电子式电能表的结构和工作原理
电子式电能表原理

第四节 单相预付费电能表
一、基本原理 二、IC卡技术 三、主要性能指标及
功能
一、基本原理
单相预付费电能表原理框图如图3-25所 示。
一、基本原理
工作原理: 测量模块为表计核心,它和普通电子 式单相电能表采用相同技术输出功率脉冲 到微处理器。微处理器接收到测量部分的 功率脉冲进行电能累计,并且存入存储器 中,同时进行剩余电费递减,在欠费时给 出报警信号并控制跳闸。它随时监测IC卡 接口,判断插入卡的有效性以及购电数据 的合法性,将购电数据进行读入和处理。
第二节 全电子式电能表的结构和工作原理
一、输入变换电路
二、乘法器电路
三、电压/频率转换器 四、分频计数器
五、显示器
一、输入变换电路
输入电路的作用,一方面是将被测信
号按一定的比例转换成低电压、小电
流输入到乘法器中;另一方面是使乘 法器和电网隔离,减小干扰。
一、输入变换电路
(一)电流输入变换电路 1.锰铜片分流器 以锰铜片作为分流电阻RS,当大电流i (t)流过时会产生相应的成正比的微弱电压 Ui(t),其数学表达式为 Ui(t)=i(t)R
第一节 机电式电能表的结构和工作原理
机电式电能表主要由感应式测量机构、 光电转换器和分频器、计数器及显示器四大 部分组成,工作原理框图如图3-1所示。
§ 感应式测量机构的主要作用是将电能信号转 变为转盘的转数 § 光电转换器的作用是将正比于电能的转盘转
第一节 机电式电能表的结构和工作原理
一、单向脉冲式电能表
二、乘法器电路
模拟乘法器是一种完成两个互不相关的模拟 信号(如输入电能表内连续变化的电压和电流) 进行相乘作用的电子电路,通常具有两个输入端 和一个输出端,是一个三端网络,如图3-15所 示。理想的乘法器的输出特性方程式可表示为 UU (t ) KU X (t )UY (t )
家用单相电子式电度表的工作原理及原理图

家用单相电子式电度表的工作原理及原理图
原理:电能表由分压器取得电压采样信号,电流互感器取得电流采样信号,经乘法器得到电压电流乘积信号,再经频率变换产生一个频率与电压电流乘积成正比的电能计量脉冲,生成的电量脉冲信号经光电耦合器送到cpu处理,运算后存储于非易失的eeprom中,并提供显示。
单相电子式电度表适应于计量额定频率为50hz、60hz的单相交流有功电能。
供固定安装在室内使用,适用于环境温度不超过-20~+55,相对温度不超过85%,且空气中不含有腐蚀性气体及免尘砂、霉菌、盐雾、凝露、昆虫等影响。
扩展资料:
电度表安装使用注意事项
1、电度表接线较复杂,接线前必须分清电度表的电压端子和电流端子,然后按照技术说明书对号接入。
对于三项电度表,还必须注意电路的相序。
2、电度表只有在额定电压、额定电流20%-120%、额定频率50Hz的条件下工作时,才能保证准确度。
3、电度表不宜在小于规定电流的5%和大于额定电流的150%情况下工作。
4、半年以上不用的电度表应重新校正。
5、电度表安装时,要距热力系统0.5米以上,距地面0.7~2.0米并要求垂直安装,容许偏差不得超过2。
单相电子式电能表原理

单相电子式电能表原理
单相电子式电能表是一种用于测量单相电力消耗的电器设备,其工作原理基于电压和电流的测量。
该电能表使用了一对电压线圈和一对电流线圈,分别用于测量输入电路中的电压和电流。
当待测电路通电时,输入电流将通过电流线圈,而输入电压将通过电压线圈。
电流线圈和电压线圈各自将产生相应的磁场。
为了测量电能,电流线圈和电压线圈之间通过一个电流、电压倍数调整器和一个共安装的显示和计算装置连接在一起。
电压线圈的输出电压经过倍数调整器进行放大或缩小,以匹配电压线圈传感器的灵敏度。
同样地,电流线圈的输出电压经过倍数调整器也进行同样的放大或缩小操作。
在电压线圈和电流线圈的输出电压已经调整完成后,它们将进入显示和计算装置。
该装置通过将电压和电流乘以相应的倍数,然后将它们相乘,从而计算出电能的消耗。
该结果将通过数字显示屏显示出来,以供用户查看。
总体来说,单相电子式电能表通过测量电压和电流,然后将其作为输入送入显示和计算装置,以计算出电能的消耗。
这种电能表具有精确度高和稳定性好等特点,被广泛应用于家庭和工业领域中。
机电脉冲式和全电子式电能表工作原理说明

机电脉冲式和全电子式电能表工作原理说明电子式电能表是由电能测量机构和数据处理机构两大部分组成的。
根据电能测量机构又可以分为机电脉冲式和全电子式两大类;1.机电脉冲式电子电能表它是一款出现较早的电能表,简称机电式电能表或脉冲电能表,它沿用了感应系测量机构,数据处理机构则由电子电路和计算机控制系统实现。
在制造上只需将普通感应系电能表的机械式传动计数器换为以单片机为核心的电子计数装置即可。
因而机电脉冲式电子电能表是一种电子线路与机电转换单元相结合的半电子式的电能表。
机电脉冲式电子电能表主要由感应系测量机构、光电转换器和分频器、计数器以及显示器四大部分组成。
感应系测量机构的主要功能是将电能信号转变为转盘的转数;光电转换器的功能是将正比于电能的转盘转数转换为电脉冲,此脉冲数同时也正比于被测电能;分频器和计数器的主要功能是对经光电转换成的脉冲信号进行分频、计数,从而得到被测量的电能量;显示器的功能是利用电子器件显示电能表所测量的电能a和其他电参数,便于读取数据。
(机电脉冲式电能表的工作原理)所谓分频,就是降低电能输出脉冲信号频率,使输出信号的频率分为输入信号频率的整数分之一。
分频的目的,一是为了方便取出电能计量单位的位数和正常的校表习惯;二是为了考虑计数器长期计数的容量问题。
所谓计数,就是把经过分频处理的电能脉冲,通过累计脉冲个数的方式,终以数码的形式显示电能测量的结果。
因为集成器件的工作可靠性、抗干扰能力、功率消耗、电路保安和机械尺寸均优于分立元件电路,所以分频器和计数器采用CMOS集成器件。
光电转换器是连接电能测量机构和数据处理机构的纽带。
光电转换器包括光电头和光电转换电路两部分。
单向脉冲电能表只有一套光电转换器,而双向脉冲电能表有两套光电转换器,具有同时计量正向电量和反向电量的功能。
2.全电子式电能表全电子式电能表是在数字功率表的基础上发展起来的,全电子式电表与机电脉冲式电能表不一样,它的测量机构不再使用感应系的,改用乘法器完成对负荷功率的测量。
电子式电能表的工作原理及AD7755的简介

电子式电能表的工作原理及AD7755的简介电子式电能表的工作原理为:由分压器完成电压取样,由取样电阻完成电流取样,取样后的电压、电流信号由乘法器转换为功率信号,经V/F变换后,输出的脉冲信号推动计数器工作,如果是智能电表,则将脉冲信号输入单片机系统进行处理。
要完成上述功能,就要采用专用的电功率测量芯片,其中最常用的AD7755就是一种高精度的电功率测量芯片,其内部的乘法器是数字型乘法器。
AD7755的功能框图见图 1,引脚见图2。
它输出的脉冲信号可以直接驱动计数器的步进电机。
AD7755的性能测试电路见图3。
其中V1P、V1N为电流传感器的模拟输入端,V2P、V2N为电压传感器的模拟输入端。
按图中SCF、S1、SO的接法,CF输出频率是F1和F2的16倍。
图1 AD7755内部框图图2AD7755引脚排列图3 AD7755性能测试电路图4 AD7755信号处理框图AD7755的信号处理框图见图4。
两个ADC分别对来自CH1(交流电流取样)和CH2(交流电压取样)的电压信号进行数字化,这两个ADC都是16位的数模转换器。
电流通道内的高通滤波器(HPF)滤掉电流信号中的直流分量,从而消除了曲于电流或电压失调所造成的有功功率计算上的误差。
瞬时功率由电压信号和电流信号直接相乘得到,通过低通滤波器(LPF)得到有功功率。
再经电压一频率转换,引脚F1和F2以较低频率形式输出有功功率平均值,此脉冲推动计数器计数,引脚CF以较高频率形式输出有功功率瞬时值,用于仪表校验,由于其输出频率高,便于进行处理,因此本文利用CF输出的脉冲信号作为测量信号。
AD7755在电子电度表电路中的应用AD7755是一种高准确度电能测量集成电路。
AD7755只在ADC和基准源中使用模拟电路,其它信号处理(如相乘和滤波)都使用了数字电路,这使AD7755在恶劣的环境条件下仍能保持极高的准确度和长期的稳定性。
AD7755有24脚DIP和SSOP两种封装。
电子式电表工作原理

电子式电表工作原理
电子式电表工作原理是通过测量电流和电压的相乘来计算电力的消耗量。
电流和电压是通过装在电表内部的感应器进行测量的。
电流感应器是将待测电流通过一根线圈传导,产生感应磁场,进而激发出感应电势。
这个感应电势经过放大和处理后,转换为代表电流大小的电信号。
电压感应器是通过将待测电压接到电表的电压输入端口上,经过一定的放大和处理,将输入电压转化为代表电压大小的电信号。
电流和电压信号经过放大和处理后,进入一块专用的电路芯片,根据电流和电压的乘积计算出电力的消耗量。
然后,电路芯片将计算结果转化为表针或数字显示器上的读数。
除了计算电力消耗量,电子式电表还可以进行其他功能,例如记录用电量、显示电压频率、分析电流波形等。
总之,电子式电表通过测量电流和电压,通过相关电路和芯片的处理和计算,来实现电力的测量、记录和显示。
电子式电能表内部原理

液晶具体工作原理:
在上下玻璃电极之间封入液晶材料,液晶分子平行排列上、下扭曲90度,
外部入射光线通过上偏振片后形成偏振光,该偏振光通过平行排列的液晶
材料被旋转90度,再通过与上偏振片垂直的下偏振片,被反射板反射回来 ,呈透明状态;当上、下电极加上一定的电压后,电极部分的液晶分子转 成垂直排列妥失去旋光性,从上偏振片入射的偏振光不被旋转,光无法通 过下偏振片返回,因而呈黑色。
电压/频率转换器:
得到输出电压U。的频率
22
谢谢.
计量中心 2012.5.16
根据需要将电极做成各种文字、数字、图形,就可以获得各种状态显示。
4
管理部分:
单片机:所有的控制命令,都是由它发出的。它是电子式电能表
的大脑
4
(一)单片机内部结构:
控制 结构
时钟
由晶振产生,相当于人的神经信号 原理:压电效应。在电场中的晶体受交变电压作用发生振 荡,振荡后产生交变电场,从而产生时钟频率。
计量单元
2013-7-31
测量部分:
1
接收交流电压、电流信号,将其运算后得 到 相乘的电功率信号,数字乘法器或A/稳定性的主要性能就由此部件决定。它是 电子式电能表的心脏
5
电能数字测量原理:
18
A/D转换器
类似于称重原理
数字乘法器
数字乘法器实现电能测量的精度主要取决于A/D转 换器的精度(位数)以及采样间隔的大小。A/D转换 器的精度越高,测量精度越高,采样间隔越小,测 量精度越高。
电子式电能 表内部原理
计量中心
5/16
2013-7-31
电子式电能 表内部结构
计量中心
2013-7-31
总体 结构
电子式电能表工作原理与基本结构

电子式电能表工作原理与基本结构电子式电能表1、电子式电能表按其工作原理的不同,可分为模拟乘法器型、电子式电能表和数字乘法器型电子式电能表。
2、一般来说,电子式电能表由六个部分组成:电源单元、电能测量单元、中央处理单元(单片机) 、显示单元、输出单元、通信单元。
3、正常供电时,电子式电能表的工作电源通常有三种实现方式:工频电源(即变压器降压) 、阻容电源(电阻和电容降压) 、开关电源。
4、电子式电能表的显示单元主要分为 LED数码管和 LCD液晶显示器两种,后者功耗低,并支持汉字显示。
5、电子式电能表的关键部分是电能测量单元6、时分割乘法器是许多电子式电能表的关键部分,它通常由三角波发生器、比较器、调制器、滤波器四个部分组成。
7、若某电子式电能表的启动电流是0.01Ib,过载电流是6Ib,则A/D型的电能表要求A/D转换器的位数可以是10,A/D的位数取决于Imax和Imin的比值,6÷0.01=600,而29<600<210,即要求A/D的位数至少是10位。
8、U/F(电压/频率)转换器组成的电能测量单元,其作用是产生正比于有功功率的电能脉冲。
9、采用电阻网络作为电能表的电压采样器的最大特点是线性好和成本低,缺点是无法实现电气隔离。
采用电压互感器的最大优点是可实现初级和次级的电气隔离,并可提高电能表的抗干扰能力,缺点是成本高。
请登陆: 浏览更多信息10、检定无源脉冲电能表误差:通常在脉冲正端施加一个VDD=+5~12V的直流电源,有的现场校验仪或电能表检定装置具有这一电源,中间串联R=5~10Ω的电阻,再输入给检定脉冲回路。
11、单片机就是将微型计算机所具备的几个基本功能,如中央处理单元CPU 、程序存储器ROM 、数据存储器RAM 、定时计数器Timer/Counter 、输入输出接口I/O 等,集成到一块芯片中而构成小型计算机。
12、单片机的总线可以分为三种:地址总线AB 、数据总线DB 、控制总线CB 。