染料敏化太阳能电池进展

合集下载

染料敏化太阳能电池的进展综述

染料敏化太阳能电池的进展综述

染料敏化太阳能电池的进展综述王若瑜(北京清华大学化学系100084 )【摘要】由于染料敏化太阳能电池具有优良的稳固性和高转换效率,它具有极大的应用前景。

本文就染料敏化太阳能电池的原理、齐电池组成结构的优化等,对国内外学者的研究工作做以综述评论。

【关键词】太阳能染料敏化电极TiO?薄膜在能源危机日趋加深的今天,由于化石能源的不可再生:氢能利用中的储氢材料问题仍然没有解决:风能、核能利用难以大而积推行;太阳能作为另一种可再生淸洁能源足以引发人们的重视。

利用太阳能,已是各相关学科一个很重要的方向。

1991年之前,人们对太阳能的利用停留在利用半导体硅材料太阳能电池【1】上,这种太阳能电池虽然已经达到了超过15%的转化效率,可是它的光电转化机理要求材料达到髙纯度且无晶体缺点,再加上硅的生产价钱居高,这种电池在生产应用上碰到了阻力。

1991年,瑞士的GFtzcl教授小组做出了染料敏化太阳能电池【2】,他们的电池基于光合作用原理,以拔酸联毗唳钉配合物为敏化染料,以二氧化钛纳米薄膜为电极,利用二氧化钛材料的宽禁带特点,使得吸收太阳光激发电子的区域和传递电荷的区域分开,从而取得了%的髙光电转换效率【3】,这种电池目前达到最高的转换效率是% (6L由于这种电池工艺简单,本钱低廉(约为硅电池的1/5-1/10) [4],而且可选用柔质基材而使得应用范用更广,最重要的是,它具有稳固的性质,有髙光电转换效率,这无疑给太阳能电池的进展带来了庞大的变革【9】。

正因为染料敏化电池的上述长处,许多学者就它的机理、各个组成部份的优化等相关内容作了一系列实验,这篇论文将就这些方面做以综述简介,并加以分析和评论。

2, 染料敏化太阳能电池工作原理染料敏化太阳能电池的选材TiO?材料具有稳固的性质,且廉价易想,是理想的工业材料。

由于它的禁带宽度是,超过了可见光的能量范围(~),所以需要用光敏材料对其进行修饰。

其中的染料敏化剂指多由钉(Ri「)和娥(Os)等过渡金属与多联毗咙形成的配合物;实验证明,只有吸附在TiO? 表面的单层染料分子才有有效的敏化作用【3】,所以人们往往采用多孔纳米TiO?薄膜,利用其大的比表而积吸附更多染料分子,利用太阳光在粗糙表面内的多次反射从而被染料分子反复吸收提高电池效率:电解质随染料的不同而有不同的选择,总的来讲,以含1% -离子对的固态或液态电解质为主。

染料敏化太阳能电池的发展综述

染料敏化太阳能电池的发展综述

染料敏化太阳能电池的发展综述染料敏化太阳能电池(Dye-sensitized Solar Cells,DSC)是一种新型的太阳能电池技术,于20世纪90年代初由瑞士杂交电车公司的Grätzel教授首次提出。

与传统的硅太阳能电池相比,DSC具有低成本、高转化效率和简单制备等优势。

其工作原理是通过将染料分子吸附在液态电解质和半导体电极之间的钙钛矿光敏剂上,实现对光的吸收和电子传输。

自问世至今,DSC在材料、结构和工艺等方面进行了不断的改进和创新,取得了巨大的进展。

在DSC的材料研究方面,钙钛矿材料是DSC中最重要的组成部分。

最早的染料敏化太阳能电池使用染料分子作为光敏剂,但其效率有限。

随着钙钛矿材料的问世,DSC的效率得到了显著提升。

最早的钙钛矿光敏剂是染料分子与三角锥晶格结构的二氧化钛表面有机酸形成络合物,后来发展出钙钛矿结构材料,如MAPbX3(MA代表甲胺离子,X代表卤素)和FAPbX3(FA代表氟化铵离子)等。

这些新型钙钛矿光敏剂具有更高的吸光度和更长的电子寿命,大大提升了DSC的光电转化效率。

除了钙钛矿材料的改进,DSC的结构和工艺也得到了不断的优化。

最早的DSC采用的是液态电解质,但其在长期稳定性方面存在问题。

为了克服这一问题,研究人员开发出了固态电解质和无电解质DSC,提高了DSC的长期稳定性。

此外,还有人将DSC与其他太阳能电池技术相结合,如有机太阳能电池和钙钛矿太阳能电池,形成了复合结构,提高了光电转化效率。

随着科技的不断进步,DSC逐渐成为了实际应用的焦点。

许多公司和研究机构投入到DSC的产业化开发和商业化推广中。

目前已经有一些商业化的DSC产品面市,如太阳能充电器、建筑一体化太阳能材料等。

此外,DSC还具有一些独特的应用特点,如透明、可弯曲、柔性等,使其在可穿戴设备、汽车、船舶等领域具有广阔的应用前景。

综上所述,染料敏化太阳能电池的发展经历了多个方面的改进和创新。

在材料、结构和工艺等方面的不断优化,使得DSC的光电转化效率得到了显著提升。

染料敏化太阳能电池的研究进展及发展趋势

染料敏化太阳能电池的研究进展及发展趋势

染料敏化太阳能电池的研究进展及发展趋势染料敏化太阳能电池(DSSC)是一种新型的太阳能电池,其性能不仅可以与传统的硅太阳能电池相媲美,而且具有制造成本低、工艺简单、颜色可控等优点,在可再生能源领域具有广泛的应用前景。

该文将从DSSC的基本原理、研究进展及发展趋势三个方面进行分析。

一、DSSC的基本原理DSSC是一种基于电荷转移机制的太阳能电池,其组成由导电玻璃/氧化物电极、染料敏化剂、电解质以及对电子收集和传输的层等组件构成。

当太阳光照射到电极上的染料敏化剂时,其分子吸收太阳光能并将其转化成电能,产生电子-空穴对。

电解质负责将产生的电子传递到导电玻璃/氧化物电极上,从而实现电荷的分离和传输。

对电子收集和传输的层则负责将电子从导电玻璃/氧化物电极转移到电池外部,实现电能的输出。

二、DSSC的研究进展近年来,DSSC研究领域一直处于快速发展阶段,涉及到染料敏化剂、电解质、对电子收集和传输的层等方面的研究。

其中,染料敏化剂的设计和合成是DSSC研究中的关键问题之一。

早期的染料敏化剂是基于天然染料的,但其吸光光谱窄、稳定性较差等问题限制了其应用。

近年来,人们借鉴复杂有机分子或金属有机框架材料等方法,逐渐开发出吸光光谱宽、光稳定性好的新型染料敏化剂,如卟吩骨架材料、钴金属染料等。

另外,电解质的研究也取得了长足的进展。

传统的电解质为液态电解质,但其稳定性较差、易挥发等问题限制其应用。

因此,人们逐渐开发出了固态电解质、有机-无机混合电解质等替代电解质,并取得了良好的效果。

三、DSSC的发展趋势未来,DSSC的研究方向将主要集中在提高其效能和稳定性以及降低制造成本等方面。

首先,提高效能将是DSSC研究的主要方向之一。

研究人员可以通过改变电极、染料敏化剂等方面,进一步提高DSSC的光电转化效率。

特别是在染料敏化剂方面,新型高效染料敏化剂的研发将提升DSSC的效能。

其次,提高稳定性也是DSSC研究的重要方向之一。

目前,DSSC在长时间运作中会出现染料流失、电解质分解、对电子收集和传输的层老化等问题,必须寻求有效的解决方法。

染料敏化太阳能电池行业的发展

染料敏化太阳能电池行业的发展

染料敏化太阳能电池行业的发展染料敏化太阳能电池是一种新型的太阳能电池,它采用了全新的技术和原理,具有很高的发电效率和实用性。

随着环保意识的提高和新能源的逐渐普及,染料敏化太阳能电池行业的发展前景非常广阔。

本文将从这个角度出发,深入探讨染料敏化太阳能电池的技术原理、应用领域和未来发展方向等问题。

一、技术原理染料敏化太阳能电池是一种类似于传统晶体硅太阳能电池的装置,但它与传统太阳能电池不同的是采用了一种全新的电池材料——染料。

染料敏化太阳能电池的工作原理是利用染料分子吸收太阳能中的光子,将其转化成电子和空穴。

染料分子吸收光子后,电子从染料分子的价带跃迁到染料分子的导带中,同时留下一个具有正电荷的空穴。

在电池的两个电极(正极和负极)之间,这些电子和空穴被分别收集,构成电荷传输路线。

通过连接一定的电路,这些电子和空穴就可以被引导到获得电能的装置中,发挥最终功效。

二、应用领域染料敏化太阳能电池具有很高的发电效率和稳定性,它的应用领域非常广泛。

目前主要应用于以下几个方面:1.户外光伏产品——染料敏化太阳能电池可以制成柔性太阳能板,这种太阳能板可以贴在各种户外设备上,如行车记录仪、充电宝、户外摄像机、自行车等。

在户外野外等没有电源的环境下,可以利用它来为这些装备提供电源,十分便捷。

2.建筑光伏应用——染料敏化太阳能电池可以在建筑的门面、窗户、墙壁、屋顶等处应用,可以减少对建筑外观的破坏,美化建筑外观,同时还可以为建筑提供持续的电力,节省能源成本,使得建筑更加环保。

3.光伏无人机应用——染料敏化太阳能电池的重量轻、成本低,非常适合应用于无人机光伏电池上。

通过利用它提供的太阳能电能,无人机可以飞行更长时间,飞行高度也更高。

同时,它不会对固定翼强制要求的结构大小和重量带来影3.智能家居应用——染料敏化太阳能电池可以应用于各种家用电器、电子设备中,使得这些设备在电网停电或人为故意停电的情况下,仍然可以继续工作。

在智能家居领域,染料敏化太阳能电池的应用前景非常广泛。

染料敏化太阳能电池的研究现状及其应用前景

染料敏化太阳能电池的研究现状及其应用前景

染料敏化太阳能电池的研究现状及其应用前景染料敏化太阳能电池是一种新型的光电转换器件,其优点在于价格低廉、制备简单、可塑性强、光电转换效率高等。

目前,染料敏化太阳能电池的研究已经取得了一些进展,并得到了广泛的关注和应用。

本文将从染料敏化太阳能电池的原理、研究现状和应用前景等方面进行论述。

一、染料敏化太阳能电池的原理染料敏化太阳能电池的核心部件是一种染料分子,在阳光的照射下能够吸收光能,并将其转化为电能。

染料分子一般由两部分构成,即染料分子和电子受体。

染料分子吸收光能后,电子便被激发到受体的导带上,而染料分子中的空穴则被氧化剂捕获,在某些电解液中,电子和空穴便可以沿着电解液中的导电链传输,最终到达电极表面,从而产生电流。

二、染料敏化太阳能电池的研究现状染料敏化太阳能电池的研究始于90年代初期,并在近年来得到了广泛的发展和研究。

目前,重要的染料敏化太阳能电池有三种类型,即液态染料敏化太阳能电池、固态染料敏化太阳能电池和有机-无机钙钛矿太阳能电池。

其中,液态染料敏化太阳能电池是第一代染料敏化太阳能电池,具有可调谐能谱、制备容易等优点,但其使用寿命较短、稳定性差等缺点限制了其应用前景。

相比之下,固态染料敏化太阳能电池具有良好的光电性能和较好的稳定性,但其制备和性能调整难度大,仍存在需要优化的地方。

而有机-无机钙钛矿太阳能电池则被认为是最为重要的染料敏化太阳能电池之一,其光电转换效率高、稳定性好、制备简单等优点,使其在未来的能源领域中展现出良好的应用前景。

三、染料敏化太阳能电池的应用前景染料敏化太阳能电池在未来的应用前景广阔,其中最具有潜力的是其在建筑、车辆和电子设备等领域的应用。

在建筑领域中,染料敏化太阳能电池可以被直接塑造成为可替代建筑外墙、天窗等元素,使得建筑具有更好的一体化和更加环保的特点。

在车辆领域中,染料敏化太阳能电池可以利用随处可见的太阳能将车辆电池充电,使得车辆具有更加绿色和高效的特点。

而在电子设备领域中,染料敏化太阳能电池可以大大增加电子设备续航能力,使得电子设备具有更加灵活和无线的特点。

染料敏化太阳能电池的进展研究

染料敏化太阳能电池的进展研究

染料敏化太阳能电池的进展研究染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)是一种第三代太阳能电池技术。

它通过将染料敏化电子传输物质(纳米晶钛酸盐)涂覆在导电玻璃上,再将电解质涂覆在钛酸盐上,形成一个光敏层。

光在光敏层中被吸收,并激发电子,电子通过导电玻璃传输到负载。

染料敏化太阳能电池具有低成本、高效率、透明度高、制备工艺简单等优点,因此受到了广泛关注。

随着对染料敏化太阳能电池的研究深入,研究者们采用不同的方法和材料,不断提高其效率和稳定性。

例如,研究者使用无机半导体材料如TiO2、ZnO等作为电子传输材料,通过控制其晶粒尺寸和结构以提高电子传输效率。

同时,改进染料分子的设计和合成,可以增加染料的光吸收范围和光电转换效率。

在电解质方面,研究者已经替代了常用的有机电解质,如碘/碘离子电解液,使用无机电解质如柠檬酸锂盐电解液,提高了电池的稳定性和长期使用寿命。

此外,染料敏化太阳能电池的反应速度也是关注的焦点之一、使用催化剂如Pt、Ru等可以提高反应速度和光电转换效率。

另一个改进的方向是采用二维材料或金属有机框架(MOF)作为电子传输材料。

例如,石墨烯、二硫化钼等材料具有高导电性和光吸收能力,可以提高电子传输效率和光电转换效率。

MOF具有结构可调性和多孔性,可以通过调整结构和组分来提高电池的稳定性和性能。

此外,染料敏化太阳能电池的透明度也是研究的重点之一、目前,研究者们已经开发出透明的电解质和导电材料,可以用于制备透明的染料敏化太阳能电池,为建筑一体化光伏应用提供了可能。

最后,染料敏化太阳能电池的商业化应用仍面临一些挑战。

首先,其稳定性和寿命需要进一步提高。

其次,生产成本仍然较高,需要降低制造成本来提高竞争力。

最后,其能量转换效率仍然有待提高,以满足实际应用的需求。

综上所述,染料敏化太阳能电池作为一种新型的太阳能电池技术,在效率、成本和特性方面具有优势。

不断的研究和改进使得其效率和稳定性得到了显著提高,为其商业化应用提供了可能。

染料敏化太阳能电池的研究与应用

染料敏化太阳能电池的研究与应用

染料敏化太阳能电池的研究与应用染料敏化太阳能电池,又称为Grätzel电池,是一种新型的太阳能电池,它采用了新型的敏化物质,能够将太阳能转化成电能,并且具有透明、柔性、低成本等优点。

近年来,染料敏化太阳能电池在绿色能源领域受到了广泛关注和研究。

本文将从染料敏化太阳能电池的原理、研究进展和应用前景三个方面进行探讨。

一、染料敏化太阳能电池的原理染料敏化太阳能电池是一种基于光电化学原理的能量转化装置。

它将太阳辐射吸收并转化为电能,使之成为一种更加可用的能源形式。

该电池的基本结构由透明导电玻璃、染料敏化剂、电解质、对电极和光敏电极组成。

其中,染料敏化剂是关键的能量转化介质,其作用是:吸收太阳光,在激发状态下电子跃迁至导电材料上,从而形成电荷的分离和运输。

电解液则提供了离子的传输通道,以维持电荷平衡。

光敏电极和对电极分别接受电荷,建立电势差,形成电流。

并且,由于特殊的电极材料和导电液体,这种电池可以向两个方向输出电流,进而光伏效率得到提高。

二、染料敏化太阳能电池的研究进展染料敏化太阳能电池由于其结构简单、成本低廉、灵活透明等优点受到了广泛关注。

自1972年O'Regan和Grätzel教授首次提出Grätzel电池后,研究者们对它的改进和优化不断进行,目前已经取得了较为丰富的研究成果:1、液态电解质Grätzel电池。

1985年,Tennakone等人利用溶于有机溶剂中的银离子/亚铁氰酸盐作为电解质,制备出稳定的液态Grätzel电池。

分别于对电极和光敏电极上采用铂和钾硝酸,其效率可达到5.2%。

2、固态电解质Grätzel电池。

为了克服液态电解质Grätzel电池中电解液泄漏的问题,研究者们又发展出了固态电解质Grätzel电池。

2000年,Zakeeruddin等人在TiO2纳米晶膜上涂覆了含PbI2等离子体和2,2',7,7'-四-(甲基丙烯酸乙酯)氧合物作为电解质的Grätzel电池,其效率高达7.2%。

未来型太阳能电池——染料敏化太阳能电池研究进展

未来型太阳能电池——染料敏化太阳能电池研究进展
D19 4 为敏化剂 , 在全太 阳光照射下得到
以该材料掺杂 4 叔丁基 吡啶作为 空穴 一
传输层 、 电转换效率为 2 5%的电池 光 .6
4 J

DS s S 的能量转换效率高于 9o a g C "。 n /W
注 : 代 表 导 带 ,b 表 价 带 。 c b V代
虽然用有机空穴传输材料作为染料
池 的工作原理示意 图详见 图 1 。
19 年 , r te等人在Nau e 9 1 G f zl i t r 上
报道 了一种 价格低廉 的染料敏化 纳米
晶 太 阳能 电池…, 在模 拟 太 阳光 的 照 射下, 获得 了 7 1 .%的光 电转 换效 率 ,
其 中, 太阳能电池是世界各 国政府 da cdM t isn ut ea r
和b a k ye 新开发的染料 ̄ Cl1 lc d 夕 , l O J
和C 0 两种钌的吡啶络合物染料 , 12 其光 电转换 效率 达 1 . 。 13 J % 近年 来基 于纯 有机染料的DS s SC 发展较 决, 其光 电转
除硅太 阳能电池外, 们也在不断研发 人 其他材料 的太 阳能电池 , 不断提出新的 电池结构 , 例如砷化镓( As、 Ga )硫化镉 ( d _、 c S)铜铟镓硒( un S ) 电池 ) C lGa e薄膜
等, 但是这些 电池的原料太 昂贵且不宜
般是沉积铂 的导 电玻璃。 电解质介于
在 导 电基 底上 制 备 一层 多 孔 的纳 米
系太阳能电池的缺点是工艺条件苛刻、
制造成本过高 , 利于广泛应用。 不 因此,
晶氧化 物半 导体 膜 , 然后再 将染 料分 子吸 附在多 孔膜 中, 这样 就 构成 负极 (ah d )即工作 电极。 c to e, 正极 (n d ) a o e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ye, M., et al. Materials Today, 2015. 18(3): p. 155-162.
敏化剂进展
在DSSC中五种具有代表性的敏化剂从1991年到2013年PCE的变化趋势
电解质进展
• 液态电解质DSSC:ηmax=13% • 准固态电解质DSSC:ηmax=10% • 固态电解质DSSC:ηmax=10%
• • • / http://www.fujikura.jp
• 光电转换效率低 • 原材料及器件成本高 • 器件的长期稳定性问题
Thank you !
• 入射单色光子-电子转换效率(IPCE)
单位时间内外电路中产生的电子数与入射单色光子数之比 反映电池对各个波长光的光电转换能力
• I-V曲线:全面衡量太阳能电池在白光照射下的光电转换能力 • 电化学阻抗谱:表征材料电学性能以及材料与导电电极
的界面特性
• 瞬态衰减测试技术:研究与表征发生在染料敏化纳米
染料敏化太阳能电池
目录
一 二 三 四 五
德国科学家Tributsch等人提出染料敏化半导体产 生电流机理,从此以后,染料被广泛应用于光电 化学电池研究中 Tsubomura小组通过进一步增加多晶ZnO粉末表 面粗糙度,采用玫瑰红敏化剂,DSSC获得2.5% 转换效率 Gratzel等人采用TiO2和钌配合物染料,将电 池转换效率提高到7.1%,之后又将效率提高 到10% 目前液态电解质DSSC效率已达到13%,并且 准固态DSSC和全固态DSSC研究也取得较好的 发展
对电极发展
金属材料 碳材料 导电聚合物ห้องสมุดไป่ตู้料 复合对电极材料
Mathew, S. et al. Nature Chemistry, 2014. 6(3): p. 242-247 Chen C L, et al. Physical Chemistry Chemical Physics. 2013, 15(10): 3640-3645. Kim H S, et al. Scientific Reports, 2012,2
典型DSSC的组成包括透明光学 玻璃(FTO)、光阳极、染料、 电解质、对电极(光电阴极)
光阳极:染料敏化半导体薄膜 光电阴极:镀铂的导电玻璃 电解质:I-/I3-
导电玻璃:8-10Ω /cm2
光阳极进展
可作光阳极的半导体材料:TiO2,ZnO,SnO2,Nb2O5等 加工方法:溶胶-凝胶法,水热/溶剂热法,电气化学的电气氧化法, 静电纺丝法,喷雾热解法和原子层沉积法等(包括纳米棒,纳米管, 纳米片层,介孔结构和三维分层结构) 离子掺杂:比如F、I、Mg、Nb和Cu等,被用来减少重组阻力和延长 在光阳极中的电子寿命。 装饰贵金属:如Au,Ag,利用其表面等离子体共振效应(SPR)来提高 染料敏化太阳能电池的光吸收量 金属氧化物改性:用一层绝缘层或半导体层进行表面改性,通过减少 异质结光阳级中的电荷重组来提高染料敏化太阳能电池效率
(1) Dye+ h → Dye*
(2) Dye* → Dye + e (CB)
(3) 2 e (CB)+ I3 →3 I (4)Dye + e (CB) → Dye (5)I3 +2 e →3 I





-
(6) e (CB) → e (7)Dye +3 I - → Dye+ I3
晶异质结界面上电荷传递过程及在纳米半导体材料中的电荷传输 过程特性
• Dyesol公司与Tata集团公司 合作开发金属基大面积DSSC • 2006年,英国G24innovation 建成20MW卷对卷柔性DSSC中试线 • 德国巴斯夫集团试制出带有DSSC模组的太阳能电池, 充分展示了染敏电池在汽车行业的应用前景 • 日本Pecccell Technologies公司开发出世界上最大,最轻 大面积柔性DSSC组件,室内可输出100V以上电压 • 中科院等离子体物理研究所建立染料敏化太阳能电池示 范电站 • /investors/annual-report-2011-12/
Sugathan, V, E. John. et al. Renewable and Sustainable Energy Reviews, 2015. 52: p. 54-64.
敏化剂进展
• 钌基多吡啶染料: • 不含金属的有机染料: (1)高的摩尔消光系数(=50000-200000); (2)合成过程成本低廉; • 卟啉染料 (1)在400nm-500nm和500nm-700nm谱带的强吸收; (2)具有优异的分子稳定性和适宜的能级及多孔结构; • 量子点敏化剂:(1)镉-硫族化合物QDs;(2)铅-硫族化合物QDs; (3)锑的硫化物Sb2S3 QDs; • 钙钛矿类的敏化剂:CH3NH3PbX3(X=Cl,Br,I)具有优异的光捕获特 性;
相关文档
最新文档