性染色体与伴性遗传ppt
合集下载
基因在染色体上和伴性遗传PPT课件

(3)再次确定是否是伴X染色体遗传病 ①隐性遗传病 a.女性患者,其父或其子有正常,一定是常染色体遗传。(图4、5) b.女性患者,其父和其子都患病,可能是伴X染色体遗传。(图6、7)
②显性遗传病 a.男性患者,其母或其女有正常,一定是常染色体遗传。(图8) b.男性患者,其母和其女都患病,可能是伴X染色体遗传。(图9、10)
2.单基因遗传病类型的判断分析 (1)首先确定是否是伴Y染色体遗传病或细胞质遗传 ①所有患者均为男性,无女性患者,则为伴Y染色体遗传。 ②若女患者的子女全是患者,而正常女性的子女都正常,则最大 可能为母系遗传。 (2)其次判断显隐性 ①双亲正常,子代有患者,为隐性(即无中生有)。(图1) ②双亲患病,子代有正常,为显性(即有中生无)。(图2) ③亲子代都有患者,无法准确判断,可先假设,再推断。 (图3)
②伴性遗传有其特殊性 a.存在于X染色体上非同源区段上的基因(如Ⅱ-2),在Y染色体
上无相应的等位基因,从而使XbY中单个隐性基因控制的性状也能
表现。 b.Y染色体非同源区段上携带的基因(如Ⅱ-1),在X染色体上无
相应的等位基因,只限于在相应性别的个体之间传递。
c.位于性染色体同源区段上的基因是成对的(如Ⅰ),其性状遗传 符合分离定律,只是与性别相关联:在写表现型和统计后代比例时 一定要将性状表现与性别联系在一起描述。 (2)与基因的自由组合定律的关系 在分析既有性染色体又有常染色体上的基因控制的两对或两对以 上的相对性状的遗传时,则按基因的自由组合定律处理。
一、萨顿的假说 1.内容及研究方法:内容是基因在 类比推理 法 染色体 上;研究方法是
二、基因位于染色体上的实验证据
1.摩尔根实验过程及现象:P:红眼(♀)×白眼(♂)→F1:红眼(♀ 交配 F2:3红眼(♀和♂),1白眼(♂) 和♂)――→ 4 4
必修二2.3伴性遗传(共41张PPT)

8
9
A、XBXB B、XBXb
Ⅳ 10
C、XBY D、XbY
[巩固应用] 伴X隐性遗传病
下图是某家庭红绿色盲症的系谱图。图中除深颜色代表的人 为红绿色盲患者外,其他人的色觉都正常。据图回答问题。
(是3)8号12 基。因型是XBXb可能性
Ⅰ Ⅱ
1 5
2
34 6
(者4)的10可号能是性红是绿色14盲基。因携带
患病男孩与男孩患病的概率计算
(1)位于常染色体上的遗传病: 患病男孩的概率=患病孩子的概率×1/2 男孩患病的概率=患病孩子的概率
(2)位于性染色体上的遗传病: 患病男孩的概率=患病男孩/全部 男孩患病的概率=患病男孩/所有男孩
人的正常色觉(B)对红绿色盲(b)是显性,为伴性 遗传;褐眼(A)对蓝眼(a)是显性,为常染色体遗传。 有一个蓝眼色觉正常的女子与一个褐眼色觉正常的男 子婚配,生了一个蓝眼红绿色盲的男孩。
Ⅱ1
234
5
6
Ⅲ
1 2 3 4 5 6 7 8 9 10 11 12
问:色盲基因是隐性的,它与它的等位基因都只存在于 X染色体上,Y染色体上没有,这是为什么?
Y非同源区段 XY同源区段 Y染色体 X非同源区段
X染色体
如果控制人的红绿色盲的基因为(b),请完 成以下表格
XBXB XBXb XbXb XBY XbY 正常 正常 色盲 正常 色盲
第3节 伴性遗传
王女士本人有色盲症,现 在女儿5岁,老公很想再 要一个男孩,王女士担心 生男孩可能不健康,两人 因此僵持不下,你支持她 的观点吗?
有孝心的小道尔顿
道尔顿发现色盲的小故事 • 第一个发现色盲症的人,
也是第一个被发现的色 盲症患者。 • 后人为纪念他,又把色 盲症叫道尔顿症。
079c3749cd84b9d528ea81c758f5f61fb73628d6

亲代 女性血友病
男性正常
XhXh
配子
Xh
× XHY XH Y
父亲正常 女儿一定正常
子代 XHXh
母亲患病 儿
XhY
子一定患病
女性携带者 男性患病
1
:
1
X染色体隐性遗传病的遗传特点:
(1)交叉遗传:(隔代遗传)
男性患者的母亲表现正 常,但是他的外祖父却
男性的Xh只能从 母亲 传来, 是此病的患者。
以后只能传给他的 女儿 。
血友病:是一组遗传性凝血因子缺 乏引起的出血性疾病。
据统计:血友病婴儿发生率约1/5000, 其中绝大多数为男性。
维多利亚女王家族
维多 利亚
尼古拉二世 (末代沙皇)
维多利亚家族系谱图
引出——美丽的故事
《真假公主》是一部经典电影,影片讲述的是1917年俄国革命爆发后,沙皇和 他的家庭被逮捕及处死,但传说沙皇最小的女儿安娜斯塔西亚公主殿下依旧侥幸 存活着,她将是王朝在英国银行巨额存款的唯一继承人。俄国将军波宁受流亡在 北欧的俄国皇太后之托,开始寻找公主的下落而发生的离奇故事。该片获得了第 29届奥斯卡最佳影片,
料
思考:豌豆有性染色体吗?
由染色体的差异决定性别的生物才具有性染 色体。
不同生物性别决定的机制
a、少数生物的性别决定于体细胞染色体的 倍数性,如蜜蜂。 b、某些龟类,在较低温度下发育,有雌性, 有雄性,而在较高温度下发育,则全部为雌性。
三、伴性遗传
概念:控制性状的基因位于性染色体上, 所以遗传常常与性别相关联,这种现象叫 伴性遗传。
型的图像。
男
性 染
色
染
体 分
色组
体图
组
型
高二生物必修二伴性遗传课件

04 伴Y染色体遗传
遗传特点
仅在男性中遗传
伴Y染色体遗传病仅在男性中发病,女性不会发病。
隔代遗传
伴Y染色体遗传病通常呈现隔代遗传的特点,即男性患者将疾病遗 传给儿子,但不会遗传给女儿。
男性患者多于女性患者
由于伴Y染色体遗传病仅在男性中发病,因此男性患者数量通常多 于女性患者。
实例分析
人类Y染色体上的基因缺陷
病例二
一个家族中男性成员均患有血友病,而女性成员则正常。通过基因检测发现,该家族男性成员的X染色体上存在 血友病基因,而女性成员则没有携带该基因。这表明该家族男性成员的血友病是由伴X染色体隐性遗传引起的。
05 总结与思考
伴性遗传的意义与价值
生物学基础
伴性遗传是生物学中的重要概念 ,它揭示了生物体的遗传规律, 为理解生物体的进化和发展提供
基因剂量效应
由于性染色体上的基因数量不同,女性通常有两个X染色体,男性只有一个X染色体和一 个Y染色体,因此女性通常具有更高的基因剂量,表现出更强的基因表达。
基因互作
伴性遗传中的基因互作可以影响疾病的发生和发展,例如两个隐性基因的相互作用可能导 致疾病的发生。
02 伴X染色体显性遗传
遗传特点
女患者多于男患者
了基础。
医学应用
伴性遗传在医学中有广泛的应用, 如遗传病的诊断、预防和治疗,以 及生殖健康等方面的指导。
科学发展
伴性遗传的研究推动了遗传学和相 关领域的发展,为人类探索生命奥 秘提供了有力支持。
如何在实际生活中应用伴性遗传的知识
婚育指导
了解伴性遗传规律可以帮助人们 进行科学的婚育规划,避免遗传
病的发生,提高人口素质。病例二一个男性患者,其母亲和外祖母 都有类似的症状,这可能表明该 病是由母亲传递给儿子的伴X染色 体显性遗传病。
高考生物一轮复习-基因在染色体上和伴性遗传ppt课件

类比:基因和染色体之间具有平行关系
一、萨顿的假说(类比推理)
发现问题: 用蝗虫作材料,研究精子和卵细胞的形成过程, 发现孟德尔定律中基因的分离与减数分裂中同 源染色体的分离非常相似。
推论: 基因位于染色体上。 理由:基因和染色体行为存在着明显的平行关系。
Dd
Dd
染色体
基
因
类比
平行关系
推理
假说:基因在染色体上
现代分子生物学技术能够用特 定的分子,与染色体上某一个 特定的分子结合,这个分子又 能被带有荧光标记的物质识别, 通过荧光显示,就可以知道基 因在染色体上的位置
高考生物一轮复习-基因在染色体上和 伴性遗 传(共 64张PPT)
高考生物一轮复习-基因在染色体上和 伴性遗 传(共 64张PPT)
三、孟德尔遗传规律的现代解释
一条染色体上有许多个基因
摩尔根和他的学生们,发明了 测定基因位于染色体上相对位 置的方法,并绘出了第一个果 蝇各种基因在染色体上相对位 置的图
基因在染色体上呈线性排列
高考生物一轮复习-基因在染色体上和 伴性遗 传(共 64张PPT)
高考生物一轮复习-基因在染色体上和 伴性遗 传(共 64张PPT)
Y
F1:
XWXw 红眼♀
XWY 红眼♂
高考生物一轮复习-基因在染色体上和 伴性遗 传(共 64张PPT)
F1:
红眼( ♀)
XWXW
×
红眼♂ XWY
配子: XW Xw
XW
Y
F2: XWXW
红眼♀
XWXw XWY
XwY
红眼♀ 红眼♂ 白眼♂
高考生物一轮复习-基因在染色体上和 伴性遗 传(共 64张PPT)
基因的分离定律的实质是:在杂合子的细胞中,位 于一对同源染色体的等位基因,具有一定的独立性; 在减数分裂形成配子的过程中,等位基因会随同源 染色体的分开而分离,分别进入两个配子中,独立 的随配子遗传给后代
《伴性遗传》课件

《伴性遗传》ppt课件
目录 Contents
• 伴性遗传概述 • 伴X染色体隐性遗传 • 伴X染色体显性遗传 • 伴Y染色体遗传 • 总结与展望
01
伴性遗传概述
伴性遗传的定义
01
伴性遗传是指某些遗传性状或基 因只存在于性染色体上,并随着 性染色体传递给后代的现象。
02
伴性遗传分为伴X染色体遗传和伴 Y染色体遗传,其中伴X染色体遗 传更为常见。
隔代遗传
伴X染色体隐性遗传病有时会出现隔代遗传的现象,即患者的 父母和祖父母可能没有患病,但患者的子女和孙子辈可能会 出现患病的情况。
病例分析
患者症状
伴X染色体隐性遗传病的症状因疾病而异,但通常在年轻时发病,且病情较重。例如,血 友病患者可能会出现关节出血、肌肉萎缩等症状,而进行性肌营养不良患者可能会出现肌 肉无力、萎缩等症状。
发病机制
基因突变
伴X染色体显性遗传病通常是由X 染色体上的显性基因突变引起的 ,这些基因突变可以由遗传或突
变因素引起。
基因表达异常
由于显性基因的突变,其表达产物 可能异常,导致相关蛋白质或酶的 功能异常,进而影响细胞代谢和生 理功能。
细胞功能异常
由于基因表达异常,细胞可能无法 正常发挥其功能,导致疾病的发生 。
隔代遗传
有些伴Y遗传病可能不会在每一代都表现出来,而是在隔代中出现, 这种遗传方式被称为“隔代遗传”。
病例分析
患者症状
家族史
诊断方法
伴Y遗传病的症状可能因疾病而异, 但通常会在男性中出现。常见的症状 包括生殖器官发育不全、智力障碍、 肌肉萎缩等。
了解家族史对于诊断伴Y遗传病非常 重要。如果家族中有男性成员患有伴 Y遗传病,那么其他男性成员也有患 病的风险。
目录 Contents
• 伴性遗传概述 • 伴X染色体隐性遗传 • 伴X染色体显性遗传 • 伴Y染色体遗传 • 总结与展望
01
伴性遗传概述
伴性遗传的定义
01
伴性遗传是指某些遗传性状或基 因只存在于性染色体上,并随着 性染色体传递给后代的现象。
02
伴性遗传分为伴X染色体遗传和伴 Y染色体遗传,其中伴X染色体遗 传更为常见。
隔代遗传
伴X染色体隐性遗传病有时会出现隔代遗传的现象,即患者的 父母和祖父母可能没有患病,但患者的子女和孙子辈可能会 出现患病的情况。
病例分析
患者症状
伴X染色体隐性遗传病的症状因疾病而异,但通常在年轻时发病,且病情较重。例如,血 友病患者可能会出现关节出血、肌肉萎缩等症状,而进行性肌营养不良患者可能会出现肌 肉无力、萎缩等症状。
发病机制
基因突变
伴X染色体显性遗传病通常是由X 染色体上的显性基因突变引起的 ,这些基因突变可以由遗传或突
变因素引起。
基因表达异常
由于显性基因的突变,其表达产物 可能异常,导致相关蛋白质或酶的 功能异常,进而影响细胞代谢和生 理功能。
细胞功能异常
由于基因表达异常,细胞可能无法 正常发挥其功能,导致疾病的发生 。
隔代遗传
有些伴Y遗传病可能不会在每一代都表现出来,而是在隔代中出现, 这种遗传方式被称为“隔代遗传”。
病例分析
患者症状
家族史
诊断方法
伴Y遗传病的症状可能因疾病而异, 但通常会在男性中出现。常见的症状 包括生殖器官发育不全、智力障碍、 肌肉萎缩等。
了解家族史对于诊断伴Y遗传病非常 重要。如果家族中有男性成员患有伴 Y遗传病,那么其他男性成员也有患 病的风险。
《伴性遗传复习》课件

伴性遗传的疾病
红绿色盲
红绿色盲是一种常见的伴性 遗传疾病,患者对红绿色的 区分能力丧失或减弱。
血友病
血友病是一种常见的伴性遗 传疾病,患者在受伤或手术 后会出现明显的出血倾向。
肌萎缩侧索硬化症
肌萎缩侧索硬化症是一种罕 见的伴性遗传疾病,主要导 致肌肉无力和萎缩。
伴性遗传疾病的遗传规律
1
显性和隐性
《伴性遗传复习》PPT课 件
伴性遗传复习
伴性遗传是指由位于性染色体上的基因所控制,且在一般只由雌性指示的一 种遗传。本课件将为您介绍伴性遗传的特点、疾病与遗传规律。
简介
什么是伴性遗传?
伴性遗传是指由位于性染色体上的基因所控制,且在一般只由雌性指示的一种遗传。
伴性遗传的特点和传递方式
伴性遗传具有明确的特点:遗传位于性染色体上、遗传持续性和遗传性别决定。
伴性遗传疾病可以表现为显性或隐性,这取决于该基因的性质和遗传方式。
2
男性和女性
伴性遗传疾病主要由母亲传递给儿子,女性通常只是携带者。
3
突变型和野生型
突变型基因导致伴性遗传疾病的发生,而野生型基因对应正常的遗传信息。
疾病的诊断和治疗
诊断方法
疾病的诊断通常通过基因 检测和家族病史调查来确 定患者是否携带伴性遗传 疾病。
预防和治疗方法
目前,对于伴性遗传疾病 尚无完全有效的治愈方法, 但可以通过对症治疗和遗 传咨询来缓解症状和减少 遗传风险。
案例分析
通过分析真实案例,我们 可以更深入地了解伴性遗 传疾病的特点、诊断和治但危害性较大。加强对伴性遗传疾病的了解和 研究,可以为治疗和预防提供更好的帮助。
性染色体与伴性遗传ppt1 优秀课件

【答案】
(1) Y的差别
(2) ①常染色体隐性 ③ 1/4 (3) ① H ③ 7/16 IB ② 伴X染色体显性 ④ 1/200 ② hhIBi, HhIAIB
【解析】本题综合考查遗传相关知识。 (1)Y的差别部分只位于Y染色体上,只能由父亲 传给儿子不能传给女儿。 (2)①由Ⅰ1和Ⅰ2不患甲病而Ⅱ2患病可以推断 甲病为隐性遗传病,Ⅱ2是女患者但其父亲不患病则 致病基因应位于常染色体上;②对于乙病, Ⅰ1和 Ⅰ2 患病而 Ⅱ1 正常,应为显性遗传病,再根据子代 男女患病率不同可知应为 X连锁;③根据遗传系谱图, Ⅱ2 基 因 型 为 aaXBXb , Ⅱ3 基 因 型 为 AaXBY(2/3) 或 AAXBY(1/3)(A、a代表甲病致病基因,B、b代表乙
【解析】X染色体上的基因决定的性状与性别相 关联,但是不一定决定性别,如色盲基因,与性 别决定无关,但是分布在X染色体上。
考点2
人类遗传病的判定方法
口诀:无中生有为隐性,隐性遗传看女病,父 子全病为伴性; 有中生无为显性,显性遗传看男病,母女全病为 伴性。 第一步:先确定是否为伴Y遗传。 如果家系图中患者全为男性(女全正常),且具有 世代连续性,应首先考虑伴Y遗传,无显隐之分。 第二步:确定致病基因的显隐性,可根据:
(3)伴Y遗传 遗传特点:患者全为 男性 “父→ 儿子 →孙子”。
,且传递方向是
考点1
性别决定与伴性遗传
1.对性别决定的理解 (1)雌、雄异体生物才有性别分化。 (2) 性别决定方式有多种,但最主要的是由性染色 体决定的。 (3)由性染色体决定性别的生物才有性染色体。 2.XY型性别决定与伴性遗传的规律 (1)通过染色体组成分析,了解常染色体与性染
【解析】 由题意可知,杂交后代中灰身 ∶ 黑身= 3∶1且雌雄比例相当,所以,控制这对性状的基因 位于常染色体上,灰身为显性性状。杂交后代的雄 性个体中直毛∶分叉毛=1∶1,而雌性个体全为直 毛,所以,控制这对性状的基因位于 X 染色体上, 直毛为显性性状。亲代的基因型为BbXFXf和BbXFY, 表现型为♀灰身直毛和♂灰身直XfY 或 BbXfY ,黑身直毛 的基因型为bbXFY。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其它伴X隐性遗传实例: 血友病: 血友病患者的血浆中 缺少凝血因子抗血友病球蛋白 (AHG),所以凝血发生障碍, 患者皮下、肌肉内反复出血, 形成瘀斑。在受伤流血时不能 自然凝固止血,很容易引起失 血死亡。血友病的遗传与色盲 的遗传相同,其正常基因(H) 和致病基因(h)也只位于X 染色体上。
例题:下图是某家系红绿色盲遗传图解。请据图回答。 I
第二章 染色体与遗传
•遗传与进化
第三节 性染色体与伴性遗传
B(b) B(b)
B(b)
X非同源区段 一般位于X染色体上的 基因在Y染色体上没有 相应的等位基因。 A(a)A(a) XY同源区段 Y非同源区段
X
X
C(c)
思考: 性染色体上的基因所控制的性状的表现会与性别有关吗? 这些基因的遗传遵循遗传定律吗?
例:人类在正常情况下,精子形成过程中常染色体和性染色体 的数目和类型包含有 ( D) 1、 44+XY 2、44 +X X 3、22 + Y 4、22 + X 5、44 + YY 6、88 + X XXX 7、88 + X XYY 8、88 + YYYY A、1、3 B、3、4 C、1、2、3、4 D、1、2、3、4、5
例1:血友病的遗传属于伴性遗传。某男孩为血 友病患者,但他的父母、祖父母、外祖父母都不 患此病。血友病基因在该家族中传递的顺序是 A.外祖母→母亲→男孩 B.外祖父→母亲→男孩 C.祖父→父亲→男孩 D.祖母→父亲→男孩
例:已知果蝇中,灰身与黑身为一对相对性状(B、b);直毛 与分叉毛为一对相对性状(F、f)。两只亲代果蝇杂交得到以下 子代类型和比例: 灰身、 灰身、 黑身、 黑身、 直毛 分叉毛 直毛 分叉毛 雌蝇 3/4 0 1/4 0 雄蝇 3/8 3/8 1/8 1/8 常染色体 1)控制灰身与黑身的基因位于____________; 控制直毛与分叉毛的 X染色体 基因位于________. ♀灰身直毛 ♂灰身直毛 2)亲代果蝇的表现型为_________ BbXFXf BbXFY 3)亲代果蝇的基因型为______________ 1:5 4)子代表现型为灰身直毛的雌蝇中,纯合子与杂合子的比例为_____ fY 5)子代雄蝇中,灰身分叉毛的基因型为________ __________ BBXfY BbX 黑身直毛的基因型为___________________ bbXFY
B.卵细胞受精时 D.生殖器官形成期
3.雄蛙和雌蛙的性染色体组成分别为XY和XX,假定一只正常的 XX蝌蚪在外界环境的影响下,变成了一只能生育的雄蛙,用此 雄蛙和正常雌蛙交配(抱对),其子代中的雌蛙(♀)和雄蛙(♂)的 比例是 (D ) A.♀∶♂=1∶1 B.♀∶♂=2∶1 C.♀∶♂=3∶1 D.♀∶♂=l∶0 4、X与X、X与Y是同源染色体吗?在它们上面有等位基因吗?
在XY型性别决定中,雄性个体如果形成了XXY型精子,成因 是什么? 减数分裂第一次分裂后期XY同源染色体没有分开; 减数第二次分裂后期XX姐妹染色单体没有分开
女性患者多于男性患者; 男患者的母亲和女儿必患病; 连续遗传即代代有患者。 患者的双亲中必有一个是患者
人类的伴性遗传
3、伴Y染色体遗传 例:外耳道多毛症
患者基因型: 男性患者:XYA
典型系谱图:
遗传特点: 父传子,子传孙 患者全男性,女性全正常
人 类 遗 传 病
伴Y 染色体遗传 常染色体隐性遗传病 隐性遗传病 伴X染色体隐性遗传病 常染色体显性遗传病 显性遗传病 伴X染色体显性遗传病
X+Xw 红眼 (雌)
XwXw 白眼 (雌)
伴性遗传
概念: 指位于性染色体上的基因所控制的性状表现出与性别相联系 的遗传方式,称为伴性遗传。
思考: 1、人类有无伴性遗传现象? 2、人类伴性遗传会有哪些方式?
小调查:
大家在体检时, 医生有时让我们 看一种彩色图谱, 请看一看下面的 图谱,这其中究 竟是什么?
(2)已确定为显性遗传后,检查系谱图中每一个男患者的母与女:
若:
若:
男患者的母、女全为患者 伴X染色体显性遗传 或常染色体显性
男患者的母、女中有正常 常染色体显性遗传
4、不能确定显隐性类型:只能从可能性大小方面推测
(1)若该病在代与代之间呈连续性遗传→显性遗传 患者男女均等→常染色体; 患者女多男少→X染色体
1、首先确定是否为伴Y遗传 2、确定图谱中遗传病是显性遗传还是隐性遗传。
“无中生有”为隐性
“有中生无”为显性
3、确定致病基因位于常染色体上还是位于X染色体上。
(1)已确定为隐性遗传后,检查系谱图中每一个女患者的父与子: 若: 若:
女患者的父、子全患病 伴X染色体隐性遗传 或常染色体显性
女患者的父、子中有正常 常染色体隐性遗传
1 2
1
3
2
4
女性正常
男性正常 女性色盲
II
III
IV
男性色盲
1 1 2
b
3
X Y 他的致病基因来自于I中_____ 1 个体, (1) III3的基因型是_____, XBXb 该个体的基因型是__________. XBXB或XBXb (2) III2的可能基因型是______________, 她是杂合体的的概率 1/2 。 是________ 1/4 (3)IV1是色盲携带者的概率是__。
性染色体和性别决定
1、性别决定
雌雄异体的生物决定性别的机制,一般主要由性染色体决定。
2、性别决定的常见类型:
XY型 ♀:两个同型的性染色体(XX) ♂:两个异型的性染色体(XY)
人、哺乳类、某些两栖类和许多昆虫都属此类 XY型生物性别决定过程: 亲 代♀22对(常)+XX(性) 22条(常)+X 22对+XX 1 :
X 隐性 隐性 常 aaXBXB或aaXBXb 1/16
AAXbY或AaXbY
3/8
例:果蝇的红眼为伴X显性遗传,其隐性性状
为白眼,在下列杂交组合中,通过眼色即 可直接判断子代果蝇性别的一组是 A.杂合红眼雌果蝇×红眼雄果蝇 B.白眼雌果蝇×红眼雄果蝇 C.杂合红眼雌果蝇×白眼雄果蝇
D.白眼雌果蝇×白眼雄果蝇
性 XbXb 色盲
男 XBY 正常
性 XbY 色盲
XBXb 正常 (携带者) XBXB x x x XBY
男女婚配方式 遗传特点:
ቤተ መጻሕፍቲ ባይዱ
XBXb XbXb
XBY XBY
x XbY XBXB XbY XBXb x XbXb x XbY
男性患者的致病基因只能从母亲那里传来,以后只能传给女儿 女性患者的父亲和儿子一定是患者 男性患者多于女性患者
染色体组型的应用: 具有种的特异性,可用于判断生物的亲缘关系;遗传病诊断
21三体综合症
性染色体和性别决定
男性: 22对常染色体+一对性染色体XY
女性: 22对常染色体+一对性染色体XX
性染色体:与性别决定有直接关系的染色体。 常染色体:除性染色体外的其他染色体,雌雄个体的常染色体 是相同的 思考: 是否所有的生物都有性染色体?性别决定方式都与人类相同呢?
♂
22对(常)+XY(性) 22条(常)+Y
卵细胞 子代
精子 22条(常)+X
22对+XY 1
性染色体和性别决定
2、性别决定的常见类型:
ZW型
♀:两个异型的性染色体(ZW) ♂:两个同型的性染色体(ZZ) 鸟类、某些两栖类和爬行类都属此类
练习
1、性染色体为XY的牛体细胞核取代卵细胞核,经过多次卵裂后, 植入母牛子宫孕育,所生牛犊 B A.为雌性 B.为雄性 C.性别不能确定 D.雌、雄比例为l∶1 2.决定人的性别是 B A.胚胎发育初期 C.胚胎发育后期
X
Y
活动
分析摩尔根的果蝇伴性遗传实验
果蝇的特点: 个体小、繁殖快、生育力强、易饲养、 有各种易于区分的性状等
科学家:摩尔根
活动
分析摩尔根的果蝇伴性遗传实验 摩尔根的果蝇伴性遗传实验: 观察思考:
P
白眼雄蝇
红眼雌蝇
F1 F2
红眼果蝇 相互交配 红眼果蝇 3 : 白眼果蝇 1
1/2白眼
1.F2中红眼果蝇与白 眼果蝇的数目比例是3: 1,这是否符合孟德尔 遗传定律? 2、为什么只有雄蝇有 白眼性状?
染色体组型
概念: 将某种生物体细胞中的全部染色体,按大小和形态特征 进行配对、分组和排列所构成的图像。——又称染色体核型 它体现了该生物染色体的数目和形态特征的全貌。
确定染色体组型的步骤: 第一步:对处于有丝分裂中期的染色体进行显微摄影; 第二步:对显微照片上的染色体进行测量,根据染色体的 大小、形状和着丝粒的位置等特征,通过剪贴,将 它们配对、分组和排队,最后形成染色体组型图像
雌蝇:红眼 雄蝇:1/2红眼
思考:摩尔根设想,控制白眼的基因(w)在X染色体上,Y染色体不含其等位基因。 根据摩尔根的假定,你能解释F2中雌、雄果蝇的不同性状表现吗?
P
配子
X+Xw红眼(雌) X+ Xw
×
XwY白眼(雄) Xw Y
F1
X+Y XwY 红眼 白眼 (雄) (雄) 红眼雌:白眼雌:红眼雄:白眼雄=1:1:1:1 此外,摩尔根还设计了: ①白眼雌果蝇与红眼雄果蝇交配,子代雌蝇都是红眼,雄蝇都是 白眼 ②白眼雌果蝇与白眼雄果蝇交配,子代雌雄都是白眼 结论: 果蝇的白眼性状确实与性别有关,而且控制该性状的基因确实 位于性染色体上。
第二章 染色体与遗传
•遗传与进化
第三节 性染色体与伴性遗传
你知道吗?
男女在生理机能上有很大区别,这 是由遗传物质决定的。个别人可能 因为发育问题,外貌很象女子,但 遗传物质却是男子,这样会造成比 赛的不公平,因此,从1976年奥 运会开始,女子运动项目均要对运 动员进行性别鉴定,你知道是如何 进行的吗?