马氏体不锈钢

合集下载

马氏体不锈钢特点

马氏体不锈钢特点

马氏体不锈钢特点马氏体不锈钢是一种具有特殊组织结构和优异性能的不锈钢材料。

它以其优异的强度、耐蚀性和耐磨性而被广泛应用于各个领域。

接下来,我们将详细介绍马氏体不锈钢的特点。

1. 高强度:马氏体不锈钢具有较高的强度,其屈服强度和抗拉强度远高于普通不锈钢。

这种高强度使得马氏体不锈钢在承受高负荷和强冲击的环境下表现出色。

2. 良好的耐蚀性:马氏体不锈钢具有优异的耐蚀性,能够在恶劣的腐蚀环境中保持稳定的性能。

它能够抵抗多种酸、碱、盐等腐蚀介质的侵蚀,具有较长的使用寿命。

3. 良好的耐磨性:马氏体不锈钢具有较高的硬度和良好的耐磨性,能够在高速、高负荷和磨损严重的工作条件下保持稳定的性能。

它能够抵抗磨粒的侵蚀和划伤,延长使用寿命。

4. 优异的韧性:马氏体不锈钢具有良好的韧性,能够在低温下保持较高的强度和延展性。

这种韧性使得马氏体不锈钢在极端环境下仍能够保持稳定的性能,具有较高的安全性。

5. 易加工性:马氏体不锈钢具有较好的可塑性和可加工性,能够通过冷加工、热加工和焊接等方式进行成型和加工。

这种易加工性使得马氏体不锈钢在制造过程中更加灵活和方便。

6. 良好的焊接性:马氏体不锈钢具有良好的焊接性,能够通过常规的焊接方法进行连接。

焊接后的接头具有良好的强度和密封性,能够满足工程和制造的要求。

7. 低磁性:马氏体不锈钢具有较低的磁性,能够在一定程度上抵抗磁场的干扰。

这种低磁性使得马氏体不锈钢在某些特殊场合下具有独特的应用价值,如医疗设备、电子器件等领域。

8. 良好的耐热性:马氏体不锈钢具有良好的耐热性,能够在高温环境中保持稳定的性能。

它能够抵抗高温氧化、热腐蚀和热疲劳等作用,适用于高温工作条件下的应用。

9. 环保可持续:马氏体不锈钢是一种环保可持续的材料,具有良好的可回收性和再利用性。

它能够减少资源消耗和环境污染,符合可持续发展的要求。

马氏体不锈钢具有高强度、耐蚀性、耐磨性、韧性、易加工性、良好的焊接性、低磁性、耐热性和环保可持续等特点。

马氏体不锈钢生产工艺

马氏体不锈钢生产工艺

马氏体不锈钢生产工艺
马氏体不锈钢是一种通过调节合金元素含量和冷处理工艺得到的具有高强度和良好的耐腐蚀性能的不锈钢。

其生产工艺主要包括材料选取、熔炼、锻造、热处理和冷加工等步骤。

首先是材料选取。

马氏体不锈钢的材料需要选择合适的原材料,通常包括铬、镍、钼等合金元素。

这些合金元素能够提高不锈钢的耐腐蚀性能和强度。

其次是熔炼。

将选取的原材料放入电炉或电弧炉中进行熔炼,以得到合金溶液。

在熔炼的过程中,需要控制合金元素的含量和炉温,以确保得到所需的合金成分。

然后是锻造。

将熔炼得到的合金溶液进行浇铸或锻造,以得到所需的形状和尺寸。

锻造过程需要控制温度和力度,以确保得到均匀的组织和良好的机械性能。

接下来是热处理。

将锻造得到的不锈钢进行加热处理,以形成马氏体组织。

热处理的温度和时间需要根据不锈钢的成分和所需的性能来确定。

最后是冷加工。

将经过热处理的不锈钢进行冷加工,以进一步提高其强度。

冷加工的方法可以包括冷轧、冷拔、冷镦等。

冷加工的过程中需要控制温度和变形量,以确保不锈钢的性能不受损。

通过以上的工艺步骤,马氏体不锈钢的生产就完成了。

最后需
要对成品进行质量检测,以确保产品符合标准和客户的需求。

马氏体不锈钢生产工艺的优化和改进可以进一步提高不锈钢的性能和生产效率。

不锈钢的马氏体相变

不锈钢的马氏体相变

不锈钢的马氏体相变不锈钢是一种在各种环境条件下都具有高度耐腐蚀性的合金。

其名称源于其成分中含有的高比例铬元素,这有助于防止材料在暴露于氧气和其他腐蚀性物质时发生氧化。

不锈钢根据其微观结构,可以分为不同的类型,其中最常见的是奥氏体不锈钢和马氏体不锈钢。

马氏体相变是金属材料的一种重要现象,尤其是不锈钢。

在本文中,我们将深入探讨不锈钢中的马氏体相变,包括其定义、影响因素以及与不锈钢性能的关系。

一、马氏体相变的定义马氏体相变是一种固态相变过程,发生在铁基合金中,特别是在不锈钢中。

当温度降低时,奥氏体不锈钢会通过马氏体相变转变成一种硬且脆的同素异形体,称为马氏体。

这种转变是热力学上的自发过程,通常伴随着体积的膨胀和磁性的改变。

二、马氏体相变的影响因素1. 温度:马氏体相变通常在特定的温度以下发生。

对于大多数不锈钢,这个温度大约在200°C至300°C之间。

2. 合金成分:不同类型的不锈钢具有不同的马氏体相变温度。

这主要取决于其合金成分,特别是碳和其他合金元素的比例。

3. 应力和应变:应力和应变状态也会影响马氏体相变。

例如,淬火可以提高材料的硬度,这是由于马氏体相变和随后的组织结构变化。

三、马氏体相变与不锈钢性能的关系马氏体相变对不锈钢的性能有重要影响,主要包括以下几个方面:1. 机械性能:马氏体相变会导致不锈钢的硬度增加,从而提高其耐磨性和耐腐蚀性。

然而,这也可能导致材料变脆,特别是在较低温度下进行淬火处理时。

2. 耐腐蚀性:马氏体相变对不锈钢的耐腐蚀性有双重影响。

一方面,由于硬度增加,材料更难以被腐蚀;另一方面,淬火处理可能会在材料表面形成微裂纹,从而降低耐腐蚀性。

3. 磁性和热性能:马氏体相变还影响不锈钢的磁性和热性能。

例如,某些类型的马氏体不锈钢具有高磁导率,这在某些应用中是有利的。

此外,马氏体相变也影响不锈钢的热导率和热膨胀系数。

四、不锈钢中马氏体的应用场景由于马氏体相变对不锈钢的性能有显著影响,这种相变在许多应用场景中都得到了利用。

马氏体硬化沉淀不锈钢常见牌号

马氏体硬化沉淀不锈钢常见牌号

一、概述马氏体硬化沉淀不锈钢是一种常见的不锈钢材料,具有优良的抗腐蚀性能和高强度特点,被广泛应用于航空航天、汽车制造、化工等领域。

本文将介绍马氏体硬化沉淀不锈钢的常见牌号及其特性,以便读者更好地了解和选择适合自己需求的材料。

二、马氏体硬化沉淀不锈钢常见牌号1. 304型不锈钢304型不锈钢是最常见的马氏体硬化沉淀不锈钢之一,具有优良的耐腐蚀性和加工性能,适用于一般环境下的制造和使用。

其化学成分主要为:C ≤ 0.08,Si ≤ 1.00,Mn ≤ 2.00,P ≤ 0.045,S ≤ 0.03,Cr 18.00-20.00,Ni 8.00-10.50。

304型不锈钢适用于装饰、厨房设备等领域。

2. 316型不锈钢316型不锈钢是一种耐腐蚀性能较好的马氏体硬化不锈钢,主要用于化工、海工等领域。

其化学成分主要为:C ≤ 0.08,Si ≤ 1.00,Mn ≤ 2.00,P ≤ 0.045,S ≤ 0.03,Cr 16.00-18.00,Ni 10.00-14.00,Mo 2.00-3.00。

316型不锈钢具有良好的耐腐蚀性能,对海水、化学药品等具有抗腐蚀能力。

3. 2205型不锈钢2205型不锈钢是一种双相不锈钢,含有较高的铬、钼和氮元素,具有良好的耐蚀、耐磨性能,广泛应用于化工、海洋工程、化肥、造纸等领域。

其化学成分主要为:C ≤ 0.03,Si ≤ 1.00,Mn ≤ 2.00,P ≤ 0.03,S ≤ 0.02,Cr 22.0-23.0,Ni 4.5-6.5,Mo 3.0-3.5,N 0.14-0.20。

2205型不锈钢具有高强度和耐蚀性能,适用于苛刻环境下的使用。

4. 2507型不锈钢2507型不锈钢是一种超级双相不锈钢,具有优良的耐蚀性能和高强度特点,适用于海工、化工等领域。

其化学成分主要为:C ≤ 0.03,Si≤ 0.8,Mn ≤ 1.2,P ≤ 0.035,S ≤ 0.02,Cr 24.0-26.0,Ni 6.0-8.0,Mo 3.0-5.0,N 0.24-0.32。

马氏体不锈钢 密度

马氏体不锈钢 密度

马氏体不锈钢密度马氏体不锈钢是一种具有高强度和良好耐腐蚀性能的金属材料。

它的密度是多少呢?密度是指单位体积的物质质量,通常用克/立方厘米或克/毫升来表示。

马氏体不锈钢的密度约为7.7克/立方厘米。

马氏体不锈钢是由铁、铬、镍等元素组成的合金材料,其中添加了一定比例的碳元素。

通过控制材料的冷却速度和温度,在晶格结构中形成马氏体相。

马氏体相具有高硬度和优异的强度,使得马氏体不锈钢在机械制造和建筑工程中得到广泛应用。

马氏体不锈钢具有较高的密度,这是由于其合金成分和晶格结构所决定的。

首先,铁、铬、镍等元素的原子质量较大,使得材料的质量相对较大。

其次,马氏体晶格结构相对于其他晶格结构来说更加密集,原子之间的相互作用力较强,从而使得材料的质量相对较大。

马氏体不锈钢的高密度使得它具有一些特殊的物理和化学性质。

首先,高密度使得马氏体不锈钢具有较高的重量,这对于一些需要重量支撑的应用场合非常重要。

其次,高密度也使得马氏体不锈钢具有较高的热传导性能,可以快速传递热量,适用于高温环境下的应用。

此外,高密度还使得马氏体不锈钢具有较高的抗压能力和耐磨性,增强了其在机械制造中的应用价值。

马氏体不锈钢的密度还与其具体成分有关。

不同型号的马氏体不锈钢具有不同的成分比例,因此其密度也会有所差异。

一般来说,马氏体不锈钢的密度在7.7克/立方厘米左右,但具体数值会因不同牌号和加工工艺而有所变化。

马氏体不锈钢是一种密度较高的金属材料,其密度约为7.7克/立方厘米。

高密度使得马氏体不锈钢具有较高的重量、热传导性能、抗压能力和耐磨性,使其在机械制造和建筑工程等领域得到广泛应用。

了解密度这一物理性质有助于我们更好地理解和应用马氏体不锈钢材料。

马氏体不锈钢的基本介绍与主要性能

马氏体不锈钢的基本介绍与主要性能

马氏体不锈钢的基本介绍与主要性能一、基本概念:不锈钢是一种合金钢,其中铁是主要基体,其中铬是最主要的合金元素,其含量一般在10.5%以上。

马氏体不锈钢是由固溶体中变成马氏体的纯铁或铁合金,其中包括奥氏体钢、奥氏体-铁素体不锈钢和奥氏体-铁素体-马氏体不锈钢。

马氏体不锈钢由于其具有良好的机械性能和耐蚀性,被广泛应用于不锈钢制品。

二、组织结构:三、合金设计:合金设计是控制马氏体不锈钢组织结构的关键因素之一、合金设计通常包括以下几个方面:1.铬的含量:铬是马氏体不锈钢中最重要的合金元素之一,其含量越高,耐蚀性越好,但对耐热性和韧性的要求也越高。

2.镍的含量:镍的添加可以提高马氏体不锈钢的抗腐蚀能力和强度,但同时也会增加成本。

3.碳的含量:碳的含量对马氏体不锈钢的硬度和强度有重要影响,但过高的碳含量会降低耐腐蚀性能。

4.其他合金元素:如钼、锰、钛等,可以通过合适的含量添加来改善马氏体不锈钢的特性。

四、主要性能:1.耐腐蚀性能:马氏体不锈钢具有良好的耐腐蚀性能,能够在酸、碱、盐和气体等腐蚀介质中保持较好的稳定性。

这得益于马氏体不锈钢中铬元素的高含量和其与氧气生成的致密氧化膜。

2.强度和韧性:马氏体不锈钢具有良好的强度和韧性,能够在高应力和高温环境下保持稳定性。

这得益于马氏体的高硬度和铁素体的高韧性。

3.磨损性能:马氏体不锈钢具有优异的抗磨损性能,能够在磨擦和摩擦磨损环境中保持较好的稳定性。

这得益于马氏体的高硬度和铁素体的高韧性。

总结起来,马氏体不锈钢是一种具有良好耐蚀性、强度和韧性的合金钢材料。

合金设计是控制马氏体不锈钢组织结构和性能的关键因素之一、在实际应用中,可以根据具体需求选择适合的马氏体不锈钢材料。

马氏体不锈钢

马氏体不锈钢
标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元素,主要是用于将标准钢材受限的容许工作温度提 升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂 的问题变成更严重。
性能
马氏体不锈钢能在退火、和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊 道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且 此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。
基本介绍
标准的马氏体不锈钢是:410、414、416、416(Se)、420、431、440A、440B和440C型,有磁性;这些钢材 的耐腐蚀性来自“铬”,其范围是从11.5至18%,铬含量愈高的钢材需碳含量愈高,以确保在热处理期间马氏体 的形成,上述三种440型不锈钢很少被考虑做为需要焊接的应用,且440型成份的熔填金属不易取得。
马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ 相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入 奥氏体形成元素,以扩大来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢 中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还 有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。
(2)马氏体铬镍钢。包括马氏体沉淀硬化不锈钢、半奥氏体沉淀硬化不锈钢和马氏体时效不锈钢等,都是高 强度或超高强度不锈钢。此类钢碳含量较低(低于0.10%),并含有镍,有些牌号还含有较高的钼、铜等元素, 所以此种钢在具有高强度的同时,强度与韧性的配合以及耐蚀性、焊接性等均优于马氏体铬钢。Crl7Ni2是最常 用的一种低镍马氏体不锈钢。马氏体沉淀硬化不锈钢通常还含有Al、Ti、Cu等元素,它是在马氏体基体上通过沉 淀硬化作用析出Ni3A1、Ni3Ti等弥散强化相而进一步提高钢的强度,如Crl7Ni4Cu4等牌号;而半奥氏体(或称 半马氏体)沉淀硬化不锈钢,由于淬火状态仍为奥氏体组织,所以淬火态仍可进行冷加工成型,然后通过中间处 理、时效处理等工艺进行强化,这样就可以避免马氏体沉淀硬化不锈钢中的奥氏体淬火后直接转变为马氏体,导 致随后加工成型困难的缺点。常用的钢种有0Crl7Ni7AI、0Crl5Ni7M02A1等。此类钢强度较高,一般达1200~ 1400MPa,常用于制作对耐蚀性能要求不太高但需要高强度的结构件,如飞机蒙皮等。

马氏体不锈钢和奥氏体不锈钢

马氏体不锈钢和奥氏体不锈钢

马氏体不锈钢和奥氏体不锈钢一、马氏体不锈钢马氏体不锈钢是一种具有优异耐腐蚀性的不锈钢材料。

它的特点是具有良好的强度和韧性,同时具备优异的耐热性和耐蚀性。

马氏体不锈钢通常由奥氏体不锈钢经过淬火和时效处理得到。

马氏体不锈钢的主要组织结构是马氏体,这是一种具有高硬度的组织形态。

通过淬火处理,奥氏体不锈钢中的铁素体和奥氏体会转变为马氏体,从而提高材料的强度和韧性。

此外,马氏体不锈钢还具有较高的耐腐蚀性能,可以在恶劣的环境中长时间使用。

马氏体不锈钢在工业领域具有广泛应用。

它广泛用于制造各种耐腐蚀的零部件,如阀门、管道、泵体等。

此外,马氏体不锈钢还被广泛用于制造刀具、弹簧和机械零件等。

二、奥氏体不锈钢奥氏体不锈钢是一种具有良好耐腐蚀性和机械性能的不锈钢材料。

奥氏体不锈钢的主要组织结构是奥氏体,这是一种具有良好塑性和韧性的组织形态。

奥氏体不锈钢具有高强度、良好的焊接性能和优异的耐腐蚀性能。

奥氏体不锈钢的耐腐蚀性能主要取决于其中的铬含量。

铬是一种具有良好抗氧化性的元素,可以形成一层致密的氧化铬膜来保护材料表面免受腐蚀的侵害。

因此,奥氏体不锈钢中的铬含量越高,其耐腐蚀性能就越好。

奥氏体不锈钢具有广泛的应用领域。

它被广泛用于制造化工设备、食品加工设备、医疗器械等对耐腐蚀性能要求较高的领域。

此外,奥氏体不锈钢还被应用于建筑装饰、家具制造等领域,其优雅的外观和良好的耐腐蚀性能使其成为理想的材料选择。

三、马氏体不锈钢与奥氏体不锈钢的比较1. 结构:马氏体不锈钢的主要组织结构是马氏体,而奥氏体不锈钢的主要组织结构是奥氏体。

2. 性能:马氏体不锈钢具有较高的强度和硬度,同时具备良好的耐热性和耐蚀性。

奥氏体不锈钢具有良好的塑性和韧性,同时具备优异的耐腐蚀性。

3. 应用:马氏体不锈钢广泛应用于制造耐腐蚀的零部件,如阀门、管道、泵体等。

奥氏体不锈钢广泛应用于制造化工设备、食品加工设备、医疗器械等领域。

四、总结马氏体不锈钢和奥氏体不锈钢都是具有优异耐腐蚀性能的不锈钢材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马氏体不锈钢
标准的马氏体不锈钢是:403、410、414、416、416(Se)、420、431、440A、440B和440C型,这些钢材的耐腐蚀性来自“铬”,其范围是从11.5至18%,铬含量愈高的钢材需碳含量愈高,以确保在热处理期间马氏体的形成,上述三种440型不锈钢很少被考虑做为需要焊接的应用,且440型成
份的熔填金属不易取得。

标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元素,主要是
用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂
的问题变成更严重。

马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材
的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,
热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性
减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的
最有效方法,为得最佳的性质,需焊后热处理。

马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调
整的不锈钢,通俗地讲,是一类可硬化的不锈钢。

这种特性决定了这类钢
必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该
区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形
成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。

按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。

马氏体铬不锈钢的主要合金元素是铁、铬和碳。

图1-4是Fe-Cr系相
图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中
加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。

在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。

当然,还有其他元素,利用这些元素,可根
据Schaeffler图确定大致的组织。

马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。

各国广泛应用的马氏体不锈钢钢种有如下3类:
1.低碳及中碳13%Cr钢
2.高碳的18%Cr钢
3.低碳含镍(约2%)的17%Cr钢
马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。

碳含量较高的钢号(4Cr13、9Cr18)则适用于制造医疗器械、餐刀、测量用具、弹簧等。

与铁素体不锈钢相似,在马氏体不锈钢中也可以加入其它合金元素来改进其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或
4Cr13Se;2.加入约1%Mo及0.1% V,可以增加9Cr18钢的耐磨性及耐蚀性;
3.加入约1Mo-1W-0.2V,可以提高1Cr13及2Cr13钢的热强性。

马氏体不锈钢与调制钢一样,可以使用淬火、回火及退火处理。

其力学性质与调制钢也相似:当硬度升高时,抗拉强度及屈服强度升高,而伸长率、截面收缩率及冲击功则随着降低。

马氏体不锈钢的耐蚀性主要取决于铬含量,而钢中的碳由于与铬形成稳定的碳化铬,又间接的影响了钢的耐蚀性。

因此在13%Cr钢中,碳含量越低,则耐蚀性越高。

而在1Cr13、2Cr13、3Cr13及4Cr13四种钢中,其耐蚀性与强度的顺序恰好相反。

金属材料经过回火的方式不同后会有一段时间的金相结构不稳定,有的材料会在很长的时间里金相结构不稳定,在这段时间里的金相结构观察称为回火马氏体。

材料温度稳定后,金相结构不再发生变化,这时候观察的金相结构才称谓马氏体。

淬火马氏体是过冷奥氏体被激冷到Ms点以下时转变的组织,是碳与合金元素在α-Fe中的过饱和固溶体。

淬火马氏体分为板条马氏体(低碳马氏体)和片状马氏体(高碳马氏体),形态上各为板条状和片状,淬火马氏体一般硬而脆,属于亚稳状态,随外界温度或应力变化有向稳定状态(发生分解)的趋向。

马氏体在250℃以下温度回火时,分解为低碳马氏体和ε碳化物组成的混合物,称为回火马氏体。

由于ε碳化物的析出相和不均匀的分布,使得这种组织易于腐蚀,故回火马氏体的金相组织呈不均匀的灰黑色。

奥氏体
奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。

它仍保持γ-Fe 的面心立方晶格。

其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。

奥氏体是在大于727℃高温下才能稳定存在的组织。

奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。

奥氏体是没有磁性的。

马氏体分级淬火
是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。

分级淬火由于在分级温度停留到工件
内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。

分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。

马氏体不锈钢
通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。

典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。

粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。

根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。

根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。

马氏体就是以人命命名的:
对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。

在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。

马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。

这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。

他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。

于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。

(这个工作我们现在做的好像也蛮多的。

)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。

他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。

1895年国际材料试验学会成立,他担任了副主席一职。

直到现在,在德国依然有一个声望颇高的奖项以他的名字命名。

相关文档
最新文档