利用MATLAB仿真模拟调制系统

合集下载

基于MATLAB的模拟调制系统仿真及测试(AM调制)

基于MATLAB的模拟调制系统仿真及测试(AM调制)

闽江学院《通信原理设计报告》题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系专业:12通信工程组长:曾锴(3121102220)组员:薛兰兰(3121102236)项施旭(3121102222)施敏(3121102121)杨帆(3121102106)冯铭坚(3121102230)叶少群(3121102203)张浩(3121102226)指导教师:余根坚日期:2014年12月29日——2015年1月4日摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。

在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。

在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。

利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。

关键词模拟调制;仿真;Simulink目录第一章绪论 (1)1.1 引言 (1)1.2 关键技术 (1)1.3 研究目的及意义 (2)1.4 本文工作及内容安排 (2)第二章模拟调制原理 (3)2.1 幅度调制原理 (3)2.1.1 AM调制 (4)第三章基于Simulink的模拟调制系统仿真与分析 (6)3.1 Simulink工具箱简介 (6)3.2 幅度调制解调仿真与分析 (8)3.2.1 AM调制解调仿真及分析 (8)第四章总结 (12)4.1 代码 (13)4.2 总结 (14)第一章绪论1.1引言在通信技术的发展中,通信系统的仿真是一个技术重点。

通常情况下,调制可以分为模拟调制和数字调制。

在模拟调制中,调制信号为连续的信号,而在数字调制中调制信号为离散信号。

基于MATLAB模拟调制系统的仿真设计

基于MATLAB模拟调制系统的仿真设计

基于MATLAB模拟调制系统的仿真设计调制是无线通信系统中的重要环节,主要用于在传输信号过程中对信号进行编码和解码,以实现信号的传输和接收。

MATLAB作为一种强大的数学仿真工具,可以方便地进行调制系统的仿真设计。

调制系统一般包括三个主要部分:调制器、信道和解调器。

调制器负责将发送信号进行编码,以适应信道传输的需求;信道主要是指无线信号在传输过程中的传播环境,会受到各种影响,如多径效应、噪声等;解调器对接收到的信号进行解码,恢复出原始信号。

在MATLAB中,可以利用其信号处理、通信和仿真工具箱来进行调制系统的仿真设计。

以下是一个基于MATLAB的调制系统的仿真设计流程:1.确定调制方式:首先确定要使用的调制方式,比如常见的调制方式有调幅(AM)、调频(FM)、相位调制(PM)等。

根据需求选择合适的调制方式。

2.信号生成:使用MATLAB的信号处理工具箱生成原始信号。

可以选择不同的函数生成不同的信号,如正弦信号、方波信号、高斯脉冲等。

3.调制器设计:根据选择的调制方式,设计相应的调制器。

比如对于AM调制,可以通过将原始信号与载波进行乘法运算来实现;对于FM调制,可以通过改变载波频率的方式来实现。

在MATLAB中,可以使用相关函数来实现这些调制方式。

4.信号传输:将调制后的信号传输到信道中。

可以在仿真中模拟不同的信道情况,如加入噪声、多径效应等。

MATLAB提供了相关函数来模拟这些信道效应。

5.解调器设计:设计相应的解调器以恢复原始信号。

解调器的设计与调制器的设计相对应。

在MATLAB中,可以使用相关函数来实现解调器。

6.信号分析:对仿真结果进行分析。

可以通过绘制波形图、功率谱密度图等来观察信号在传输过程中的变化。

除了上述基本的仿真设计流程外,还可以在仿真过程中加入其他功能,如信号压缩、信号变换等。

MATLAB提供了大量的工具箱,可以方便地实现这些功能。

总之,基于MATLAB的调制系统仿真设计可以方便地模拟调制系统的工作过程,以及对不同信道效应的影响。

基于MATLAB的模拟调制系统仿真.

基于MATLAB的模拟调制系统仿真.

河北建筑工程学院本科生毕业设计(论文)答辩委员会主席签字:河北建筑工程学院本科生毕业设计(论文)学科专业: 建筑电气与智能化班级: 电智151姓名: 王金立指导教师: 李亚杰指导教师职称: 讲师摘要随着时间的发展,通信技术得到了很大的提高,能够通过模拟将我们需要的信号进行一下调制,调成能够在信道上传送的一个非常重要的技术。

我们经常使用到幅度调制和角度调制来作为重要的方式。

当我们用幅度调制的时候,我们会将振幅调制、双侧波带、单侧波段等方法来作为我们首要的研究对象,了解他们的原理我们再进行讲解分析讨论。

而当进行到角度调制分析的话,我们往往用到频率调制还有音调来进行研究探讨,阐述一下我们了解到的调制原理,紧接着开展模拟调制研究。

我们可以用一个软件叫做MATLAB,他下面有一个工具箱叫Simulink,这个工具箱可以帮助我们到我们进行模拟调制研究分析。

经过一系列工作研究我们会得到频域或者时域模拟结论,我们会清楚的得到所有调制方法的优劣,哪一个更好、哪一个有不足,我们将会更加全面地掌握模拟调制系统有关方面的一些重要东西,在了解每一种调制方法后我们再根据我们想要使用的调制方法,但是不同的调制方法往往就会有不同的系统功能,通信系统的发送端通常需要调制过程,为了将调制信号的光谱移动到期望的位置,并将调制信号频谱转换为适合信道传输或方便信道复用的调制信号,在接收端为了恢复本来的有用信号而进行解调过程必要。

调制解调方案通常确定通信系统的性能。

随着信息化时代的到来,调制解调技术成为当今社会极其重要的学科和技术领域,广泛应用于通信、信号处理等多个领域。

在调制解调系统中担当者主角地位的应当归属调制解调器啦,数字通信技术中没有调制解调器是万万不可以的,这使得调制解调器大面积投入到大中小型工厂和个人研究所中。

关键词:MATLAB;模拟调制;仿真;SimulinkAbstractWith the development of time, communication technology has been greatly improved. We can modulate the signal we need through simulation to a very important technology that can transmit on the channel. Amplitude modulation and angle modulation are often used as important methods. When we use amplitude modulation, we will take the methods of amplitude modulation, bilateral band and unilateral band as our primary research object. We will explain and discuss their principles. When we do angular modulation analysis, we often use frequency modulation and tone to study and discuss, elaborate the modulation principle we know, and then carry out analog modulation research.We can use a software called MATLAB, which has a toolbox called Simulink below. This toolbox can help us to carry out analog modulation research and analysis. After a series of work research, we will get the conclusion of frequency domain or time domain simulation. We will clearly get the advantages and disadvantages of all modulation methods, which one is better and which one is insufficient. We will have a more comprehensive grasp of some important aspects of analog modulation system. After understanding each modulation method, we will use the modulation method we want to use, but not. The same modulation method often has different system functions. The transmitter of communication system usually needs a modulation process. In order to move the spectrum of the modulated signal to the desired position and convert the spectrum of the modulated signal into a modulated signal suitable for channel transmission or convenient for channel multiplexing, it is necessary for the receiver to carry out the demodulation process in order to recover the original useful signal. Modem schemes usually determine the performance of communication systems. With the advent of the information age, modem technology has become an extremely important subject and technical field in today's society, which is widely used in communication, signal processing and other fields. In the modem system, the leading role should belong to the modem. It is absolutely impossible without the modem in digital communication technology, which makes the modem invest in large and medium-sized factories and personal research institutes.Key words: Analog modulation; simulation; Simulink目录目录第1章绪论 (1)1.1引言 (1)1.2 研究背景 (1)1.3 关键技术 (2)1.3.1 调制 (2)1.3.2 解调 (2)1.4 研究目的及意义 (3)1.5 本文工作及内容安排 (4)第2章MATLAB简介 (5)2.1 什么是MATLAB: (5)2.2 MATLAB发展: (5)2.3 主要版本 (5)2.4 MATLAB应用 (6)2.5 MATLAB特点 (6)2.6 MATLAB影响意义 (6)(1)矩阵和阵列处理 (7)(2)2-D和3-D绘图和图形 (7)(3)线性代数 (7)(4)代数方程组 (7)(5)非线性函数 (7)(6)统计 (7)(7)数据分析 (7)(8)微积分和微分方程 (7)(9)数值计算 (7)(10)积分 (7)(11)变换 (7)(12)曲线拟合 (7)(13)各种其它的特殊功能 (7)2.7 MATLAB的基本特征 (7)2.8 MATLAB的用途 (7)(1)信号处理和通信 (7)(2)图像和视频处理 (7)(3)控制系统 (7)(4)测试和测量 (7)(5)计算金融 (8)(6)计算生物 (8)第3章模拟调制 (9)3.1 什么是模拟调制 (9)3.1.1幅度调制 (9)3.1.2角度调制 (10)3.2 各种模拟调制系统的比较 (10)3.2.1 AM调制的优点 (10)3.2.2 DSB调制的优点 (10)3.2.3 SSB调制的优点 (11)3.2.4 VSB调制的优点 (11)3.3 幅度调制定理 (11)3.3.1 DSB调制与解调 (11)第4章 Simulink工具箱简介以及仿真实例搭建 (13)4.1 Simulink工具箱简介 (13)4.2 幅度调制解调仿真与分析 (13)4.3 DSB-AM调制 (13)4.3.1概念 (13)4.3.2 实例 (14)4.3.3总结 (15)4.4常规双边带AM调制 (16)4.4.1概念 (16)4.4.2实例 (17)4.4.3总结 (18)4.5 SSB-AM调制 (18)4.5.1概念 (18)4.5.2实例 (19)4.5.3 总结 (20)4.6 残留边带幅度调制 (20)4.6.1 概念 (20)4.6.2 实例 (21)第5章总结 (22)致谢 (23)附录 (24)A1=5;%调制波信号振幅 (24)A2=3;%已调信号振幅 (24)T1=10*fft(Uc);%傅里叶变换 (24)T2=fft(mes);%傅里叶变化 (25)T3=fft(Uam);%已调信号的傅里叶变换 (25)T4=fft(Dam); (26)T5=fft(z21);%求AM信号的频谱 (26)参考文献 (31)[14] 宋辉. 通信信号的特征分析、自动识别与参数提取[D]. 南京理工大学, 2003 (31)[15] 胡广书. 现代信号处理[M]. 北京:清华大学出版社, 2004 (31)[16] 罗明. 数字通信信号的自动识别与参数估计研究[D]. 西安电子科技大学, 2005 (31)第1章绪论1.1引言通信技术经过长时间的漫长发展,模拟仍旧是一个非常重要的学科技术重点,往往我们可以通俗的来说,调制可以分为模拟调制和数字调制两种重要的方法,在进行模拟调制的时候,调制信号往往是不间断的的信号,而在数字调制中往往是间断的离散信号,调制在通信系统中扮演的角色非常高,因此它是非常重要的,我们调制完成后,可以将这个频谱搬到另一个频谱上,令我们开心的是还可以把调制信号的光谱挪到我们想要的位置上,这样我们就把信号调制到相应的信道上来传输,不会发生传输不合适的情况,在有些时候适当的变换一下信道复用往往可以起到意想不到的结果,大大提高了系统的稳定性,效益也是非常显著的,发挥的作用和影响超乎想象。

基于MATLAB模拟调制系统的仿真设计

基于MATLAB模拟调制系统的仿真设计

基于MATLAB模拟调制系统的仿真设计摘要:本文基于MATLAB平台,通过建立调制系统的仿真模型,实现了对调制系统的仿真设计。

首先对调制系统的基本原理进行了介绍,然后建立了调制系统的数学模型。

接着使用MATLAB对模型进行了仿真分析,包括调制信号的产生、载波信号的产生、调制信号与载波信号的混合调制、调制后的信号的传输等过程。

最后,通过仿真结果的分析,对调制系统的性能进行了评估,并提出了优化方案。

本文的研究对于调制系统的设计和优化具有一定的参考意义。

关键词:调制系统;MATLAB仿真;混合调制;性能评估;优化方案一、引言调制是无线通信中的一项基本技术,通过将信息信号与载波信号进行合成,使信息信号能够被传输到远距离的通信接收端。

调制系统是实现调制技术的关键,其性能直接影响到通信系统的可靠性和传输质量。

因此,对调制系统的研究和优化具有重要的意义。

二、调制系统的基本原理调制系统的基本原理是将信息信号经过调制器与载波信号进行混合调制,形成调制后的信号。

调制过程中,需要考虑到载波频率、调制信号幅度、调制信号频率等参数的选择。

常见的调制方式有幅度调制(AM)、频率调制(FM)、相位调制(PM)等。

三、调制系统的数学模型调制系统的数学模型是根据调制原理建立的,一般可表示为:$s(t) = A_c \cdot (1 + m \cdot \cos(f_m \cdot t)) \cdot\cos(f_c \cdot t)$其中,$s(t)$表示调制后的信号,$A_c$为载波幅度,$m$为调制系数,$f_m$为调制信号频率,$f_c$为载波频率。

四、MATLAB仿真设计4.1调制信号的产生通过MATLAB生成调制信号,并将其绘制出来,以便后续的仿真分析。

4.2载波信号的产生通过MATLAB生成载波信号,并将其绘制出来,以便后续的仿真分析。

4.3调制信号与载波信号的混合调制将调制信号与载波信号进行混合调制,并将调制后的信号绘制出来,以便后续的仿真分析。

基于Matlab的模拟调制与解调实验报告

基于Matlab的模拟调制与解调实验报告

基于Matlab的模拟调制与解调(开放实验)一、实验目的(一)了解AM、DSB和SSB 三种模拟调制与解调的基本原理(二)掌握使用Matlab进行AM调制解调的方法1、学会运用MATLAB对基带信号进行AM调制2、学会运用MATLAB对AM调制信号进行相干解调3、学会运用MATLAB对AM调制信号进行非相干解调(包络检波)(三)掌握使用Matlab进行DSB调制解调的方法1、学会运用MATLAB对基带信号进行DSB调制2、学会运用MATLAB对DSB调制信号进行相干解调(四)掌握使用Matlab进行SSB调制解调的方法1、学会运用MATLAB对基带信号进行上边带和下边带调制2、学会运用MATLAB对SSB调制信号进行相干解调二、实验环境MatlabR2020a三、实验原理(一)滤波法幅度调制(线性调制)(二)常规调幅(AM)1、AM表达式2、AM波形和频谱3、调幅系数m(三)抑制载波双边带调制(DSB-SC)1、DSB表达式2、DSB波形和频谱(四)单边带调制(SSB)(五)相关解调与包络检波四、实验过程(一)熟悉相关内容原理 (二)完成作业已知基带信号()()()sin 10sin 30m t t t ππ=+,载波为()()cos 2000c t t π= 1、对该基带信号进行AM 调制解调(1)写出AM 信号表达式,编写Matlab 代码实现对基带进行进行AM 调制,并分别作出3种调幅系数(1,1,1m m m >=<)下的AM 信号的时域波形和幅度频谱图。

代码 基带信号fs = 10000; % 采样频率 Ts = 1/fs; % 采样时间间隔t = 0:Ts:1-Ts; % 时间向量m = sin(10*pi*t) + sin(30*pi*t); % 基带信号载波信号fc = 1000; % 载波频率c = cos(2*pi*fc*t); % 载波信号AM调制Ka = [1, 0.5, 2]; % 调制系数m_AM = zeros(length(Ka), length(t)); % 存储AM调制信号相干解调信号r = zeros(length(Ka), length(t));绘制AM调制信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)m_AM(i, :) = (1 + Ka(i)*m).*c; % AM调制信号subplot(3, 2, i);plot(t, m_AM(i, :));title(['AM调制信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');ylim([-2, 2]);subplot(3, 2, i+3);f = (-fs/2):fs/length(m_AM(i, :)):(fs/2)-fs/length(m_AM(i, :));M_AM = fftshift(abs(fft(m_AM(i, :))));plot(f, M_AM);title(['AM调制信号的幅度频谱图(Ka = ' num2str(Ka(i)) ')']);xlabel('频率');ylabel('幅度');r(i, :) = m_AM(i, :) .* c; % 相干解调信号end绘制相干解调信号的时域波形和幅度频谱图figure;for i = 1:length(Ka)subplot(length(Ka), 1, i);plot(t, r(i, :));title(['相干解调信号(Ka = ' num2str(Ka(i)) ')']);xlabel('时间');ylabel('幅度');end图像(2)编写Matlab代码实现对AM调制信号的相干解调,并作出图形。

QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现

QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现

QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现QPSK和16QAM调制是一种常见的调制方式,而MIMO-OFDM系统是一种利用多输入多输出技术和正交频分复用技术的无线通信系统。

本文将介绍如何使用Matlab对MIMO-OFDM系统进行仿真实现,并分别使用QPSK和16QAM调制方式进行实验。

我们将讨论MIMO-OFDM系统的基本原理和结构,然后介绍Matlab的仿真实现方法,最后进行仿真实验并分析实验结果。

1. MIMO-OFDM系统的基本原理和结构MIMO-OFDM系统是一种结合了多输入多输出(MIMO)技术和正交频分复用(OFDM)技术的无线通信系统。

MIMO技术利用多个天线进行信号传输和接收,可以显著提高系统的传输速率和抗干扰性能。

而OFDM技术将高速数据流分割成多个低速子流,并利用正交频分复用技术进行传输,可以有效克服多径传输引起的频率选择性衰落和提高频谱利用率。

MIMO-OFDM系统的结构包括多个发射天线和多个接收天线,发射端和接收端分别进行信号处理和数据传输。

在发射端,将输入数据流进行调制、符号映射,并进行空间信号处理和频谱分配;在接收端,对接收的信号进行解调、解映射、信道均衡和解调制处理。

整个系统利用MIMO技术和OFDM技术的优势,可以实现高速和高质量的无线通信传输。

2. Matlab的仿真实现方法在Matlab中,可以利用通信工具箱和信号处理工具箱进行MIMO-OFDM系统的仿真实现。

需要定义系统的参数,包括天线数、子载波数、信道模型、调制方式等;然后生成输入数据流,并进行调制和符号映射;接着进行信道编码和传输;最后进行解码和译码,并进行结果分析。

对于QPSK调制方式,可以使用comm.QPSKModulator和comm.QPSKDemodulator进行调制和解调,并使用comm.ErrorRate进行误码率计算;对于16QAM调制方式,可以使用comm.RectangularQAMModulator和comm.RectangularQAMDemodulator进行调制和解调,并进行相应的误码率计算。

用matlab实现模拟(dsbam)调制

用matlab实现模拟(dsbam)调制

前言调制就是使一个信号(如光、高频电磁振荡等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程。

用所要传播的语言或音乐信号去改变高频振荡的幅度,使高频振荡的幅度随语言或音乐信号的变化而变化,这个控制过程就称为调制。

其中语言或音乐信号叫做调制信号,调制后的载波就载有调制信号所包含的信息,称为已调波。

解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。

对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。

对于频率调制来说,解调是从它的频率变化提取调制信号的过程。

频率解调要比幅度解调复杂,用普通检波电路是无法解调出调制信号的,必须采用频率检波方式,如各类鉴频器电路。

关于鉴频器电路可参阅有关资料,这里不再细述。

本课题利用MATLAB软件对DSB信号调制解调系统进行模拟仿真,分别对正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布。

第一章 设计要求(1)已知调制信号⎪⎩⎪⎨⎧≤≤-≤≤=其他,03/23/,23/0,1)(000t t t t t t m(2)调制载波c(t)=)2cos(t f c π(3)设计m 文件实现DSB-AM 调制(4)设计m 文件绘制消息信号与已调信号的频谱,分析其频谱特征。

第二章 系统组成及工作原理2.1 DSB-AM 系统构成在AM 信号中,载波分量并不携带信息,信息完全由边带传送。

如果将载波抑制,只需在将直流A0去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。

2-1 DSB 调制器模型调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。

而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。

双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。

相干解调的原理框图如图2-2所示:2-2 DSB 相干解调模型2.2DSB 调制原理在消息信号m(t)上不加上直流分量,则输出的已调信号就是无载波分量的双边带调制信号,或称抑制载波双边带调制信号,简称双边带(DSB )信号。

基于matlab的fm系统调制与解调的仿真课程设计

基于matlab的fm系统调制与解调的仿真课程设计

基于matlab的fm系统调制与解调的仿真课程设计课程设计题目:基于MATLAB的FM系统调制与解调的仿真一、设计任务与要求1.设计并实现一个简单的FM(调频)调制和解调系统。

2.使用MATLAB进行仿真,分析系统的性能。

3.对比和分析FM调制和解调前后的信号特性。

二、系统总体方案1.系统组成:本设计包括调制器和解调器两部分。

调制器将低频信号调制到高频载波上,解调器则将已调制的信号还原为原始的低频信号。

2.调制方式:采用线性FM调制方式,即将低频信号直接控制高频载波的频率变化。

3.解调方式:采用相干解调,通过与本地载波信号相乘后进行低通滤波,以恢复原始信号。

三、调制器设计1.实现方式:使用MATLAB中的modulate函数进行FM调制。

2.参数设置:选择合适的载波频率、调制信号频率以及调制指数。

3.仿真分析:观察调制后的频谱变化,并分析其特性。

四、解调器设计1.实现方式:使用MATLAB中的demodulate函数进行FM解调。

2.参数设置:选择与调制器相同的载波频率、低通滤波器参数等。

3.仿真分析:观察解调后的频谱变化,并与原始信号进行对比。

五、系统性能分析1.信噪比(SNR)分析:通过改变输入信号的信噪比,观察解调后的输出性能,绘制信噪比与误码率(BER)的关系曲线。

2.调制指数对性能的影响:通过改变调制指数,观察输出信号的性能变化,并分析其影响。

3.动态范围分析:分析系统在不同输入信号幅度下的输出性能,绘制动态范围曲线。

六、实验数据与结果分析1.实验数据收集:根据设计的系统方案进行仿真实验,记录实验数据。

2.结果分析:根据实验数据,分析系统的性能指标,并与理论值进行对比。

总结实验结果,提出改进意见和建议。

七、结论与展望1.结论:通过仿真实验,验证了基于MATLAB的FM系统调制与解调的可行性。

实验结果表明,设计的系统具有良好的性能,能够实现低频信号的FM调制和解调。

通过对比和分析,得出了一些有益的结论,为进一步研究提供了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用MATLAB仿真模拟调制系统
MATLAB的名称源自Matrix Laboratory,专门以矩阵形式处理数据,是目前国际上流行的进行科学研究、工程计算的软件,广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作中。

MATLAB的出现使得通信系统的仿真能够用计算机模拟实现,只需要输入不同的参数就能得到不同情况下的系统性能,而且在结构的观测和数据的存储方面也比传统的方式有优势,因而MATLAB在通信仿真领域得到越来越多的应用。

本文中,我们对模拟调制系统、数字带通传输系统等列举了一些MATLAB仿真的实例,作为大家学习MATLAB的参考资料,让读者学会处理具体问题的建模编程方法,逐渐掌握MATLAB的通信系统仿真。

由本章的学习我们知道,各种信源所产生的基带信号并不能在大多数信道内直接传输,而是需要经调制后再送到信道中去。

在接受端就必须通过相反的过程,即解调。

本章中,我们以常规双边带调幅AM系统为例仿真模拟通信系统的各个过程。

我们假定信号频率为10Hz,载波频率为50Hz,采样率为1000Hz,信噪比SNR等于3。

要求利用MATLAB软件仿真AM调制每一点的波形,包括信息信号、AM信号、载波信号、已调信号、通过带通滤波器后的信号,解调后的信号;并仿真AM信号频谱、已调信号频谱与解调信号频谱。

MATLAB程序如下:
% 标准调幅AM调制
a0=2;f0=10;fc=50;snr=3; fs=1000; % 变量定义
t=[-50:0.001:50];
am1=cos(2*pi*f0*t); % 产生信号频率为f0的基带信号
am=a0+am1; % 产生AM信号
c_am=cos(2*pi*fc*t); % 产生频率为fc的载波
AM_mod=am.*c_am; % 产生调制信号
am_f=fft(am); % AM频域
AM_modf=fft(AM_mod);
y=awgn(AM_mod,snr); % 叠加噪声
figure(1); hold on;
subplot(2,2,1); plot(t,am1); axis([0 0.4 -2 2]); title('基带信号波形'); % 绘图subplot(2,2,2); plot(t,am); axis([0 0.4 -2 6]); title('AM信号波形');
subplot(2,2,3); plot(t,c_am); axis([0 0.4 -2 2]); title('载波信号波形'); subplot(2,2,4); plot(t,AM_mod); axis([0 0.4 -8 8]); title('已调信号波形'); hold off;
figure(2); hold on;
subplot(2,2,1); plot(t,AM_mod); axis([0 0.4 -8 8]); title('已调信号波形'); subplot(2,2,2); plot(t,y); axis([0 0.4 -8 8]); title('叠加噪声后的信号波形');; a=[35,65];b=[30,70];
Wp=a/(fs/2);Ws=b/(fs/2);Rp=3; Rs=15;
[N,Wn]= Buttord(Wp,Ws,Rp,Rs) ; % 计算巴特沃斯数字滤波器的阶数和
3db截止频率
[B,A]=Butter(N,Wn,'bandpass'); % 计算巴特沃斯模拟滤波器系统函数的分子、分母多项式系数向量
sig_bandpass=filtfilt(B,A,y); % 带通滤波后信号
subplot(2,2,3); plot(t,sig_bandpass); axis([0 0.4 -8 8]); title('经带通滤波后信号波形');
hold off;
AM_dem=sig_bandpass.*c_am;
Wp=15/(fs/2);Ws=40/(fs/2);Rp=3; Rs=20;
[N,Wn]= Buttord(Wp,Ws,Rp,Rs) ; % 同上
[B,A]=Butter(N,Wn,'low');
AM_demod=filtfilt(B,A,AM_dem) % 低通滤波后信号
AM_demodf=fft(AM_demod);
subplot(2,2,4); plot(t,AM_demod); axis([0 0.4 0 2]); title('解调信号波形'); hold off;
f=(0:100000)*fs/100001-fs/2;
figure(3); hold on;
subplot(3,1,1); plot(f,fftshift(abs(am_f))); title('AM 信号频谱'); % 绘图 subplot(3,1,2); plot(f,fftshift(abs(AM_modf))); title('已调信号频谱'); subplot(3,1,3); plot(f,fftshift(abs(AM_demodf))); title('解调信号频谱'); hold off;
其波形如5- 所示。

00.10.20.30.4-2
-101
2基带信号波形
00.10.20.30.4
AM 信号波形
0.1
0.2
0.3
0.4
-2-1012载波信号波形
0.10.2
0.30.4
已调信号波形
图1 发送端信号波形
0.1
0.2
0.3
0.4
已调信号波形
0.1
0.2
0.3
0.4
-505叠加噪声后的信号波形
0.1
0.2
0.3
0.4
经带通滤波后信号波形
0.10.20.30.4
00.511.52
解调信号波形
图2 接收端信号波形
-500-400
-300-200-1000100200300400500
5
AM 信号频谱
-500-400
-300-200-1000100200300400
500
4
已调信号频谱
-500-400-300-200-1000100200300400
500
5
解调信号频谱
图3 信号频谱图。

相关文档
最新文档