脉冲信号参数测试仪
脉冲层间短路测试仪

脉冲层间短路测试仪简介脉冲层间短路测试仪是一种用于检测印刷电路板上的层间短路的工具。
它通过在电路板上施加短脉冲信号,然后观察信号传输路径上的反应,来判断电路板上是否存在层间短路。
该测试仪器可以帮助工程师快速准确地检测电路板上的层间短路问题,提高工作效率和产品质量。
原理脉冲层间短路测试仪原理是利用高速脉冲(一般为纳秒或微秒级别)信号,通过测试接触点,将脉冲信号注入电路板中。
如果电路板上存在层间短路,则会导致信号在电路板中跳跃或反射,从而表现出错误的波形。
在测试着的仪器中,脉冲层间短路测试仪器是一个非常常用的测试工具。
因为通过它,可以快速准确地检测电路板中的层间短路问题,从而避免由于该问题而导致的电气不良或不良信任产品。
规格脉冲层间短路测试仪的规格如下:•电源:AC 220V/50Hz•最小测试长度:1mm•最大测试长度:200mm•最小测试宽度:1mm•最大测试宽度:80mm•最小测试孔径:0.1mm•最大测试孔径:5mm•测试速率:1次/秒•重复性:10μohm ~ 1ohm•测试方法:手动/自动使用方法脉冲层间短路测试仪使用方法如下:1.提前准备好电路板,安装测试针头2.将测试仪的电源连接到电力供应系统中,并启动测试仪器3.对电路板进行手动测试或者自动测试。
手动测试需要通过手操控仪器来注入脉冲信号,并且需要观察反射波形。
自动测试的过程中,测试仪器会自动完成以上所有操作。
4.检测测试结果,如果发现层间短路,则需要进行修复。
优点与应用脉冲层间短路测试仪是一种高效、快速的电路板测试工具。
它具有以下优点:1.高精度:脉冲层间短路测试仪具有极高的测试精度,能够检测到微小的层间短路问题。
2.高效率:测试仪器通过批量测试电路板,能够快速检查电路板的层间短路问题,提高生产效率。
3.便捷性:该测试仪器具有操作简便、易于掌握的特点,无需进行复杂的维护和修复。
脉冲层间短路测试仪广泛应用于军工、航空航天、通信、电子、电力、医疗等领域,为工程师们提供了便捷、高效的电路板测试工具,有效提高了产品质量和工作效率。
E题脉冲信参数测量仪报告修订稿

E题脉冲信参数测量仪报告公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]脉冲信号参数测量仪摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA 与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。
本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。
利用FPGA 的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。
在FPGA 内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。
显示与校准通过单片机完成。
关键词:峰值检波窗口比较器 脉冲参数测试仪 标准脉冲信号发生器一、系统方案1.方案论证与比较方案一:图1所示为中规模电路脉冲信号测量仪。
此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。
该方案电路复杂,频带过窄,功能不强,实现起来比较困难。
故不采用此方案。
图1小规模数字电路原理框图方案二:图2所示为纯单片机方案,该方案以单片机为核心。
门控信号由单片机内部计数定时器产生。
该方案成本低,但受单片机本身限制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。
故不采用此方案。
图2 纯单片机方案原理框图方案三:图3所示为FPGA 与单片机相结合的方案。
此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V 信号输入到FPGA 中。
单片机控制FPGA完成各种测量功能并显示测量数据。
该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。
图3 FPGA与单片机结合方案原理框图综上所述,本设计拟采用方案三。
2.总体方案设计当进行频率测量时,脉冲信号进入前置分挡模块。
当信号较大时衰减,当信号较小时放大。
2017培训 脉冲信号参数测量仪解析

2 仪器类赛题训练建议
(2)准确理解电子仪器各项指标是做好设计的关键
电子仪器的价值由各项技术指标的优良程度决定;电子竞赛 的评分体系也是以技术指标的完成程度来评价。电子仪器的功能 是测试其它电子系统的性能,因此对技术指标的要求更加严格。 电子仪器含多项技术指标,其中最核心的是测量误差,其他 技术指标基本上都与测量误差有关。对于许多测量来讲,测量工 作的价值几乎全部取决于它的准确程度。
。
方案一:基于窗口比较器的上升时间测量方法 测量算法:
通过窗口比较器,把上升时间tr转换 为时间间隔T。
90%Vm Vin 10%Vm
+ + -
被测信号 m50%Vm
V
Vo1 Vo
Vo2
上升时间 时钟脉冲 计数值
窗口比较器电路
用标准时钟填充这段时间间隔,得 到对应tr的计数值。
为了减少±1字误差的影响,可以采 用多周期平均的测量方法。
被测信号
输入 通道电路
A/D 转换器
为了达到测量精度, A/D转换 器的分辨率应足够高(3倍以上) 例,分辨率为0.5%(4倍)
例如, 选择10位A/D转换器,其输入电压幅度范围为0~2.5V,即 2.5V ─→ 1024(0.1%) 1.25V ─→ 512(0.2%) 0.5V ─→ 204(0.5%)
① ② ③ ④ 电压类测量仪器 时间频率类测量仪器 数字示波测量仪器 信号发生器
许多仪器包含多个基本电子仪器模块。例如,脉冲信号参数测量 仪包含了以上 ① ② ④ 三个模块。 若能较好地掌握这4类基本电子仪器的设计,在进行其他类型电 子仪器设计时,只要根据题目要求再学习一些相关知识,就能很快地 进入设计状态。
采样脉冲
基于单片机的脉冲信号采集与处理分析

基于单片机的脉冲信号采集与处理分析单片机应用系统是通过核心CPU设备来显示工业领域各个设备环节的系统。
单片机的应用程序比较复杂,现代经济的发展对单片机的应用提出了更高的要求,特别在当下机械加工、化工和石油工程等多个领域,对单片机的各种性能要求十分高。
而在我省工业自动化控制领域中,缺乏相应的单片机技术体系,难以满足当下工程的数据采集、计算机处理应用、数据通信等方面的需要。
为了确保工业自动化控制模式的正常开展,实现机械应用与计算机应用技术的协调发展,可通过优化单片机内部结构程序或使用内部倍频技术和琐相环技术等,达到提升其运算和内部总线速度的目的。
1单片机脉冲信号采集1.1单片机模拟信号采集单片机系统采集器的信号有模拟电压信号、PWM信号和数字逻辑信号等,其中,应用较广泛的是模拟信号采集。
模拟信号指的是电压和电流,采用的处理技术主要有模拟量的放大和选通、信号滤波等。
因为单片机测控系统有时需要采集和控制多路参数,如果对每条路都单独采用一个较为复杂且成本较高的回路,就会对系统的校准造成较大影响,几乎不能实现。
因此,可以选用多路模拟开关,方便多种情况下共用。
但在选择多路模拟开关时,要注意考虑通道数量、数漏电流设计、切换速度、通导电阻、器件封装、开关参数的漂移性和每路电阻的一致性这几点。
信号滤波是为了减少或消除工作过程中的噪声信号,滤波常用的有模拟滤波电路和数字滤波技术,后者在单片机系统中发展较快。
1.2随机脉冲信号采集卡的设计随机脉冲信号采集卡的硬件组成主要有输入输出接口、单片机运行和控制、复读采集和控制、信号重放和主机接口控制这五个电路模块。
该系统的主要硬件电路包括单片机主系统中的随机脉冲放大和限幅电路、脉冲幅度、脉冲宽度测量电路、高速信号采集、存储电路以及由EPLD等构成的控制信号电路等。
单片机除了负责随机脉冲信号的采集以外,还要将相关的数据与随机脉冲数据组织成一个完整的信号数据结构。
1.3单片机脉冲信号采集优化模式单片机脉冲信号的采集应用必须要做好相关软硬件的应用、采集模式等的剖析准备工作。
脉冲磁场抗扰度测试

脉冲磁场抗扰度测试
抗扰度测试仪是一种可以测量脉冲磁场强度、频率以及抗扰度的专业仪器。
抗扰度测试仪由稳压电源、数据处理系统和抗扰度测试控制单元组成。
稳压电源提供抗扰度测试设备的电源,数据处理系统主要用于数据处理、显示和存储等工作,抗扰度测试控制单元可以控制,调节和测量脉冲磁场强度、频率和抗扰度。
脉冲磁场抗扰度测试
脉冲磁场抗扰度测试是对脉冲磁场耦合后设备的电气性能和信
号传输性能的测试。
脉冲磁场强度和频率可以以不同的大小作为场强和频率的变化。
在规定的条件下,通过测量抗扰度,可以发现设备在强磁场环境下的抗干扰能力。
脉冲磁场抗扰度测试的实施步骤
1. 在测试之前,首先要确定需要测试的目标,确认该目标的电气性能或信号传输性能的测试要求。
2. 根据目标设计脉冲磁场场强和频率以及时间参数,并调节测试仪进行测试。
3. 将设备安装在测试环境中,确保电场与目标之间的耦合。
4. 将设备的抗扰度测试仪开始测试,检查目标的电气性能或信号传输性能是否符合要求,同时也可以观察记录与测试的变化情况。
5. 测试完成后,将测试结果进行记录,并对结果进行分析。
脉冲磁场抗扰度测试能够检测设备在强磁场环境下的抗干扰性能,帮助人们了解设备在磁场干扰环境下的状态,为设备的正常使用
提供依据。
脉冲信号参数测试仪

脉冲信号参数测试仪
一、任务
设计制作一个脉冲信号测试仪,可以测量脉冲信号的幅值、频率、周期、占空比、上升和下降时间等参数。
二、要求
1.基本功能
(1)脉冲信号幅值范围为:0.2V P~5V P,测量精度≤±2%;
(2)脉冲信号频率范围为:1Hz~100KHz;频率测量精度≤±0.1%,周期测量精度≤±0.1% (3)占空比测量范围为:10%~90%,测量误差≤10%;
(4)比较电平设置范围:0.2V~5V,步进小于0.2V;
(5)上升时间和下降时间测量范围为1us~1ms,测量误差≤1us;
2.发挥部分
(1)脉冲信号频率范围为:1Hz~500KHz;频率测量精度≤±0.01%,周期测量精度≤±0.01%;(2)占空比测量范围为:5%~95%,测量误差≤5%;
(3)上升时间和下降时间测量范围为20ns~1ms,测量误差≤20ns;
(4)其它。
三、说明
1.脉冲信号为单极性信号,在测试过程中可以用三角波为被测脉冲信号;
2.未处理器建议选用TI公司芯片。
四、评分标准。
otdr测试仪使用方法

otdr测试仪使用方法OTDR(Optical Time Domain Reflectometer)是一种测量光纤传输中的信号衰减和损耗的仪器。
它通过向光纤发射脉冲信号,并测量反射和散射的光信号来判断光纤中的损耗情况。
OTDR测试仪的使用方法相对较为复杂,需要按照一定的步骤进行操作。
本文将详细介绍OTDR测试仪的使用方法。
首先,在进行OTDR测试之前,需要确保仪器的正常工作和合适的设置。
接下来,我们将按照以下步骤进行OTDR测试。
第一步,连接光源和接收器。
将光纤连接到OTDR测试仪输出端的光纤接口,并接上光纤适配器。
确保光纤接口和适配器的干净,并紧固好连接。
第二步,选择测试参数。
OTDR测试仪有多个参数需要设置,如测试波长、测试距离、脉冲宽度等。
选择合适的参数可以提高测试的准确性和精度。
第三步,进行测量。
将OTDR测试仪的探测头安装在要测试的光纤上,并保持稳定。
启动测试仪,开始进行测试。
测试仪将向光纤发射脉冲信号,然后记录反射和散射的光信号。
第四步,分析测试结果。
测试仪将测量数据显示在屏幕上。
通过分析数据,可以判断光纤的衰减情况、连接点的损耗以及其他的光纤特性。
根据测试结果,可以判断光纤是否正常工作,是否需要进行维修或更换。
第五步,保存和导出数据。
如果需要保存测试结果,可以将数据保存在测试仪的内部存储器或通过USB接口导出到计算机中进行进一步分析和处理。
第六步,维护和清洁。
在使用完OTDR测试仪后,需要对仪器进行维护和清洁。
清洁光纤接口和适配器,以确保下次测试的准确性。
以上就是OTDR测试仪的使用方法。
通过按照以上步骤进行测试,可以准确地测量光纤的损耗情况和光纤连接点的质量。
在实际应用中,OTDR测试仪经常用于光纤通信网络的建设和维护中,可以帮助用户及时发现和解决问题,保证光纤传输的正常运行。
多次脉冲电缆故障测试仪使用方法

多次脉冲电缆故障测试仪使用方法一、仪器准备1.选择合适的多次脉冲电缆故障测试仪型号,根据实际情况确定测试需要使用的探头和测试线材。
2.确定测试的电缆类型、长度和故障类型,根据实际要求和工作环境选择合适的测试参数。
3.检查测试仪的电源电压,确认仪器能够正常工作,并确保电源线连接稳固。
二、仪器连接1.接线方面,将测量探头的接地端与故障电缆连接,接地端需要与被测电缆的金属外壳连接,确保连接牢固可靠。
2.将测试仪的信号发生机连接到测量探头上,并将测试仪的信号接收机连接到接地端上,确保连接无误。
三、仪器设置1.打开测试仪的电源开关,仪器启动后进入待机状态。
2.设置多次脉冲电缆故障测试仪的测试参数,包括脉冲宽度、脉冲周期、发生波形和接收波形的选择等。
根据具体的测试需要进行适当的调整。
3.设置脉冲反射系数,根据实际情况设置反射系数,一般可根据故障电缆的类型和长度来确定。
四、故障定位1.定位前,让被测电缆处于断开状态,确保安全。
2.根据测试需求选择合适的测量模式,可选择单点测试或双点测试。
3.进行脉冲测试前,首先将测试仪的发生机发出脉冲信号,经过被测电缆后,由测试仪的接收机接收到反射波形。
4.根据接收到的反射波形,可以通过观察脉冲的幅度和时间来判断故障距离,从而实现故障定位。
根据测量结果,可以采取相应的修复措施。
五、仪器保养1.在使用完毕后,及时清洁测试仪的探头和接收机,确保连接线路的良好状态。
2.定期检查测试仪的电源电压,并及时更换老化的电源线。
3.注意测试仪的防护,避免受潮、受热或碰撞等情况,以免影响仪器的正常使用。
4.定期进行校准和维护,保证测试仪的准确性和可靠性。
总结:多次脉冲电缆故障测试仪是一种非常实用的设备,能够快速准确地定位电缆故障。
在使用过程中,需要正确连接仪器,设置合适的测试参数,并通过观察反射波形进行故障定位。
同时,仪器的保养和维护也是非常重要的,能够保证测试仪的长期稳定工作,提高故障定位的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲信号参数测试仪
一、任务
设计制作一个脉冲信号测试仪,可以测量脉冲信号的幅值、频率、周期、占空比、上升和下降时间等参数。
二、要求
1.基本功能
(1)脉冲信号幅值范围为:0.2V P~5V P,测量精度≤±2%;
(2)脉冲信号频率范围为:1Hz~100KHz;频率测量精度≤±0.1%,周期测量精度≤±0.1% (3)占空比测量范围为:10%~90%,测量误差≤10%;
(4)比较电平设置范围:0.2V~5V,步进小于0.2V;
(5)上升时间和下降时间测量范围为1us~1ms,测量误差≤1us;
2.发挥部分
(1)脉冲信号频率范围为:1Hz~500KHz;频率测量精度≤±0.01%,周期测量精度≤±0.01%;(2)占空比测量范围为:5%~95%,测量误差≤5%;
(3)上升时间和下降时间测量范围为20ns~1ms,测量误差≤20ns;
(4)其它。
三、说明
1.脉冲信号为单极性信号,在测试过程中可以用三角波为被测脉冲信号;
2.未处理器建议选用TI公司芯片。
四、评分标准。