电容正反馈的多谐振荡器的工作过程

合集下载

多谐振荡器

多谐振荡器
温控报警电路不同的晶体管,其ICEO值相差较大,故需改变R3的阻值来调节控温点。方法是先把测温元件T 置于要求报警的温度下,调节R3使电路刚发出报警声。报警的音调取决于多谐振荡器的振荡频率,由元件R1、R2 和C决定,改变这些元件值,可改变音调,但要求R1大于1kΩ。
谢谢观看
构成
运放构成 图1 在脉冲技术中,经常需要一个脉冲源,以满足数码的运算、信息的传递和系统的测试等用途的需要。多谐振荡 器就是脉冲源中比较常见的一种。它的输出波形近似于方波,所以也称之为方波发生器。由于方波是由许许多多不 同频率的正弦波所组成,因此取得了“多谐”的称呼。 一般来讲,象三角波、斜波、锯齿波和方波等非线性波型发生器,是由下述三部分构成:积分器(又称之为定时 电路),比较器和逻辑电路。如图1的方框图所示。这三部分的作用可以仅由一个或两个集成运算放大器来完成。 这个电路的特点是: 1、适于在音频范围内,对于在某个固定 频率下应用, 2、改变R:可以调整频率, 3、频率的稳定性主要取决于电容C和齐纳二极管的稳定性,所以即使是采用便宜的元器件也能得到频率漂移 相
类型
非稳态多谐振荡器 图3非稳态多谐振荡器电路图3说明了典型非稳态多谐振荡器电路的组态。 基本操作模式此电路运作在以下两种状态: 状态一 Q1导通,Q1的集电极电压为接近0V,C1由流经R2及Q1_CE的电流放电,由于电容C1提供反电压,使得Q2截止, C2经由R4及Q1_BE充电,输出电压为高(但因C2经由R4充电的缘故,较电源电压稍低)。 此状态一直持续到C1放电完成。由于R2提供基极偏置使得Q2导通:此电路进入状态二 状态二 Q2导通,Q2的集电极电压(即是输出电压)由高电位变为接近0V,由于电容C2提供反电压,使Q1瞬间截止, Q1截止,使得Q1集电极电压上升到高电位,C1经由R1及Q2_BE充电,C2流经R3以及Q2_CE的电流放电,由于电容 C2提供反电压,使得Q1截止。 此状态一直持续到直到C2放电完毕,由于R3对Q1基极提供偏置电压,Q1导通:此电路进入状态一。

振荡器工作原理

振荡器工作原理

振荡器工作原理
振荡器是一种电路,它能够产生连续的交流信号。

它的工作原理基于正反馈。

在一个简单的振荡器电路中,有三个主要的元件:电感、电容和放大器。

电感和电容构成了一个谐振回路,而放大器则用于增强信号的振荡。

振荡器的工作原理可以通过以下步骤来解释:
1. 初始状态下,电感和电容处于放电状态,没有电荷在它们之间流动。

2. 当电源连接到振荡器电路时,电荷开始从电源流向电容,并通过电感返回。

这导致电荷在电感和电容之间往返移动,形成振荡。

3. 在第一次往返时,放大器会放大电荷的幅度,并将其发送回电容。

这样,电荷将在电感和电容之间反复振荡。

4. 正反馈是振荡器的关键原理。

通过正反馈,放大器将输出的一部分信号重新输入到电感和电容中,这进一步增强了振荡。

正反馈确保了振荡信号的持续存在。

5. 最终,振荡器将产生一个稳定的、连续的交流信号,其频率由电感和电容的数值决定。

需要注意的是,振荡器电路需要满足一定的条件才能正常工作。

其中最重要的条件就是增益和相位的平衡,以保持正反馈的稳定性。

此外,振荡器的稳定性和频率稳定度也是设计中需要考虑的因素。

总结起来,振荡器是通过电感、电容和放大器构成的反馈回路来产生连续的交流信号。

正反馈是振荡器的基本原理,确保了信号的持续振荡。

振荡器在无线通信、音频产生以及其他电子设备中起着关键作用。

多谐振荡器电路的工作原理

多谐振荡器电路的工作原理

多谐振荡器电路的工作原理
答案:
多谐振荡器是一种自激振荡电路,它能够产生矩形波,也称为方波发生器。

这种电路的工作原理基于深度正反馈和阻容耦合,通过使两个电子器件(如晶体管)交替导通与截止,从而自激产生方波输出。

多谐振荡器没有稳态,只有两个瞬态状态,这些状态由电路自行转换,无需外加输入信号。

当电源接通后,电路就能自动地产生矩形脉冲,这些脉冲含有丰富的高次谐波分量。

多谐振荡器的基本结构包括放大器、反馈网络和滤波器等部分。

当放大器的输出信号通过反馈网络返回到输入端口时,在适当条件下会发生自激振荡,并在滤波器的作用下产生多个频率的振荡信号。

此外,多谐振荡器的输出波形近似于方波,因此也称之为方波发生器。

由于方波是由许多不同频率的正弦波所组成,因此得名“多谐”。

在具体的工作过程中,例如在简易电子琴电路中,接通电源瞬间,电容C1来不及充电,其两端电压为低电平。

这时,电源通过R1对电容C1充电,使电压按指数规律上升。

当电压上升到一定值时,电路进入第一暂稳态。

随后,电容C1通过电阻R2和放电管放电,电路进入第二暂稳态。

这个过程不断重复,电路在两个暂稳态之间来回翻转,输出矩形波。

多谐振荡器的振荡频率取决于电阻和电容的数值。

电阻与电容的乘积越大,电容放电时间越长,振荡频率越低;反之,振荡频率会变高。

这种电路在脉冲技术中有着广泛的应用,如数字计算、信息传输和系统测试等。

反馈振荡器的工作原理

反馈振荡器的工作原理

反馈振荡器的工作原理
振荡器的工作原理是通过反馈回路产生持续的周期性信号。

它主要由一个放大器和一个反馈网络组成。

在振荡器中,放大器将一个小的输入信号放大到足够的幅度,并提供足够的增益以抵消反馈网络的衰减。

反馈网络将一部分输出信号反馈到放大器的输入端,形成一个循环。

通过适当选择放大器的增益和反馈网络的参数,可以使得反馈信号与输入信号保持一致,并且持续不断地在放大器中产生,从而产生一个稳定的振荡信号。

振荡器的工作原理可大致分为以下几个步骤:
1. 初始激励:在振荡器开始工作前,假设放大器没有输出信号。

此时,通过外部激励或主动元件施加一个微弱的信号到放大器。

2. 放大器增益:放大器将输入信号放大,使其具有足够的幅度以抵消反馈网络的衰减。

放大器可以是放大电路、运算放大器等。

3. 反馈回路:反馈网络将一部分输出信号反馈到放大器的输入端,形成一个正反馈回路。

这意味着输出信号将被放大并重新送回到放大器。

反馈网络可以是电容、电感、晶体管等。

4. 生成振荡信号:通过适当选择反馈网络的参数,使得反馈信号与输入信号保持一致,并且持续不断地在放大器中产生。


导致放大器输出的信号不断振荡,并生成一个稳定的周期性信号。

5. 整定和稳定:通过调整放大器和反馈网络的参数,使得振荡器的输出信号具有所需的频率、幅度和波形。

同时,保持反馈回路稳定并避免过度放大,以确保振荡器的正常工作。

多谐振荡器的工作原理

多谐振荡器的工作原理

多谐振荡器的工作原理
多谐振荡器是一种产生多个频率可调、相位差准确的周期信号的电路。

它的工作原理主要由运放、反馈电阻、反馈电容和振荡电感等元件构成。

首先,将正反馈网络与运放连接,通过运放的放大作用,产生一个输出信号。

这个输出信号经过反馈网络返回到运放的负输入端,形成一个反馈回路。

反馈网络由电阻和电容组成。

当输出信号穿过电容,电容充电或放电,改变电荷量,从而改变电容的电压。

当电荷量达到一定程度时,电容放电到一定程度,电压开始增加。

当电压增加到达一定阈值时,电容再次开始充电,并循环此过程,形成一个周期和谐振动。

为了实现多频率可调,引入多个反馈网络,每个反馈网络的电容或电阻值不同,使得每个网络的谐振频率不同。

通过调节每个反馈网络的参数,可以改变谐振频率。

同时,引入可变电阻,可以调节整体的增益和相位差。

当系统稳定后,正反馈网络将提供一个特定频率的输出信号,并将其送回反馈回路,使其振荡。

多谐振荡器通过合理设计反馈网络和调节参数,可以产生多种频率可调、相位差准确的信号,广泛应用于通信、音频设备等领域。

电容正反馈的多谐振荡器的工作过程

电容正反馈的多谐振荡器的工作过程

电容正反馈的多谐振荡器的工作过程:与环行振荡器不同的是,该震荡器中门电路被偏置在放大区域,即门电路的静态工作点位于传输特性曲线的转折区内,这是由G1输入端和输出端之间跨接的电阻R确定的。

对于CMOS门电路来说,因为其输入电阻极大,所以输入电流趋于零。

由于输入、输出之间跨接了电阻R,所以必有V O1=V I1。

如果门电路的阈值电压为1/2V DD,则有V01=V I1=V DD/2。

也就是把G1偏置在了转折区重点,这也是CMOS门电路传输特性中电压转换最陡的一段,很小的输入电压变化,就可以引起输出电压较大的变化。

所以这是的门电路具有了电压放大作用。

由于G2 输入与G1输出相接,G2输入电压也为1/2V DD,也工作在放大区域。

这个电路在加上电源后,即可产生自激振荡,这可通过下面的振荡过程来说明。

通电时G1输入电压VI1极小的波动的,都会引起下面的强烈的正反馈过程:这里假设开始时,VI1有微小的上升,经过G1的反向放大后,使得G2输入电压VI2有较大的下降,再经G2进一步放大后,其输出电压V02比起VI1就有了更大的幅度变化。

这个变化的电压经由C反馈回G1输入时,由于V02与VI1相位相同,起到了增强VI1的作用,所以是一个正反馈过程。

这一过程经过多次循环后,很快就促使G1导通, G2截止。

电路进入第一个暂稳态。

随着电容C放电过程的进行,VI1由高电平逐渐下降,当降至VT时,又一个正反馈过程发生:G1迅速截止,G2迅速导通,电路进入第二个暂稳态。

同时,电容C开始充电。

随着电容C的充电,VI1逐渐上升,当升至VT时,又进入上述的第一个正反馈过程,电路重新转变为第一个暂稳态。

因此,电路便不停地振荡下去。

这就是该电路的振荡工作过程。

多谐振荡器电路原理

多谐振荡器电路原理

多谐振荡器电路原理
当开关K闭合时,BG1获得正向的偏置电压,使BG1集电极和发射极之间产生电流,从而使BG2同时获得正向的偏置电压导通,发光二极管发光。

在这个过程中,开始向电容充电,左负右正。

当电容电压充到使BG1截止时,二极管停止发光,在这个过程中,电容开始放电,放电时的回路是电容-发光二极管-电源-电阻-电容。

因此,放电时间和电容的大小,还有电阻的大小有关系。

当电容,放电完毕,BG1又开始导通,发光二极管又开始发光。

因此,看到的就是,当开关K合上时,二极管发光,然后熄灭,在发光,熄灭。

如此重复。

由于,波形是方形的,可以看作是很多正弦波的叠加,因此,叫多谐振荡器。

这个简单的电路,能够利用一下,把直流电转换成交流电。

多谐振荡器的工作原理

多谐振荡器的工作原理

多谐振荡器的工作原理多谐振荡器是一种电子设备,它可以产生多种频率的正弦波信号。

它的工作原理基于电容和电感的相互作用,通过适当的电路设计和控制,可以实现频率可调的振荡输出。

多谐振荡器在通信、广播、医疗等领域有着广泛的应用,下面我们来详细了解一下它的工作原理。

首先,多谐振荡器的核心部件是电容和电感。

电容是一种可以存储电荷的元件,而电感则是一种可以存储磁场能量的元件。

在多谐振荡器的电路中,电容和电感会相互储存和释放能量,从而产生振荡。

其次,多谐振荡器的工作原理与谐振现象密切相关。

在电路中,当电容和电感的能量储存达到一定条件时,会出现谐振现象,即电路中的电压和电流会呈现周期性的变化。

多谐振荡器通过合理设计电路参数和控制信号,可以实现在不同频率下的谐振现象,从而产生多种频率的正弦波信号。

另外,多谐振荡器的工作原理还与反馈电路有关。

在多谐振荡器中,会采用反馈电路来稳定振荡频率和增强输出信号。

通过适当的反馈设计,可以使多谐振荡器在不同频率下都能保持稳定的振荡输出,从而满足不同应用场景的需求。

此外,多谐振荡器的工作原理还涉及到频率控制技术。

通过控制电路中的参数或者外部输入的控制信号,可以实现对多谐振荡器输出频率的调节。

这种频率可调的特性使得多谐振荡器在实际应用中具有更大的灵活性和适用性。

总的来说,多谐振荡器的工作原理是基于电容和电感的相互作用、谐振现象、反馈电路和频率控制技术的综合应用。

通过合理设计和控制,多谐振荡器可以实现多种频率的正弦波信号输出,满足不同领域的需求。

它在电子通信、无线电、医疗诊断等领域有着重要的应用,对于推动科技进步和社会发展具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电容正反馈的多谐振荡器的工作过程:
与环行振荡器不同的是,该震荡器中门电路被偏置在放大区域,即门电路的静态工作点位于传输特性曲线的转折区内,这是由G1输入端和输出端之间跨接的电阻R确定的。

对于CMOS门电路来说,因为其输入电阻极大,所以输入电流趋于零。

由于输入、输出之间跨接了电阻R,所以必有V O1=V I1。

如果门电路的阈值电压为1/2V DD,则有V01=V I1=V DD/2。

也就是把G1偏置在了转折区重点,这也是CMOS门电路传输特性中电压转换最陡的一段,很小的输入电压变化,就可以引起输出电压较大的变化。

所以这是的门电路具有了电压放大作用。

由于G2 输入与G1输出相接,G2输入电压也为1/2V DD,也工作在放大区域。

这个电路在加上电源后,即可产生自激振荡,这可通过下面的振荡过程来说明。

通电时G1输入电压VI1极小的波动的,都会引起下面的强烈的正反馈过程:
这里假设开始时,VI1有微小的上升,经过G1的反向放大后,使得G2输入电压VI2有较大的下降,再经G2进一步放大后,其输出电压V02比起VI1就有了更大的幅度变化。

这个变化的电压经由C反馈回G1输入时,由于V02与VI1相位相同,起到了增强VI1的作用,所以是一个正反馈过程。

这一过程经过多次循环后,很快就促使G1导通, G2截止。

电路进入第一个暂稳态。

随着电容C放电过程的进行,VI1由高电平逐渐下降,当降至VT时,又一个正反馈过程发生:
G1迅速截止,G2迅速导通,电路进入第二个暂稳态。

同时,电容C开始充电。

随着电容C的充电,VI1逐渐上升,当升至VT时,又进入上述的第一个正反馈过程,电路重新转变为第一个暂稳态。

因此,电路便不停地振荡下去。

这就是该电路的振荡工作过程。

相关文档
最新文档