不同原料蛋白质中氨基酸的组成
蛋白质结构与功能-----氨基酸

蛋白质结构与功能-----氨基酸蛋白质结构与功能——氨基酸2010遗传学Chapter 1 氨基酸I 蛋白质的天然组成天然蛋白质几乎都是由18种普通的氨基酸组成:L-氨基酸,L-亚氨基酸(脯氨酸)和甘氨酸。
一些稀有的氨基酸在少量的蛋白质中结合了L-硒代胱氨酸。
II 氨基酸的结果每种氨基酸(除了脯氨酸):都有一个羧基,一个氨基,一个特异性的侧链(R基)连接在α碳原子上。
在蛋白质中,这些羧基和氨基几乎全部都结合成肽键。
在一般情况下,除了氢键的构成以外,是不会发生化学反应的。
氨基酸的侧链残基(R基)提供了多种多样的功能基团,这些基团赋予蛋白质分子独特的性质,导致:A.一种独特的折叠构象B.溶解性的差异C.聚集态D.和配基或其他大分子构成复合物的能力,酶活性等等。
蛋白质的功能是与蛋白质氨基酸排列顺序和每个氨基酸残基的特征有关。
那些残基赋予蛋白质独一无二的功能。
氨基酸的分类是依照它的侧链性质的A.非极性侧链的氨基酸B.不带电的极性侧链氨基酸C.酸性侧链的氨基酸D.碱性侧链的氨基酸A.非极性侧链氨基酸非极性氨基酸在蛋白质中的位置:在可溶性蛋白质中,非极性氨基酸链趋向于集中在蛋白质内部。
甘氨酸(Gly G )结构:最简单的氨基酸,在蛋白质氨基酸当中,是唯一缺乏非对称结构的氨基酸。
特征:甘氨酸在蛋白质结构中起到一个很重要的作用,与其它氨基酸残基相比,由于缺少-碳原子,它在蛋白质的构象上有很大的灵活性和更容易达到它的空间结构。
功能和位置:1.甘氨酸经常位于紧密转角;和出现在大分子侧链产生空间位阻影响螺旋的紧密包装处(如胶原)和结合底物的地方。
2.由于缺乏空间位阻侧链,所以甘氨酸在邻近的肽键的位置有更强化学反应活性。
例如:Asn-Gly3.甘氨酸也出现在酶催化蛋白质特异性修饰的识别位点,例如N端的十四酰基化(CH2(CH2)12CO -)和精氨酸甲基化的信号序列。
丙氨酸(Ala A )结构:是20种氨基酸中最没有“个性”的氨基酸,没有长侧链,没有特别的构象性质,可以出现在蛋白质结构的任何部位。
饲料氨基酸平衡性的评价及应用(水产)

饲料氨基酸平衡度的评价及应用天津通威饲料有限公司肖伟平博士、副总经理鱼虾生长主要通过分解利用饲料的蛋白质从而合成自身体内的蛋白质,而生物体的运动和物质合成所需要的能量主要由饲料能量物质和一部份蛋白质提供。
鱼类利用饲料中的蛋白质就是利用饲料适量的氨基酸,饲料不同种类的氨基酸与鱼体氨基酸组成和需求越接近,鱼类利用饲料氨基酸的效率就越高,也越有利于鱼体的生长,因此,探讨饲料氨基酸的合理组成即氨基酸平衡度对于饲料配制和原料选用有很重要的意义。
一、不同蛋白质饲料原料的必需氨基酸组成饲料氨基酸组成主要与蛋白质原料关系最密切,最常用的蛋白质原料主要有鱼粉、豆粕、棉粕、菜粕、花生粕、DDGS、玉米蛋白粉、大豆浓缩蛋白、虾壳粉、蚕蛹等,在进行鱼类饲料配制时,通过这些蛋白质饲料原料的适当配比,达到饲料氨基酸组成的适度平衡和饲料的最佳性价比,最终有利于鱼体的生长。
鱼体氨基酸分必需氨基酸和非必需氨基酸,必需氨基酸是鱼体不能自身合成或合成不能满足自身需要的氨基酸,在进行饲料配制时,必需氨基酸的组成是影响鱼体生长最主要的氨基酸,也是评定饲料氨基酸平衡主要的依据。
鱼类饲料的主要蛋白质原料的必需氨基酸组成如下表所示(表1)。
表1 主要蛋白质饲料的必需氨基酸组成饲料原料名称粗蛋白赖氨酸蛋氨酸蛋+胱精氨酸苏氨酸色氨酸组氨酸苯丙氨酸亮氨酸异亮氨酸结氨酸必需氨基酸秘鲁鱼粉65 4.43 1.45 2.21 3.41 1.97 0.78 1.57 2.61 4.41 2.39 2.94 26.51 豆粕44 2.15 0.52 1.30 2.66 1.46 0.68 0.91 1.72 2.58 1.39 1.57 16.19 花生粕48 1.00 0.31 0.81 3.68 0.72 0.45 0.62 1.35 1.41 0.84 0.92 11.58 菜籽粕38 1.16 0.47 1.48 1.77 0.91 0.43 0.72 0.79 1.78 0.91 1.18 11.00 棉籽粕40 1.31 0.32 1.27 4.10 0.99 0.44 0.38 1.09 1.83 1.26 1.57 14.10 小麦面筋78 1.51 1.21 2.92 2.92 2.07 0.70 1.61 4.12 5.43 3.32 3.82 26.35 血粉92 9.0 0.80 1.40 4.00 3.60 1.20 7.50 7.10 0.60 13.4 9.20 57.00 玉米蛋白60 0.85 1.18 2.38 2.60 1.04 0.98 0.69 1.30 1.88 1.29 1.72 14.33 玉米7.8 0.19 0.05 0.30 0.25 0.20 0.06 0.14 0.15 0.59 0.16 0.18 1.96 小麦13 0.29 0.18 0.49 0.55 0.19 0.15 0.23 0.53 0.76 0.23 0.43 3.54此表中未考虑氨基酸的消化率和非必需氨基酸的组成。
蛋白质分子中氨基酸的排列顺序

蛋白质分子中氨基酸的排列顺序氨基酸的排列是蛋白质分子结构和功能的基础,它也被称为基因定序,又称为氨基酸序列。
每一种蛋白质分子都由多种氨基酸组成,这些氨基酸按照一定的顺序排列在一起,构成蛋白质分子的不同部分。
1. 精氨酸(arginine):它是一种双酰胺型氨基酸,由两个氨基和一个苯酰基构成,它在特定的pH范围内具有正电荷,能提高蛋白质的敏感性。
2. 色氨酸(tryptophan):它是一种双芳香基氨基酸,以其高度类似芳香集团的复合态形式存在于蛋白质分子中,能帮助维持蛋白质结构的稳定性。
3. 氨基丁酸(threonine):它是一种双胺型氨基酸,由三个氨基和一个基团构成,能够参与多种蛋白质的生物学功能。
4. 组氨酸(cysteine):它是一种硫酸盐型氨基酸,它包含有硫键,可以用来改变蛋白质分子的结构和功能,从而影响蛋白质的生物学行为。
5. 苏氨酸(methionine):它是一种硫酰胺型氨基酸,包含有硫键,能够维持蛋白质的结构稳定性,具有保护蛋白质分子的功能。
6. 丙氨酸(alanine):它是一种简单的氨基酸,由三个氨基及一个基团构成,能够参与许多生物化学反应,如水解反应。
7. 谷氨酸(glutamic acid):它是一种双胺型氨基酸,由三个氨基和一个酸基组成,能参与酶的活性位点,促进特定的蛋白质反应。
8. 酪氨酸(tyrosine):它是一种双芳香基氨基酸,具有一个酸基,可以参与细胞内的酶反应,能够促进多种关键的蛋白质反应。
9. 苯丙氨酸(phenylalanine):它是一种单芳香基氨基酸,以其独特的盐型形式存在于蛋白质分子中,具有催化和抑制等功能。
10. 缬氨酸(valine):它是一种羧基胺型氨基酸,由三个氨基和一个羧基组成,可以增加蛋白质分子的稳定性,并促进蛋白质分子的生物学功能。
鸡肉的氨基酸组成

鸡肉的氨基酸组成
鸡肉是一种富含蛋白质的食物,其氨基酸组成如下:
1. 赖氨酸(Lysine):鸡肉中赖氨酸的含量较高,是构成人体蛋白质的重要氨基酸之一。
2. 亮氨酸(Leucine):鸡肉中亮氨酸的含量也较高,对于维持肌肉质量和增强免疫系统有重要作用。
3. 蛋氨酸(Methionine):鸡肉中蛋氨酸的含量适中,对于合成蛋白质和脂肪以及调节生理功能有重要作用。
4. 苏氨酸(Threonine):鸡肉中苏氨酸的含量适中,是构成人体蛋白质的重要氨基酸之一。
5. 色氨酸(Tryptophan):鸡肉中色氨酸的含量较低,但对于合成5-羟色胺(一种神经递质)和调节睡眠有重要作用。
6. 苯丙氨酸(Phenylalanine):鸡肉中苯丙氨酸的含量适中,对于合成蛋白质和神经递质有重要作用。
7. 缬氨酸(Valine):鸡肉中缬氨酸的含量较高,对于维持肌肉质量和增强免疫系统有重要作用。
8. 组氨酸(Histidine):鸡肉中组氨酸的含量适中,对于合成蛋白质和调节生理功能有重要作用。
9. 精氨酸(Arginine):鸡肉中精氨酸的含量较高,对于增强免疫系统和生理功能有重要作用。
10. 丙氨酸(Alanine):鸡肉中丙氨酸的含量适中,是构成人体蛋白质的重要氨基酸之一。
以上就是鸡肉中的氨基酸组成,其中一些氨基酸对于人体的生长发育和生理功能至关重要。
不同蛋白质结构不同的直接原因

不同蛋白质结构不同的直接原因蛋白质是生命体内最重要的分子之一,它们在细胞内发挥重要的功能,包括催化代谢反应、传递信息、提供结构支持等。
蛋白质的功能多样化,主要归因于其多样的结构。
引起蛋白质结构的差异主要是由以下几个方面决定的:1.氨基酸组成:蛋白质是由氨基酸组成的长链,在生物体中共有20种不同的氨基酸。
这些氨基酸以不同的顺序排列在一起,形成了不同的氨基酸序列,进而决定了蛋白质的结构和功能。
氨基酸可以分为两类:极性氨基酸和非极性氨基酸。
极性氨基酸具有疏水性,容易与水分子相互作用,而非极性氨基酸则不具有这种性质。
因此,氨基酸的组成可以影响蛋白质与周围环境的相互作用,从而影响其结构和活性。
2.蛋白质的折叠:蛋白质的折叠是指线性氨基酸序列通过一系列的非共价相互作用(如氢键、疏水相互作用、电荷相互作用等)形成3D结构的过程。
蛋白质的折叠是一个高度复杂和精确的过程,通过这个过程,蛋白质能够在细胞中稳定地存在,并发挥特定的功能。
不同氨基酸的组合会导致不同的非共价相互作用,从而导致蛋白质的折叠方式和结构的多样性。
3.蛋白质的二级结构:蛋白质的二级结构是指蛋白质分子中发生的局部二次结构形式,主要包括α-螺旋和β-折叠。
α-螺旋通过氢键形成稳定的螺旋结构,而β-折叠由多个β链顺序相互折叠形成稳定的折叠结构。
蛋白质的二级结构主要由氨基酸的氢键交互作用决定,在一定程度上决定了蛋白质的整体结构和功能。
不同的氨基酸序列与氢键的组合方式会导致不同的二级结构形式。
4.蛋白质的三级结构:蛋白质的三级结构是指蛋白质的整体折叠结构,它由蛋白质的各个二级结构域通过非共价相互作用相互组合而成。
蛋白质的三级结构决定了蛋白质的活性和功能。
不同的氨基酸组合和非共价相互作用方式会导致蛋白质不同的三级结构形式。
总之,蛋白质结构的多样性是由其氨基酸组成、折叠方式、二级结构和三级结构等因素共同决定的。
这些因素相互作用,相互影响,最终导致了蛋白质结构和功能的多样性。
第4章蛋白质化学——2.氨基酸

第一个氨基酸早在1806年就已经被发现,而最 后一个氨基酸在1935年才发现。
直到1965年才搞清楚,合成天然蛋白质的原料 只有20种氨基酸( 称为基本氨基酸, Primary amino acid)。
自然界中存在的氨基酸有300余种,在动植物组 织中可以分离得到26~30种不同的氨基酸。
蛋白质
CH3
L-苏氨酸 (L-threonine)
CH3
D-苏氨酸 (D-threonine)
COOH
COOH
H2N C H
H C NH 2
HO C H
H C OH
CH3
CH3
L-别-苏氨酸
D-别-苏氨酸
(L-allo-threonine) (D-allo-threonine)
旋光异构体数目为 2n(n为不对称碳原子数目)
Asn, Gln
正电荷(3种):His组, Lys赖, Arg精
带电荷
负电荷(2种):Asp天冬, Glu
氨基酸的极性分类总结
“极性或非极性,是蛋白质性质之所系。”
按氨基酸是否能在人体内合成分类
必需氨基酸(8种) :指人体不能合成,必须从食 物中摄取: Ile, Met, Val, Leu, Trp, Phe, Thr, Lys
半胱氨酸(Cysteine)和胱氨酸(Cystine)
胱氨酸的光学 异构体有?种
二硫键
Disulfide bond
胱氨酸有三种立体异构体:L-胱氨酸、 D-胱氨酸、 内消旋胱氨酸。
内消旋物:分子内消旋 外消旋物:D-型和L-型的等摩尔混合物;
如:L-胱氨酸和D-胱氨酸是外消旋物
氨基酸的旋光性
L-亮氨酸
子,因此都具有旋光性。 比旋光度是氨基酸的重要物理常数之一,是
食品化学 第四章蛋白质 (氨基酸)

20种基本氨基酸的发现年代表
天冬酰氨 甘氨酸 亮氨酸 酪氨酸 丝氨酸 谷氨酸 天冬氨酸 苯丙氨酸 丙氨酸 赖氨酸 精氨酸 组氨酸 胱氨酸 缬氨酸 脯氨酸 色氨酸 异亮氨酸 甲硫氨酸 苏氨酸 1806 1820 1820 1849 1865 1866 1868 1881 1881 1889 1895 1896 1899 1901 1901 1901 1904 1922 1935 Vauquelin Braconnot Braconnot Bopp Cramer Ritthausen Ritthausen Schultze Weyl Drechsel Hedin Kossel,Hedin Morner Fischer Fischer Hopkins Erhlich Mueller McCoy et al 天冬门芽 明胶 羊毛、肌肉 奶酪 蚕丝 面筋 蚕豆 羽扇豆芽 丝心蛋白 珊瑚 牛角 奶酪 牛角 奶酪 奶酪 奶酪 纤维蛋白 奶酪 奶酪
5、氨基酸的两性性质和等电点
(1)氨基酸是两性离子 质子受体和质子供体。 所谓两性离子是指在同一分子上带有能释放 质子的正离子基团和能接受质子的负离子基团。 两性离子本身既是酸又是碱。因此它既可与酸反 应,也可与碱反应。 实验证明:氨基酸在水溶液中或在晶体状态 时,都以两性离子形式存在。
(2)氨基酸的解离
第四章 蛋白质
第二节 氨基酸
本节主要学习内容
• 一、氨基酸的结构与分类 • • • (一)基本氨基酸 (二)不常见的蛋白质氨基酸 (三)非蛋白质氨基酸 (一)物理性质 (二)化学性质
• 二、氨基酸的性质 • •
氨基酸是蛋白质的基本组成材料
蛋白质用强酸、强碱处理后,可以得到各种各 样的氨基酸。 在动植物组织中可分离得到26-30种不同的氨基 酸。第1种氨基酸早在两个世纪前就已经被发现, 而最后一种氨基酸在1935年才发现。直到1965年 才搞清楚,只有20种氨基酸才是合成蛋白质的原 材料(称为基本氨基酸 )。
氨基酸的测定

甲醛滴定法 (以测定氨杞精口服液中的氨基酸含量为例)
计算: 氨基酸态氮=〔 c×(V2-V1)
×0.014×100) 〕/W×100 V1——用中性红为指示剂
时,碱液所消耗的体积 V2——用百里酚酞乙醇液
为指示剂时标液消耗量
应用: 氨杞精口服液是由天然原料提
取的氨基酸粉(含20多种氨基酸), 加上构祀子、黄精煎煮液配制而 成的口服液。其中氨基酸为主要 有效成份, 采用甲醛滴定法测定 氨基酸的总量做为质量控制方法, 操作简便 。
仪器 附磁力搅拌器的酸度计;25mL酸式 滴定管; 10mL胖肚吸管。
双语例句
电位滴定法 (以测定酱油中的氨基酸含量为例)
操作方法:
(1)样品处理:先测出待测酱油的比重,然后吸取酱油5.00mL于
100mL容量瓶中,加水定容。吸取定容液20.00mL于250mL烧杯中,
加水60mL,放入磁力转子,开动磁力搅拌器使转速适当。用
个别氨基酸的定量测定
a)赖氨酸 b)色氨酸 c)苯丙氨酸 d)酪氨酸 e)脯氨酸 f)羟脯氨酸 g)胱氨酸 h)谷氨酸
氨基酸的分离及测定
a)薄层色谱法 b)氨基酸自动分析仪法 c)气相色谱法 d)高效液相色谱法
茚三酮法 (以测定蜂蜜及果葡糖浆中的氨基酸含量为例)
反应原理
氨基酸在一定pH条件下与茚三酮起反应,生成蓝紫色化合物,可 比色(570nm)定量。 注意:茚三酮受阳光、温度、湿度、空气等影响易被氧化呈淡红或深 红色,使用前要进行纯化,方法如下:
结论
1)采用茚三酮显色法测定的 蜂蜜及果葡糖浆的氨基酸含 量在0~150 μg/mL范围,该 法具有线性好、准确性及精 密度高等特点。
2)蜂蜜与果葡糖浆混合物中 的氨基酸含量和果葡糖浆掺 入量呈良好的负线性关系。 采用茚三酮显色法测定蜂蜜 样品的氨基酸含量,可以快 速判断蜂蜜中是否掺入了果 葡糖浆。