新人教版九年级数学上册《 概率》精品课件
合集下载
初三上数学课件(人教版)-概率

答案:①③.
D
C
1 4
解:(1) 1 (2) 3
4
4
一般地,如果在一次试验中,有n种可能的结果,并且 它们发生的可能性都相等,事件A包含其中的m种结果,那 么事件A发生的概率P(A)= m ,因为0≤m≤n,所以
n 0≤P(A)≤1.
特别地:当A为必然事件时,P(A)=1;当A为不可 能事件时,P(A)=0;当A为随机事件时,P(A)的取值 范围0≤P(A)≤1.
2.当试验具有以下特点时:①每次试验,可能出现的结 果只有_有__限__个;②每次试验,各结果出现的可能性相__等__.可 以从事件所包含的_各__种__可__能_的结果数在全__部__可__能__的结果数中
所占的_比__,分析出事件发生的概率.
3.一般地,如果在一次试验中,有_n_种可能的结果,并 且它们发生的可能性都_相__等_,事件A包含其中的_m_种结果,那
⑤频率是概率的近似值,概率是频率的稳定值.
其中正确的是_①__④__⑤__.___.
解析:在相同的条件下重复试验n次,事件A发生的次数nA
为事件A发生的频数;事件A发生的比例
fn ( A)
nA n
称为事件
A发生的频率.对于给定的随机事件A,如果随着试验次数的
增加,事件A发生的频率fn(A)稳定在某个常数上.若这个
归纳:一般地,如果在一次试验中,有n种可能的结果,并且 它事们件A发发生生的的可概能率性P都(相A)等=,m事,件因A为包0含≤m其≤中n,的所m以种0结≤P果(,A)那≤么1.
n
特别地:当A为必然事件时,P(A)=1;当A为不可能事件 时,P(A)=0;当A为随机事件时,P(A)的取值范围0≤P(A)≤1.
么事件A发生的概率为_P_(_A_)_.m .
D
C
1 4
解:(1) 1 (2) 3
4
4
一般地,如果在一次试验中,有n种可能的结果,并且 它们发生的可能性都相等,事件A包含其中的m种结果,那 么事件A发生的概率P(A)= m ,因为0≤m≤n,所以
n 0≤P(A)≤1.
特别地:当A为必然事件时,P(A)=1;当A为不可 能事件时,P(A)=0;当A为随机事件时,P(A)的取值 范围0≤P(A)≤1.
2.当试验具有以下特点时:①每次试验,可能出现的结 果只有_有__限__个;②每次试验,各结果出现的可能性相__等__.可 以从事件所包含的_各__种__可__能_的结果数在全__部__可__能__的结果数中
所占的_比__,分析出事件发生的概率.
3.一般地,如果在一次试验中,有_n_种可能的结果,并 且它们发生的可能性都_相__等_,事件A包含其中的_m_种结果,那
⑤频率是概率的近似值,概率是频率的稳定值.
其中正确的是_①__④__⑤__.___.
解析:在相同的条件下重复试验n次,事件A发生的次数nA
为事件A发生的频数;事件A发生的比例
fn ( A)
nA n
称为事件
A发生的频率.对于给定的随机事件A,如果随着试验次数的
增加,事件A发生的频率fn(A)稳定在某个常数上.若这个
归纳:一般地,如果在一次试验中,有n种可能的结果,并且 它事们件A发发生生的的可概能率性P都(相A)等=,m事,件因A为包0含≤m其≤中n,的所m以种0结≤P果(,A)那≤么1.
n
特别地:当A为必然事件时,P(A)=1;当A为不可能事件 时,P(A)=0;当A为随机事件时,P(A)的取值范围0≤P(A)≤1.
么事件A发生的概率为_P_(_A_)_.m .
人教版数学九年级上册教学课件-.. 概率ppt课件

笔 记
在一定条件下:必然会发生的事 件叫必然事件; 在一定条件下:必然不会发生的事件 叫不可能事件; 在一定条件下:可能会发生,也可 能不发生的事件叫随机事件.
注意:必然事件和不可能事件统称为确定事件
人教版数学九年级上册教学课件-.. 概率ppt课件
问题1:5名同学参加演讲比赛,以抽签方式决 定每个人的出场顺序。盒中有5个看上去完全一 样的纸团,每个纸团分别写有出场的序号1,2, 3,4,5。小军首先抽,他在看不到纸团上数字 的情况下从盒中随机(任意)取一个纸团。 (1)抽到的序号有几种可能的结果?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
(1)已知地球表面陆地面积与海洋面积的比为 3:7。如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落在陆地上”哪个可能性 更大?
(2)一个袋子里装有20个形状、质地、大小一样 的球,其中4个白球,2个红球,3个黑球,其它 都是黄球,从中任摸一个,摸中哪种球的可能 性最大?
活动1(摸球游戏):三个不透明的箱子均装有 10个乒乓 人教版数学九年级上册教学课件-.. 概率ppt课件 球: 1号箱10个黑球, 2号箱10个白球,
3号箱5个黑球和5个白球。 猜一猜:每个箱能摸到什么颜色的球?
活动2(摸牌游戏):三堆扑克牌中(每堆10张): 第一堆 10张红牌,第二堆 10张黑牌, 第三堆 5张红牌和5张黑牌。 猜一猜:每一堆牌中能摸出什么颜色的牌?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
再猜猜,辩辩:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?
必然发生
人教版数学九年级上册教学课件-.. 概率ppt课件
在一定条件下:必然会发生的事 件叫必然事件; 在一定条件下:必然不会发生的事件 叫不可能事件; 在一定条件下:可能会发生,也可 能不发生的事件叫随机事件.
注意:必然事件和不可能事件统称为确定事件
人教版数学九年级上册教学课件-.. 概率ppt课件
问题1:5名同学参加演讲比赛,以抽签方式决 定每个人的出场顺序。盒中有5个看上去完全一 样的纸团,每个纸团分别写有出场的序号1,2, 3,4,5。小军首先抽,他在看不到纸团上数字 的情况下从盒中随机(任意)取一个纸团。 (1)抽到的序号有几种可能的结果?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
(1)已知地球表面陆地面积与海洋面积的比为 3:7。如果宇宙中飞来一块陨石落在地球上, “落在海洋里”与“落在陆地上”哪个可能性 更大?
(2)一个袋子里装有20个形状、质地、大小一样 的球,其中4个白球,2个红球,3个黑球,其它 都是黄球,从中任摸一个,摸中哪种球的可能 性最大?
活动1(摸球游戏):三个不透明的箱子均装有 10个乒乓 人教版数学九年级上册教学课件-.. 概率ppt课件 球: 1号箱10个黑球, 2号箱10个白球,
3号箱5个黑球和5个白球。 猜一猜:每个箱能摸到什么颜色的球?
活动2(摸牌游戏):三堆扑克牌中(每堆10张): 第一堆 10张红牌,第二堆 10张黑牌, 第三堆 5张红牌和5张黑牌。 猜一猜:每一堆牌中能摸出什么颜色的牌?
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版数学九年级上册教学课件-.. 概率ppt课件
再猜猜,辩辩:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况?
必然发生
人教版数学九年级上册教学课件-.. 概率ppt课件
人教版九年级数学上册25.概率课件

概率为0.因此0 PA 1.
(3)随机事件的概率为 0<P A< 1
例1.掷一枚骰子,视察向上的一面的点 数,求下列事件的概率。
①点数为2. P(点数为2)= 1 ②点数为奇数。 6
P(点数为奇数)= 3 1 ③点数大于2且小于5. 6 2
P(点数大于2且小于5)= 2 1 63
例1变式 掷1个质地均匀的正方体骰 子,视察向上一面的点数, (1)求掷得点数为2或4或6的概率; (2)小明在做掷骰子的实验时,前五 次都没掷得点数2,求他第六次掷得点 数2的概率。
千分之一的成功率
百分之九十九的成功率
概率 用数值表示随机事件产生的可 能性大小。
1.概率的定义:
一般地,对于一个随机事件A,我们把刻 画其产生可能性大小的数值,称为随机事件A 产生的概率,记为P(A).
概率从数量上刻画了一个随机事件产生 的可能性大小。
实验1:掷一枚硬币,落地后 (1)会出现几种可能的结果?两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
事件A产生的概率 PA m .
n
不可能事件,必然事件与随机事件的关系 1、当A是必然产生的事件时,P(A)是多少 ?
必然事件产生的可能性是100% ,P(A)=1;
2、当A是不可能产生的事件时,P(A)是多少? 不可能事件产生的可能性是 0; P(A)= 0; 3、不确定事件产生的可能性是大于0而小于1的.
25.1.2 概率
请用数学的思维和眼光描述 :
瓮中捉鳖 守株枚质地均匀的硬币,硬币落下 后,会出现两种情况:
正面朝上
反面朝上
请问:正面朝上 和反面朝上的 可能性大小相同
吗?
思考:
掷一枚质地均匀的骰子,掷到结果有多少 种?
(3)随机事件的概率为 0<P A< 1
例1.掷一枚骰子,视察向上的一面的点 数,求下列事件的概率。
①点数为2. P(点数为2)= 1 ②点数为奇数。 6
P(点数为奇数)= 3 1 ③点数大于2且小于5. 6 2
P(点数大于2且小于5)= 2 1 63
例1变式 掷1个质地均匀的正方体骰 子,视察向上一面的点数, (1)求掷得点数为2或4或6的概率; (2)小明在做掷骰子的实验时,前五 次都没掷得点数2,求他第六次掷得点 数2的概率。
千分之一的成功率
百分之九十九的成功率
概率 用数值表示随机事件产生的可 能性大小。
1.概率的定义:
一般地,对于一个随机事件A,我们把刻 画其产生可能性大小的数值,称为随机事件A 产生的概率,记为P(A).
概率从数量上刻画了一个随机事件产生 的可能性大小。
实验1:掷一枚硬币,落地后 (1)会出现几种可能的结果?两种 (2)正面朝上与反面朝上的可能性会相等吗? (3)试猜想:正面朝上的可能性有多大呢?
事件A产生的概率 PA m .
n
不可能事件,必然事件与随机事件的关系 1、当A是必然产生的事件时,P(A)是多少 ?
必然事件产生的可能性是100% ,P(A)=1;
2、当A是不可能产生的事件时,P(A)是多少? 不可能事件产生的可能性是 0; P(A)= 0; 3、不确定事件产生的可能性是大于0而小于1的.
25.1.2 概率
请用数学的思维和眼光描述 :
瓮中捉鳖 守株枚质地均匀的硬币,硬币落下 后,会出现两种情况:
正面朝上
反面朝上
请问:正面朝上 和反面朝上的 可能性大小相同
吗?
思考:
掷一枚质地均匀的骰子,掷到结果有多少 种?
人教版九年级上册 25.1.2 概率(共23张PPT)

所有可能结果的总数为7,并且它们出现的可能性相等.
(1)指针指向红色(记为事件A)的结果有3种,
即红1
,红2
,红3
,因此
P( A)
3 7
.
绿1 红2
黄1
红1 绿2
红3黄2
(2)指针指向红色或黄色(记为事件B)的结果有5种,
即红1
பைடு நூலகம்,红2
,红3
,黄1
,黄2
,因此
P(B)
5. 7
(3)指针不指向红色(记为事件C)的结果有4种,
(1)点数为2有1种可能,因此P(点数为2)= 1 .
6
(2)点数为奇数有3种可能,即点数为1,3,5, 因此 P(点数为奇数)= 3 = 1 .
62
(3)点数大于2且小于5有2种可能,即点数为3,4, 因此P(点数大于2且小于5)= 2 = 1 .
63
例2 如图是一个转盘,转盘分成7个大小相同的扇形,颜色分为红、
n
具备元素有限且等 可能行的数学模型
称为古典概型
思考
在P
A
m n
中,分子m和分母n都表示结果的数目,两者有
何区别,它们之间有怎样的数量关系?P(A)可能小于0吗?可能大
于1吗?
要点归纳
在P A m,由m和n的含义,可知0≤m≤n,进而有 0≤ m ≤1,
n
n
故: 0 ≤ P(A)≤ 1
特别地, (1)当A是必然事件时,P(A)= 1. (2)当A是不可能事件时,P(A)= 0.
2
4. 有10张正面分别写有1,2,…,10的卡片,背面图案相同.将卡片背面朝 上充分混匀后,从中随机抽取1张卡片,得到一个数.设A=“得到的数是 5”,B=“得到的数是偶数”,C=“得到的数能被3整除”,求事件A,B,C 发生的概率.
人教版九年级数学上册25.1概率课件 (共25张PPT)

观察下面生活中实例图片哪些是必 然发生的,哪些是不可能发生的?
现在地球在转动
可能发生三人每次都能摸到红球吗? ,也 必然发生 可能不发生
在一定条件下,必然会发生的事件,称 为必然事件。 在一定条件下,必然不会发生的事件, 称为不可能事件。
必然事件和不可能事件统称确定性事件。
在一定条件下,可能发生也可能不发
概率的定义:
一般地,对于一个随机事件A,我们把刻 画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A).
概率从数量上刻画了一个随机事件发生 的可能性大小。
等可能事件概率的求法 一般地,如果在一次试验中,有n种 可能的结果,并且它们发生的可能性都 相等,事件A包含其中的m种结果,那么
同学们听过“天有不测风云” 这句话吧!它的原意是指刮风、下 雨、阴天、晴天这些天气状况很 难预料,后来它被引申为:世界 上很多事情具有偶然性,人们不 能事先判定这些事情是否会发生。
人们果真对这 类偶然事件一定无 降水概率90% 法把握、束手无策 吗?不是!随着对 事件发生的可能性 的深入研究,人们 现在概率的应用日益广泛。本章 发现许多偶然事件 中,我们将学习一些概率初步知 的发生也具有规律 识,从而提高对偶然事件发生规 可循的。概率这个 律的认识。 重要的数学概念,
1 P(摸到红球)= 9 ;
1 P(摸到白球)= 3
50这十个数中随机取出一个数,取出的数 是3的倍数的概率是( B )
1 (A) 5
3 (B) 10
2、从1、2、3、4、5、6、7、8、9、
1 (C) 3
(D) 1 2
3 、话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着 今天由谁来刷碗,可半天也没个好主意。还是悟空聪明,他 灵机一动,扒根猴毛一吹,变成一粒骰子,对八戒说道:我 们三人来掷骰子:
人教版义务教育教科书《数学》九级上册2512概率(共17张PPT)

课堂热身
题组一:牛刀小试
1.从1、2、3、4、5、6、7、8、9、10从这十个数中随机抽出一个数,取出
的数是3的倍数的概率( )
2 .若将分别写有“生活”、“城市”的2张卡片,随机放入“ 让 更美好”
中的两个 内(每个
生活更美好”的概率是(
只放)1张卡片)1 ,则其中的文字恰好组成“城市让
2
3.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样
11111 55555
1归.概纳率上的述定两义个:试对验于一的个特随点机:事件A,我们把刻画其可能性大小的数值称 为随1机.试事验件的A发所生有的可概能率结.果同只时有把有它限记个为;P(A).
2.每次试验只出现其中的一个结果;
3.每一个试验结果出现的可能性相同.
抽签试验(续):
1.抽到2号的可能性有( )1种,在全部可能的结果中所占的比为(
必然发生
1
概率的值
问题回顾
世界杯掷硬币选边问题和刚才我们玩的游
戏:投掷六面标有1、2、3、4、5、6的骰子,
数字2朝上你们赢,否则,老师赢。
(2)点数为奇数有3种可能,即点数为1,3,5, 当A为不可能事件时, P(A) =0。 (A)“明天降雨的概率是80%”表示明天有80%的时间降雨 (2)若乙先从甲手中抽取一张,恰好组成一对的概率是
4
(2)若乙先从甲手中抽取一张,恰好组成一对的概率是
1
归纳总结,交流收获
今天我的收获有:
作业设计
1、P137 1、5、6 2、P132 2、3、4 3、课后上网收集与概率有
关的故事、名言、生活 实例。
结束寄语
祝愿所有的同学:
搜罗天下智慧
丰硕人生成果
《概率》概率初步PPT免费课件

为红、绿、黄三种.指针的位置固定,转动转盘后任
其自由停止,其中的某个扇形会恰好停在指针所指
的位置(指针指向两个图形的交线时,当作指向其右
边的图形).求下列事件的概率:
(1)指针指向红色;
1 4
(2)指针指向黄色或绿色.
3 4
探究新知
素养考点 4 利用概率解决实际问题
例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9
字被抽取的可能性大小相等,所以我们可以用
1 5
表示每一个数
字被抽到的可能性大小.
探究新知
活动2 : 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每
种点数出现的可能性大小相等.我们用
1 6
表示每一种点数出现
的可能性大小.
探究新知
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个 球除颜色外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ;
1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
探究新知
素养考点 3 简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形, 颜色分为红黄绿三种,指针固定,转动转盘后任其自 由停止,某个扇形会停在指针所指的位置,(指针指 向交线时当作指向其右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.
巩固练习
掷一个骰子,观察向上的一面的点数,求下列事 件的概率: (1)点数为2; (2)点数为奇数; (3) 点数大于2小于5.
(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6
人教版九年级数学上册《概率》概率初步PPT优质课件

13
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
13
4 1.
求简单随机事件的概
率
练习
把一副普通扑克牌中的 13 张梅花牌洗匀后正面向下
3
放在桌子上,从中随机抽取一张,求下列事件的概
11 抽出的牌是梅花 6;
率:
21 抽出的牌带有人像;
31 抽出的牌上的数小于 5;
41 抽出的牌的花色是梅花.
1
3
4
1
; 2
; 3
;
13
13
13
4 1.
求简单随机事件的概
活动 2:掷骰子
在上节课的问题 2 中,掷一枚六个面上分别刻有 1 到 6
的点数的骰子,向上一面出现的点数有几种可能?每种点数
出现的可能性大小又是多少?
有 6 种可能,即 1,2,3,4,5,6.
1
6
我们用 表示每一个点数出现的可能性大小.
如何求概率
活动 3
掷一枚硬币,落地后:
1 会出现几种可能的结果? 两种
8
5
(摸出黄球 ) =_________
8
.
求简单随机事件的概
率
练习2 有 7 张纸签,分别标有数字 1,1,2,2,3,4,5,
从中随机地抽出一张,求:
11 抽出标有数字 3 的纸签的概率;
2
(2)抽出标有数字
1 的纸签的概率;
3
(3)抽出标有数字为奇数的纸签的概率.
1
: (数字 3) = 7;
生的概率,记为 ().
认识概率
活动 1:抽纸团
在上节课的问题 1 中,从分别写有数字 1,2,3,4,
5 的五个纸团中随机抽取一个,这个纸团里的数字有几种可
能?每个数字被抽到的可能性大小是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
们做了掷纸杯的试验,试验数据如表:
(2)折线图:
(3)根据表中数据,试验频率为0.7, 0.45,0.63,0.59,0.52,0.55,0.56, 0.55稳定在0.55左右,故估计概率的大 小为0.55.
(2)用树状图或列表格列出所有问题的可能结果: 由树状图(列表)可知, P(编号为 A、B 的 2 个小方格空地种植草坪)
2 1 6 3
C
(C,B)
例2.奥运会期间,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,求选到女生的概率;
概率知识大归纳
知识思维导图
高频考点讲解
等可能性随机事件 的概率
一般地,如果在一次试验中,有 n 种可能的结果,并且它们发 生的可能性都相等,事件 A 包含其中的 m 种结果,那么事件 m A 发生的概率 P(A)= n .
m m
1 ,进而可知频率 因为在n次试验中,事件A发生的频数m满足0≤m≤n,所以 0 n n 所稳定到的常数p满足0≤p≤1,因此0≤P(A) ≤1. 常常采用列表法或树状图法求概率.
几何概率问题
概率=相应的面积与总面积之比.
考场实战演练
例1.如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方 格地面是草坪,除此以外小方格地面完全相同.
【解析】解: (1)P(小鸟落在草坪上)
6 2 ; 9 3
A A B
(B,A) (C,A)
B
(A,B)
C
(A,C) (B,C)
(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,
游戏规则如下:将四张牌面数字分别为 2, 3, 4 , 5的扑克牌洗匀后,数字朝下放于桌面,从 中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树
状图或列表法说明理由.
(2)如图所示:
开始
牌面数字之和为: 5,6,7,5,7,8,6,7,9,7,9,8, ∴偶数为:4 个, 得到偶数的概率为:
4 1 , 12 3 2 , 3
2 3 4 5 2
3 4 52
4 3 5
5
2
3
4
∴得到奇数的概率为:
∴甲参加的概率 < 乙参加的概率,∴这个游戏不公平.
例3.一只纸杯由于上下大小不一,将它从一定高度下掷时,落地反弹后可能是 杯口朝上,可能是杯口朝下,也可能是横卧,为了估计出杯子横卧的概率,同学