数线的作用
教学重点:
正切函数的性质与图像
板书设计:
教正切曲线是被互相平行的直线 , 能隔开的无穷多支曲线组成的。
2、在每一个开区间 呈上升趋势向上与直线 无限接近但永不相交,向下与直线 无限接近但不相交。----渐近线
例1、求函数 的定义域、周期和单调区间
解:定义域:
周期:
单调区间:
例2不求值,比较下列函数值的大小
(课堂设计)-高中数学 1.4.3 正切函数的性质与图象学案 新人教a版必修4
1.4.3 正切函数的性质与图象自主学习知识梳理正切函数的图象和性质(1)图象:如下图所示.(2)性质:如下表所示自主探究仔细观察正切函数的图象,完成下列问题.(1)正切函数的图象有________条渐近线,它们的方程为x=__________(k∈Z).相邻两条渐近线之间都有一支正切曲线,且单调递增.(2)正切函数的图象是中心对称图形,对称中心有______个,它们的坐标是__________(k∈Z);正切函数的图象不是轴对称图形,不存在对称轴.(3)函数y=A tan(ωx+φ)(ω≠0)的周期是T=________.对点讲练知识点一与正切函数有关的定义域问题例1求函数y=tan x+1+lg(1-tan x)的定义域.回顾归纳求定义域时,要注意正切函数自身的限制条件,另外解不等式时要充分利用三角函数的图象或三角函数线.变式训练1 求下列函数的定义域.(1)y=11+tan x;(2)y=lg(3-tan x).知识点二 正切函数的单调性及周期性例2 求函数y =tan ⎝ ⎛⎭⎪⎫-12x +π4的单调区间及周期.回顾归纳 y =tan(ωx +φ) (ω>0)的单调区间的求法即是把ωx +φ看成一个整体,解-π2+k π<ωx +φ<π2+k π,k ∈Z 即可.当ω<0时,先用诱导公式把ω化为正值再求单调区间.变式训练2 求函数y =tan ⎝⎛⎭⎪⎫2x -π3的单调区间及周期.知识点三 正切函数单调性的应用例3 利用正切函数的单调性比较下列两个函数值的大小.(1)tan ⎝ ⎛⎭⎪⎫-6π5与tan ⎝ ⎛⎭⎪⎫-13π7;(2)tan 2与tan 9.回顾归纳 比较两个函数值的大小,只需将所涉及的两个角通过诱导公式转化到同一个单调区间内,再借助单调性即可.正切函数的单调递增区间为⎝ ⎛⎭⎪⎫-π2+k π,π2+k π,k ∈Z .故在⎝ ⎛⎭⎪⎫-π2,π2和⎝ ⎛⎭⎪⎫π2,3π2上都是增函数.变式训练3 比较下列两组函数值的大小.(1)tan(-1 280°)与ta n 1 680°;(2)tan 1,tan 2,tan 3.1.正切函数y =tan x 在每段区间⎝⎛⎭⎪⎫k π-π2,k π+π2 (k ∈Z )上是单调递增函数,但不能说正切函数在其定义域内是单调递增函数.并且每个单调区间均为开区间,而不能写成闭区间⎣⎢⎡⎦⎥⎤-π2+k π,π2+k π(k ∈Z ).正切函数无单调减区间. 2.正切函数是奇函数,图象关于原点对称,并且有无穷多个对称中心,对称中心坐标是⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ).正切函数的图象无对称轴,但图象以直线x =k π+π2(k ∈Z )为渐近线. 课时作业一、选择题1.函数y =2tan ⎝⎛⎭⎪⎫3x +π4的最小正周期是( ) A.π6 B.π3 C.π2 D.2π32.函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )3.下列函数的最小正周期为2π3的函数是( ) A .y =tan 3xB .y =tan ⎝⎛⎭⎪⎫6x -π7 C .y =2tan ⎝ ⎛⎭⎪⎫23x -1D .y =tan ⎝ ⎛⎭⎪⎫32x +π34.下列函数中,在⎝⎛⎭⎪⎫0,π2上单调递增,且以π为周期的偶函数是( )A .y =tan|x |B .y =|tan x |C .y =|sin 2x |D .y =cos 2x5.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是( )A .0B .1C .-1 D.π4二、填空题6.不等式tan ⎝⎛⎭⎪⎫2x -π4≥-1的解集是____________. 7.函数y =3tan ⎝⎛⎭⎪⎫x +π3的对称中心的坐标是_____________________________________________________________________.8.函数y =2tan ⎝⎛⎭⎪⎫3x +π4-5的单调递增区间是________________.三、解答题9.判断函数f (x )=lg tan x +1tan x -1的奇偶性.10.求函数y =tan ⎝ ⎛⎭⎪⎫x 2-π3的定义域、周期、单调区间和对称中心.1.4.3 正切函数的性质与图象答案知识梳理 (2)(1)无数 k π+π2 (2)无数 ⎝ ⎛⎭⎪⎫k π2,0 (3)π|ω| 对点讲练例1 解 由题意得⎩⎪⎨⎪⎧tan x +1≥01-tan x >0,即-1≤tan x <1.在⎝ ⎛⎭⎪⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎢⎡⎭⎪⎫-π4,π4.又y =tan x 的周期为π,所以所求x 的范围是⎣⎢⎡⎭⎪⎫k π-π4,k π+π4 (k ∈Z ). 即函数的定义域为⎣⎢⎡⎭⎪⎫k π-π4,k π+π4 (k ∈Z ). 变式训练1 解 (1)要使函数y =11+tan x有意义,只需⎩⎪⎨⎪⎧1+tan x ≠0,x ≠π2+k π (k ∈Z ).∴函数的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠k π+π2且x ≠k π-π4,k ∈Z .(2)由3-tan x >0,得tan x < 3.根据正切函数图象,得-π2+k π<x <π3+k π (k ∈Z ),∴函数的定义域是⎩⎨⎧⎭⎬⎫x |-π2+k π<x <π3+k π,k ∈Z .例2 解 y =tan ⎝ ⎛⎭⎪⎫-12x +π4=-tan ⎝ ⎛⎭⎪⎫12x -π4,由k π-π2<12x -π4<k π+π2 (k ∈Z ),得2k π-π2<x <2k π+32π,k ∈Z ,∴函数y =tan ⎝ ⎛⎭⎪⎫-12x +π4的单调递减区间是⎝⎛⎭⎪⎫2k π-π2,2k π+32π,k ∈Z .周期T =π⎪⎪⎪⎪⎪⎪-12=2π.变式训练2 解 ∵y =tan x 在x ∈⎝ ⎛⎭⎪⎫-π2+k π,π2+k π (k ∈Z )上是增函数, ∴-π2+k π<2x -π3<π2+k π,k ∈Z .即-π12+k π2<x <5π12+k π2,k ∈Z .∴函数y =tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是 ⎝ ⎛⎭⎪⎫-π12+k π2,5π12+k π2 (k ∈Z ). 周期T =π2.例3 解 (1)∵tan ⎝ ⎛⎭⎪⎫-65π=tan ⎝⎛⎭⎪⎫-π-π5 =tan ⎝ ⎛⎭⎪⎫-π5, tan ⎝ ⎛⎭⎪⎫-137π=tan ⎝⎛⎭⎪⎫-2π+π7=tan π7, 又函数y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, 而-π2<-π5<π7<π2.∴tan ⎝ ⎛⎭⎪⎫-π5<tan π7, 即tan ⎝ ⎛⎭⎪⎫-65π<tan ⎝ ⎛⎭⎪⎫-137π. (2)∵tan 9=tan(9-2π),而π2<2<9-2π<π.由于函数y =tan x 在⎝ ⎛⎭⎪⎫π2,π上是增函数, ∴tan 2<tan(9-2π),即tan 2<tan 9. 变式训练3 解 (1)∵tan(-1 280°) =tan(-4×360°+160°)=tan(180°-20°)=tan(-20°), tan 1 680°=tan(4×360°+240°) =tan(180°+60°)=tan 60°,而函数y =tan x 在()-90°,90°上是增函数, ∴tan(-20°)<tan 60°,即tan(-1 280°)<tan 1 680°.(2)∵tan 2=tan(2-π),tan 3=tan(3-π),又∵π2<2<π,∴-π2<2-π<0,∵π2<3<π,∴-π2<3-π<0, 显然-π2<2-π<3-π<1<π2,且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, ∴tan(2-π)<tan(3-π)<tan 1, 即tan 2<tan 3<tan 1. 课时作业1.B 2.A 3.D 4.B5.A [由题意,T =πω=π4,∴ω=4.∴f (x )=tan 4x ,f ⎝ ⎛⎭⎪⎫π4=tan π=0.] 6.⎣⎢⎡⎭⎪⎫k π2,k π2+3π8 (k ∈Z ) 解析 由k π-π4≤2x -π4<k π+π2,k ∈Z ,解得k π2≤x <k π2+3π8,k ∈Z . 7.⎝ ⎛⎭⎪⎫k π2-π3,0 (k ∈Z ) 解析 由x +π3=k π2(k ∈Z ),得x =k π2-π3(k ∈Z ).∴对称中心坐标为⎝ ⎛⎭⎪⎫k π2-π3,0 (k ∈Z ).8.⎝ ⎛⎭⎪⎫-π4+k π3,π12+k π3,k ∈Z9.解 由tan x +1tan x -1>0,得tan x >1或tan x <-1.∴函数定义域为⎝⎛⎭⎪⎫k π-π2,k π-π4∪⎝ ⎛⎭⎪⎫k π+π4,k π+π2(k ∈Z ) 关于原点对称.f (-x )+f (x )=lg -x +1-x -1+lg tan x +1tan x -1=lg ⎝ ⎛⎭⎪⎫-tan x +1-tan x -1·tan x +1tan x -1=lg 1=0. ∴f (-x )=-f (x ),∴f (x )是奇函数.10.解 ①由x 2-π3≠k π+π2,k ∈Z ,得x ≠2k π+5π3,k ∈Z .∴函数的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠2k π+53π,k ∈Z .②T =π12=2π,∴函数的周期为2π.③由k π-π2<x 2-π3<k π+π2,k ∈Z ,解得2k π-π3<x <2k π+5π3,k ∈Z .∴函数的单调递增区间为⎝⎛⎭⎪⎫2k π-π3,2k π+5π3,k ∈Z . ④由x 2-π3=k π2,k ∈Z ,得x =k π+2π3,k ∈Z .∴函数的对称中心是⎝ ⎛⎭⎪⎫k π+2π3,0,k ∈Z .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正切函数的性质与图象》教学设计
一、教材内容分析:
1、教学内容
人教版A版,数学必修4,第一章,1.4.3“正切函数的性质与图象”
《普通高中课程标准实验教科书·数学 4 (必修)》第一章第四节第三课时内容
2、教材分析:
本节课是研究了正弦、余弦函数的图象与性质后,又一具体的三角函数.
正切函数的性质和图象是对前面已学函数以及三角函数知识的深化运用。
教材紧扣课题,先探究正切函数的性质,再作图,这与前面对正弦函数、余弦函数的研究恰好相反。
本节课提出先推导函数性质,再作图,又由图形发现新性质,再理性反思的处理方式,这样既能在性质的指导下,可以更加有效地作图,数形结合相得益彰,又能给学生提供更多研究数学问题的视角。
二、学习者特征分析:
学生已经学习了正切的定义、单位圆中的正切线、诱导公式、正弦函数的图象和性质等,具备了学习本节课的知识基础.并且在学习基本初等函数时,已然形成了稳定的函数研究模式,即先画图、再性质.选择恰当的方法和过程来研究正切函数的性质,对学生来说也是一种考验。
三、教学策略选择与设计:
我们知道研究函数常见两种方式,第一种方式是先根据函数解析式作出整体的函数图象.通过观察图象获得对函数性质的直观感性的认识,然后再把直观想象的内容用代数的语言加以抽象概括,进一步加以推理证明。
这种研究过程体现的思维模式是由“直观想象”到“抽象概括”,研究方法是由“整体”到“局部”;第二种方式是先用代数的语言抽象概括出函数的局部性质,再根据性质画出函数的整体图象,这种研究过程体现的思维模式是由“抽象概括”到“直观想象”,研究方法是由“局部”到“整体”;
前面主要研究了正余弦函数的图象和性质,我们的研究方法是先画出函数的图象,观察图象得到函数的性质.这节课研究正切函数过程中要体会另一种思维模式,先研究函数的一些局部的抽象的性质,再通过性质画出函数的整体的直观的图象.
使学生的研究函数的思维模式从“直观到抽象、整体到局部”突破到“抽象到直观、局
部到整体”,研究过程也从“先图象后性质”突破到“先性质后图象”,这也是今后研究一个不熟悉的函数时的常用方法。
四、教学目标:
1、能画出正切函数的图像,掌握正切函数的主要性质(包括周期性、奇偶性、单调性、对称性);
2、 体会先根据已有知识研究性质,然后再根据性质研究图象的函数研究方法;
3、 在研究正切函数性质时培养数学抽象、数学运算、逻辑推理的核心素养,再由正切函数性质作出正切函数的图象时培养学习的直观想象能力。
五、教学重、难点
重点:1、正切函数的图像,正切函数的主要性质(包括周期性、奇偶性、单调性、对称性);
2、研究函数的方法。
3、在研究正切函数性质时培养数学抽象、数学运算、逻辑推理的核心素养,再由正切函数性质作出正切函数的图象时培养学习的直观想象能力。
难点:1、从“代数抽象到几何直观”、“从局部性质到整体图象”的函数研究方法;
2、在教学过程中,培养学生数学抽象、数学运算、直观想象、逻辑推理等核心素养。
六、教学过程:
环节一——回顾知识,类比引入 思考1:任意角的正切的定义及几何意义. 环节二——合作交流,探究性质 思考2:正切函数有哪些性质? 1、 正切函数的定义:tan y x =,|,2x x k k ππ⎧⎫
≠+∈⎨⎬⎩⎭
Z
2、正切函数的性质:
定义域:|,2x x k k π
π⎧
⎫
≠+∈⎨⎬⎩
⎭
Z 值域:R
周期性:周期为π 奇偶性:正切函数为奇函数
单调性:在开区间(,
),2
2
k k k π
π
ππ-
++∈Z 内都是增函数。
环节三——动手操作,作出图象
思考3:如何借助以上正切函数的性质作出正切函数的图象呢? 3、 正切函数的图象---正切曲线
tan y x =,|,2x x k k ππ⎧⎫≠+∈⎨
⎬⎩⎭
Z 的图象为:
环节四——数形结合,能力提升
思考4:请大家观察正切函数的图象直观感受一下正切函数,大家有什么新的发现吗? 答案:对称性:正切函数图象关于点,02k k π⎛⎫
∈ ⎪⎝⎭
Z 对称 环节五——例题精讲、知识应用 例1 求函数
()tan(
)23
f x x π
π
=+的定义域、周期和单调性. 环节六——巩固练习 1、已知函数()tan f x x =. (Ⅰ)若(,)36
x ππ
∈-
,则()f x 的取值范围为 ;
(Ⅱ)若2(,),3223
x ππ
ππ⎛⎫
∈ ⎪⎝⎭
,则()f x 的取值范围为 .
2、满足式tan 10x +≥的实数x 的取值范围为
.
3、利用正切函数的单调性比较下列各组中两个正切值的大小:
(Ⅰ)tan138与tan143;(Ⅱ)
13
tan()
4
π
-与
17
tan()
5
π
-.
本节课我们通过研究正切函数的性质得到了正切函数的图象,希望同学们经过这节课的学习不但能能画出正切函数的图像,掌握正切函数的主要性质(包括周期性、奇偶性、单调性、对称性);还能体会先根据已有知识研究性质,然后再根据性质研究图象的函数研究方法;切身感受到研究函数的思维模式从“几何直观到代数抽象、整体图象到局部性质”升华到“代数抽象到几何直观、局部性质到整体图象”的高度,这也是今后研究一个不熟悉的函数时的常用方法。
形与数,数与形密不可分,希望大家在平时学习中在注重注意两种方法的结合应用,要在研究函数的图象和性质的过程中着重培养自己的数学抽象、数学运算、逻辑推理、直观想象的素养。
七、教后反思:
本节课以正切函数的性质与图象为载体,力求让学生们体会研究函数的方法,并且在研究正切函数性质时培养数学抽象、数学运算、逻辑推理的核心素养,再由正切函数性质作出正切函数的图象时培养学习的直观想象能力,是常规课堂中如何培养学生的数学素养的具体体现。
不足之处是在直观观察图象时应该让学生再从多个角度观察对称性进一步培养学生的直观想象能力。