七年级数学上册利用数轴解题培优训练
人教版七年级上册数学 数轴上的动点问题 期末培优训练 专题训练

(1)求A,B两点间的距离;(2)直接写出点P、点Q表示的数.(3)当P,Q两点相遇时,求t的值.(4)当点P运动到点B时,直接写出点4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.5.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点Pt>)秒.从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(0(1)点B表示的数是___________;(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当点P运动多少秒时,点P与点Q相遇?6.如图,已知点A,B,C是数轴上的三个点.(1)请直接写出点A,C所表示的数;(2)在此数轴上有点M,P,Q三个动点同时出发运动,其中,动点M从点A出发,以每秒1个单位长度的速度沿数轴向左运动;动点P,Q分别从点B,C处同时出发,分别以每秒2个单位长度和5个单位长度的速度沿数轴向右运动.①写出运动t秒时,点P所表示的数(用含有点t的式子表示);-的值是否②若点P与点M之间的距离表示为PM,点P与点Q之间的距离表示为PQ.试探究:PQ PM随时间t的变化而变化?若变化,请说明理由;若不变,请求其常数值.(1)直接写出a=___________,b=(2)现有一只蚂蚁P从点A出发,以每秒每秒3个单位长度的速度向右运动.①两只蚂蚁经过多长时间相遇?②设两只蚂蚁在数轴上的点C处相遇,求点③经过多长时间,两只蚂蚁在数轴上相距(1)a=________,b=________;(2)若O为原点,P向左运动,Q向右运动,的值是否发生变化?若不变,求其值;若变化,请说明理由;(3)若动点P、Q同时出发向左运动,此时动点(1)当1t=秒时,A、B同学在数轴上所表示的数为______、______.(2)①若t秒后A恰好追上B,则t=______秒.②记A在数轴上的位置为a,B在数轴上的位置为b,在a ba b+的值为0的这段时间内,B多少米?(3)分别取线段AC、BD中点为E、F,若在点A、B运动期间,2mEF nDA-为定值(其中mn的值.14.如图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.15.如图1,在数轴上从左到右依次是A、B、C 三个点,且A、B 两点位于原点O 的两侧,A 点所表示的数为4-,且23OA OB BC AB ==,;(1)求出数轴上点B、C 所表示的数;(2)如图2,动点P 从A 点出发,以4个单位长度每秒的速度沿AC 方向运动,到达C 点后,立即掉头以原速返回;与此同时,另一动点Q 从B 出发,以1.5个单位长度每秒的速度沿BC 方向运动,到达C 后,点P、Q 停止运动.在运动过程中,点Q 的运动时间记为t(秒),当4PQ =时,求出满足条件的t 的值;(3)在第(2)问的条件下,有另一动点M 与P、Q 同时出发,从点C 以3个单位长度每秒的速度沿CA 方向运动,当点P 停止运动时,点M 停止运动.在运动过程中,点Q 的运动时间记为t(秒),当P、Q、M 三点中一点是另外两点的中点时,请直接写出满足条件的t 的值.。
2.2 数轴(解析版)-2022-2023学年七年级数学上册章节同步实验班培优题型变式训练

2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)2.2 数轴【题型1】数轴的三要素及其画法1.(2021·广西·靖西市教学研究室七年级期中)下面表示数轴的图中,正确的是( )A.B.C.D.【答案】A【解析】【分析】根据数轴的定义进行判断即可.【详解】A、正确;B、单位长度不统一,故错误;C、没有原点,故错误;D、缺少正方向,故错误.故选:A.【点睛】本题考查数轴的定义,数轴有三要素:原点、正方向和单位长度,三者必须同时具备.【变式1-1】2.(2022·全国·七年级)判断下面所画数轴是否正确,并说明理由【答案】1、错误;2、错误;3、错误;4、错误;5、错误;6、错误;7、错误;8、正确【解析】【分析】根据数轴的概念,即可求解.【详解】解:1、不是直线,故所画错误;2、不是直线,故所画错误;3、无原点,故所画错误;4、无单位长度,故所画错误;5、无正方向,故所画错误;6、数轴只有一个正方向,故所画错误;7、数轴上右边的数总是大于左边的数,正数在原点的右侧,负数在原点的左侧,故所画错误;8、原点、正方向、长度单位都有,故所画正确.【点睛】本题主要考查了数轴的概念,熟练掌握规定了原点,正方向,单位长度的直线叫做数轴.原点,正方向,单位长度是数轴的三要素是解题的关键.【题型2】用数轴上的点表示有理数1.(2022·全国·七年级专题练习)在下面数轴上,A,B,C,D各点分别表示什么数?【答案】A点表示:2;B点表示:0.25;C点表示:-0.75;D点表示:-1.5【解析】【分析】根据A,B,C,D各点在数轴上的位置判断即可.【详解】解:A点表示:2;B点表示:0.25;C点表示:-0.75;D点表示:-1.5【点睛】此题主要考查了数轴,解答此题的关键是要明确:实数与数轴上的各点一一对应.【变式2-1】2.(2022·江苏·七年级专题练习)在小学里,我们会根据直线上的一个点的位置写出合适的数,也会在直线上画出表示一个数的点.把图中直线上的点所表示的数写在相应的方框里.【答案】﹣4,﹣3, 3,5【解析】【分析】根据点在数轴上的位置,写出所表示的的数即可.【详解】解:根据点在数轴上的位置,从左到右方框中应该分别填﹣4,﹣3, 3,5.【点睛】此题考查了在数轴上表示有理数,熟练掌握数轴的特征是解题的关键.【题型3】利用数轴比较有理数的大小1.(2020·黑龙江·虎林市实验中学七年级期中)a 、b 是有理数,它们在数轴上的对应点的位置如图所示,把a 、-a 、b 、-b 按从小到大的顺序排列为( )A .-b <-a <a <bB .-a <-b <a <bC .-b <a <-a <bD .-b <b <-a <a【答案】C【解析】【分析】先根据a ,b 两点在数轴上的位置判断出a 、b 的符号及其绝对值的大小,再比较出其大小即可.【详解】解:∵由图可知,a <0<b ,|a |<b ,∴0<-a <b ,-a <b <0,0b a -<<,∴b a a b -<<-<,故C 正确.故选:C .【点睛】本题考查的是有理数的大小比较,熟知数轴上各点所表示的数的特点是解答此题的关键.【变式3-1】2.(2022·北京·中考真题)实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a -<B .1b <C .a b >D .a b->【答案】D【解析】【分析】根据数轴上的点的特征即可判断.【详解】解:点a在-2的右边,故a>-2,故A选项错误;点b在1的右边,故b>1,故B选项错误;b在a的右边,故b>a,故C选项错误;->,故D选项正确,由数轴得:-2<a<-1.5,则1.5<-a<2,1<b<1.5,则a b故选:D.【点睛】本题考查了数轴上的点,熟练掌握数轴上点的特征是解题的关键.【题型4】数轴上两点之间的距离1.(2022·河北·模拟预测)在数轴上,点M,N在原点O的两侧,分别表示数a,3,将点M向左平移2个单位长度,得到点P,若OP=2ON,则a的值为()A.-1B.-2C.-3D.-4【答案】D【解析】【分析】a-=´=,根据a<0,求出a.根据平移的规律得到点P表示的数为a-2,根据OP=2ON得到2236【详解】点M向左平移2个单位长度,即点P表示的数字为a-2,∵OP=2ON,a-=´=,∴2236又∵a<0,∴a-2=-6,解得a=-4,故选D.【点睛】此题考查了数轴上点的平移规律,数轴上两点之间的距离,正确理解数轴上点的平移规律是解题的关键.【变式4-1】2.(2022·全国·七年级)在数轴上有A,B两点,其中A点对应的数是﹣2,线段AB=3,则B点对应的数为___.【答案】-5或1【解析】【分析】分类讨论:分为B在A的左侧和B在A的右侧讨论即可.【详解】当B在A左侧时,B对应的数为﹣2﹣3=﹣5.当B在A右侧时,B对应的数为﹣2+3=1.故答案为:﹣5或1.【点睛】本题考查数轴的知识,解题的关键是根据题意进行分类讨论.【题型5】数轴上的动点问题1.(2022·全国·七年级专题练习)已知数轴上两点A、B对应的数分别是-1和2,M从A出发以每秒2个单位长度的速度向左运动,N从B出发以每秒6个单位长度的速度向左运动,假设点M、N同时出发,经过_____________秒后,M、N之间的距离为2个单位.【答案】14或54【解析】【分析】设经过t秒后,M、N之间的距离为2个单位,利用点M,N的运动方向和速度,可得到点M,N表示的数,再根据M、N之间的距离为2个单位,可得到关于t的方程|-1-2t-(2-6t)|=2,然后解方程求出t的值.【详解】设经过t秒后,M、N之间的距离为2个单位,∵M从A出发以每秒2个单位长度的速度向左运动,N从B出发以每秒6个单位长度的速度向左运动,∴点M表示出的数为-1-2t,点N表示的数为2-6t,∵M、N之间的距离为2个单位,∴|-1-2t-(2-6t)|=2,解之:t=14或54.故答案为:14或54.【点睛】此题考查了数轴上的动点问题,利用代数式表示数轴上的点,数轴上两点之间的距离,正确理解动点问题是解题的关键.【变式5-1】2.(2022·全国·七年级)已知数轴上两点A,B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x,当P到点A,B的距离之和为8时,则对应的数x的值为___.【答案】-3或5【解析】【分析】根据点P在数轴上的位置,分情况进行讨论,得出答案,根据数轴上两点之间的距离为这两点所对应的数的差的绝对值,列方程求出结果.【详解】解:由题意得,138||x x++﹣=,①当点P在点A的左侧时,即x<﹣1时,方程可变为:﹣x﹣1﹣x+3=8,解得,x=﹣3,②当点P在点A、B之间,即﹣1<x<3时,方程可变为:﹣x﹣1+x﹣3=8,此方程无解,③当点P在点B的右侧时,即x>3时,方程可变为:x+1+x﹣3=8,解得,x=5,因此x的值为﹣3或5,故答案为:﹣3或5.【点睛】本题考查数轴表示数,数轴上两点之间的距离的计算方法,根据绝对值列方程求解是常用的方法,分情况讨论注意考虑点所在的位置.【题型6】根据点在数轴上的位置判断式子的正负1.(2021·云南·富源县第七中学七年级期中)有理数a,b在数轴上的对应的位置如图所示,则()A.a+b<0B.a-b>0C.ab>0D.|a|<|b|【答案】A【解析】【分析】通过识图可得a<0<b,且|a|>|b|,然后根据有理数加减法和乘法运算法则进行分析判断.【详解】解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;a﹣b<0,故选项B不符合题意;ab<0,故选项C不符合题意;故选:A.【点睛】本题考查有理数的加减法和乘法运算,准确识图,掌握有理数加减法和乘法运算法则是解题关键.【变式6-1】2.(2022·全国·七年级课时练习)如图,数轴上A,B两点分别对应数a,b,则下列结论正确的是( )A.|a|>|b|B.a>b C.b>﹣a D.ab>0【答案】A【解析】【分析】根据A、B与原点的位置、距离即可判断.【详解】解:由图可得:a<0<b,且|a|>|b|,故A选项正确,符合题意;故B选项错误,不符合题意;b<﹣a,故C选项错误,不符合题意;ab<0,故D选项错误,不符合题意;故选:A.【点睛】此题考查了数轴,解题的关键是弄清数轴上两点的位置.一.选择题1.(2020·山东临沂·中考真题)如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.12-B.2-C.72D.12【答案】A【解析】【分析】数轴上向左平移2个单位,相当于原数减2,据此解答.【详解】解:∵将点A沿数轴向左移动2个单位至点B,则点B对应的数为:32-2=12-,故选A.【点睛】本题考查了数轴,利用了数轴上的点右移加,左移减,在学习中要注意培养数形结合的数学思想.2.(2021·全国·七年级课时练习)下表是12月份某一天古蔺县四个乡镇(街道)的平均气温:乡镇(街道)大村镇黄荆镇石宝镇金兰街道气温(C°)0-4-3+2这四个乡镇(街道)中该天平均气温最低的是()A.大村镇B.黄荆镇C.石宝镇D.金兰街道【答案】B【解析】【分析】比较四个地方的平均气温的高低即可得到答案.【详解】解:因为4-<3-<0<+2,所以平均气温最低的是黄荆镇,故选:.B【点睛】本题考查的是负数的应用,有理数的大小比较,掌握有理数的大小比较方法是解题的关键.3.(2020·福建·中考真题)如图,数轴上两点,M N所对应的实数分别为,m n,则m n-的结果可能是()A.1-B.1C.2D.3【答案】C【解析】【分析】根据数轴确定m和n的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得0<m<1,2-<n<1-,则1<m n-<3故选:C【点睛】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确m和n的范围,然后再确定m n-的范围即可.4.(2022·全国·七年级专题练习)在数轴上,点A表示-4,从点A出发,沿数轴移动4个单位长度到达点B,则点B表示的数是()A.-8B.-4C.0D.-8或0【答案】D【解析】【分析】分两种情况讨论:当点A往左移动4个单位得到点B,当点A往右移动4个单位得到点B,从而可得答案.【详解】解:点A表示-4,从点A出发,沿数轴移动4个单位长度到达点B,-当点A往左移动4个单位得到点B,此时点B为:8,当点A往右移动4个单位得到点B,此时点B为:0,故选D【点睛】本题考查的是数轴上的动点问题,掌握数轴上的点的左右移动后对应的点的所表示的数的表示方法是解本题的关键.5.(2022·全国·七年级专题练习)如图,数轴上点A,B表示的数互为相反数,且AB=4,则点A表示的数是()A.4B.-4C.2D.-2【答案】D【解析】【分析】根据数轴上点A,B表示的数互为相反数,可设点A表示的数是a,则点B表示的数是a-,从而得到4a a --= ,即可求解.【详解】解:∵数轴上点A ,B 表示的数互为相反数,∴可设点A 表示的数是a ,则点B 表示的数是a - ,∵AB =4,∴4a a --= ,解得:2a =- .故选:D【点睛】本题主要考查了相反数的性质,数轴上两点间的距离,利用数形结合思想解答是解题的关键.6.(2018·湖南株洲·中考真题)如图,25的倒数在数轴上表示的点位于下列两个点之间( )A .点E 和点FB .点F 和点GC .点F 和点GD .点G 和点H【答案】D【解析】【详解】分析:根据倒数的定义即可判断.详解:25的倒数是52,∴52在G 和H 之间,故选D .点睛:本题考查倒数的定义,数轴等知识,解题的关键是熟练掌握基本知识.二、填空题7.(2020·山东青岛·七年级单元测试)如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有_____个.【答案】7【解析】【分析】根据图中的信息可知,墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),由此即可得到被墨迹盖住的整数,从而得到答案.【详解】根据图中信息可知:墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),∵在-5到0之间(不包括-5和0)的整数有:-4、-3、-2、-1;在0到4之间(不包括0和4)的整数有:1、2、3,∴被墨迹盖住的整数共有7个.故答案为:7.【点睛】本题考查了数轴,熟知“在数轴上:-5到0之间(不包括-5和0)有哪些整数和0到4之间(不包括0和4)有哪些整数”是解答本题的关键.8.(2022·全国·七年级专题练习)如图,A为数轴上表示2的点,点B到点A的距离是5,则点B在数轴上所表示的有理数为______.-或7【答案】3【解析】【分析】分①点B在点A的左侧,②点B在点A的右侧两种情况,先根据数轴的性质列出运算式子,再计算有理数的加减法即可得.【详解】解:由题意,分以下两种情况:①当点B在点A的左侧时,-=-;则点B在数轴上所表示的有理数为253②当点B在点A的右侧时,+=;则点B在数轴上所表示的有理数为257-或7,综上,点B在数轴上所表示的有理数为3-或7.故答案为:3【点睛】本题考查了数轴、有理数加减的应用,正确分两种情况讨论是解题关键.9.(2022·江苏·七年级专题练习)数轴上A 、B 两点之间的距离为4,点A 表示的数为1-,则B 表示的数为______.【答案】3或5-##5-或3【解析】【分析】分两种情况:点B 在点A 的左边和点B 在点A 的右边讨论,即可得出答案.【详解】解:∵点A 表示的数是−1,A 、B 两点间的距离是4,∴当点B 在点A 的左边时,点B 表示的数为:−1−4=−5,当点B 在点A 的右边时,点B 表示的数为:−1+4=3,∴点B 表示的数为:−5或3.故答案为:−5或3.【点睛】本题考查了数轴上两点之间的距离,根据点B 与点A 的位置关系进行分类讨论是解决问题的关键.10.(2022·全国·七年级课时练习)如图,数轴上有一点C ,满足()1AC m BC m =×>则C 表示的数是______(用含m 的式子表示).【答案】1m x m =+或1m x m =-【解析】【分析】分两种情况讨论,当点C 在点A 的右侧时,在点B 左侧时,或当点C 在点A 的右侧时,在点B 右侧时,再根据题意解答.【详解】解:设点C 表示的数为x ,分两种情况讨论,当点C 在点A 的左侧时,=1AC x BC x=--,()1AC m BC m =×>Q(1)x m x \-=-mx x m\-=\1m x m =-;当点C 在点A 的右侧时,在点B 左侧时,=1AC x BC x=-,()1AC m BC m =×>Q (1)x m x \=-+x mx m\=\1m x m=+;当点C 在点A 的右侧时,在点B 右侧时,=1AC x BC x =-,()1AC m BC m =×>Q (1)x m x \=-x mx m\-=-\1m x m =-;故答案为:1m x m =+或1m x m =-.【点睛】本题考查数轴与实数,是重要考点,掌握用分类讨论法表示两点间的距离是解题关键.11.(2022·全国·七年级课时练习)点A 、B 在数轴上对应的数分别为,a b ,满足()2250a b ++-=,点P 在数轴上对应的数为x ,当x =_________时,10PA PB +=.【答案】72-或132【解析】【分析】由绝对值和完全平方的非负性可得2050a b +=ìí-=î ,则可计算出A 、B 对应的数,然后分三种情况进行讨论求解即可.【详解】解:()2250a b ++-=Q ,20+³a ,2(5)0b -³ ,则可得:2050a b +=ìí-=î,解得:25a b =-ìí=î ,5(2)7AB \=--= ,①当P 在A 点左侧时,210PA PB PA AB +=+= ,32PA \= ,则可得:322x --=,解得:72x =- ②当P 在B 点右侧时,210PA PB PB AB +=+= ,32PB \= ,则可得:352x -=,解得:132x = ,③当P 在A 、B 中间时,则有710PA PB AB +==¹ ,∴P 点不存在.综上所述:132x =或72x =-.故答案为:72-或132.【点睛】本题考查了绝对值和完全平方的非负性,数轴上两点间的距离:a ,b 是数轴上任意不同的两点,则这两点间的距离=右边的数-左边的数,掌握数轴上两点距离和分情况讨论是本题的关键.12.(2022·全国·七年级课时练习)如图,将一个半径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1周,点A 到达点A ¢的位置,则点A ¢表示的数是 _______;若起点A 开始时是与—1重合的,则滚动2周后点A ¢表示的数是______.【答案】 2p 或2p - 41p -或41p --【解析】【分析】先求出圆的周长,再通过滚动周数确定A 点移动的距离,最后分类讨论,将A 点原来位置的数加上或减去滚动的距离即可得到答案.【详解】解:因为半径为1的圆的周长为2p ,所以每滚动一周就相当于圆上的A 点平移了2p 个单位,滚动2周就相当于平移了4p 个单位;当圆向左滚动一周时,则A'表示的数为2p -,当圆向右滚动一周时,则A'表示的数为2p ;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41p -,若向左滚动两周,则A'表示的数为41p --;故答案为:2p ①或2p -;41p -②或41p --.【点睛】本题考查了用数轴上的点表示无理数的知识,要求学生能动态的理解数轴上点的位置变化,能明白圆滚动一周或两周时同一个点的运动变化,并能通过加减运算得到运动后点的位置所表示的数.三、解答题13.(2022·全国·七年级专题练习)把下列各数在数轴上表示出来,并比较各数大小,用“<”连接.211,3,1,(3),|4|32-----.【答案】12311(3)|4|23-<-<<--<-;数轴见解析.【解析】【分析】先把各个数化简,再在数轴上描出各点,最后根据数轴上右边的数大于左边的数即可得到结果.【详解】解:在数轴上表示,如图所示:根据数轴上右边的数总比左边的大可得:12311(3)|4|23-<-<<--<-.【点睛】此题主要考查了利用数轴比较实数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.14.(2022·全国·七年级课时练习)我们知道,a 的几何意义是:在数轴上数a 对应的点到原点的距离,类似的,x y -的几何意义就是:数轴上数,x y 对应点之间的距离;比如:2和5两点之间的距离可以用25-表示,通过计算可以得到他们的距离是3(1)数轴上1和3-两点之间的距离可以用 表示,通过计算可以得到他们的距离是_______(2)数轴上表示x 和3-的两点A 、B 之间的距离可以表示为AB=;如果AB =2,结合几何意义,那么x 的值为 ;(3)代数式12x x -++表示的几何意义是 ,该代数式的最小值是【答案】(1)()13--;4;(2)()3x --;5-或-1;(3)数轴上表示数x 的点到1和2-两点的距离的和;3【解析】【分析】(1)根据两点间的距离表示即可得到结构;(2)根据x y -的几何意义就是:数轴上数,x y 对应点之间的距离判断即可;(3)根据两点间的距离表示几何意义即可,然后根据1x >,21x -££,2x <-计算最小值即可;【详解】(1)数轴上1和3-两点之间的距离可以用()13--表示,通过计算可以得到他们的距离是4;故答案是:()13--;4;(2)数轴上表示x 和3-的两点A 、B 之间的距离可以表示为()3AB x =--,由AB =2,得()32x --=,∴32x +=或32x +=-,∴1x =-或5x =-;故答案是:()3x --;5-或-1;(3)由题意可知:代数式12x x -++表示的几何意义是数轴上表示数x 的点到1和2-两点的距离的和;当1x >时,原式12213x x x =-++=+>;当21x -££时,原式123x x =-++=;当2x <-时,原式12213x x x =---=-->;∴最小值是3.故答案是:数轴上表示数x 的点到1和2-两点的距离的和;3.【点睛】本题主要考查了数轴上两点间的距离,绝对值的性质,准确分析计算是解题的关键.15.(2022·全国·七年级专题练习)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数-1的点与表示数5的点重合,请你回答以下问题:(1)表示数-2的点与表示数__________的点重合;表示数7的点与表示数__________的点重合.(2)若数轴上点A 在点B 的左侧,A ,B 两点之间距离为12,且A ,B 两点按小明的方法折叠后重合,则点A 表示的数是_______;点B 表示的数是________;(3)已知数轴上的点M 分别到(2)中A ,B 两点的距离之和为2020,求点M 表示的数是多少?【答案】(1)6,-3(2)-4、8(3)M 点表示的数为-1008或1012【解析】【分析】(1)先判断出表示数-1的点与表示数5的点关于数2的点对称,即可得出答案;(2)先判断出点A 和点B 到表示数2的点的距离为6,即可得出结论;(3)分点M 在点A 的左边和在点B 的右侧,用距离之和为2020建立方程求解即可得出结论.(1)解:由折叠知,表示数-1的点与表示数5的点关于数2的点对称,∴表示数-2的点与表示数6的点关于数2的点对称,表示数7的点与表示数-3的点关于数2的点对称,故答案为:6,-3;(2)∵折叠后点A 与点B 重合,∴点A 与点B 关于表示数2的点对称,∵A ,B 两点之间距离为12,∴点A 和点B 到表示数2的点的距离都为6,∴点A 表示的数为2-6=-4,点B 表示的数为2+6=8,故答案为:-4,8;(3)设M 表示的数为x ,当M 点在A 点左侧时482020x x --+-=,解得1008x =-;当M 点在B 点右侧时:()482020x x --+-=,解得1012x =,所以M 点表示的数为-1008或1012.【点睛】本题考查折叠问题,一元一次方程的解法,用分类讨论的思想解决问题是解题的关键.16.(2022·全国·七年级课时练习)阅读下面材料:如图,点A 、B 在数轴上分别表示有理数a 、b ,则A 、B 两点之间的距离可以表示为a b-根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为________.(3)代数式8x +可以表示数轴上有理数x 与有理数________所对应的两点之间的距离;若85x +=,则x =________.【答案】(1)5;(2)7x -;(3)-8;-3或-13;【解析】【分析】(1)根据材料计算即可;(2)根据材料列代数式即可;(3)将8x +化为()8x --即可;根据绝对值的性质计算求值即可;(1)解:数轴上表示3与2-的两点之间的距离是3-(-2)=5;(2)解:数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为7x -;(3)解:∵8x +=()8x --,∴代数式8x +可以表示数轴上有理数x 与有理数-8所对应的两点之间的距离;若85x +=,则当(x+8)>0时,x +8=5, x =-3,当(x+8)<0时, x +8=-5, x =-13,故答案为:-8;x =-3或-13;【点睛】本题考查了数轴上两点之间的距离,绝对值的化简(正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数);掌握绝对值的意义是解题关键.17.(2022·全国·七年级课时练习)如图一,已知数轴上,点A 表示的数为6-,点B 表示的数为8,动点P 从A 出发,以3个单位每秒的速度沿射线AB 的方向向右运动,运动时间为t 秒()0t >(1)线段AB =__________.(2)当点P 运动到AB 的延长线时BP =_________.(用含t 的代数式表示)(3)如图二,当3t =秒时,点M 是AP 的中点,点N 是BP 的中点,求此时MN 的长度.(4)当点P 从A 出发时,另一个动点Q 同时从B 点出发,以1个单位每秒的速度沿射线向右运动,①点P 表示的数为:_________(用含t 的代数式表示),点Q 表示的数为:__________(用含t 的代数式表示).②存在这样的t 值,使B 、P 、Q 三点有一点恰好是以另外两点为端点的线段的中点,请直接写出t 值.______________.【答案】(1)14(2)314-t (3)72(4)①36t -;8t + ②285秒或7秒或14秒【解析】【分析】(1)由数轴上两点间的距离的定义求解即可,数轴上两点间的距离等于数轴上两点所对应的数的差的绝对值;(2)结合“路程=速度×时间”以及两点间的距离公式,用BP =点P 运动路程-AB 可求解;(3)当3t =秒时,根据路程=速度×时间,得到339=´=AP ,所以9=-BP AB ,再 由点M 是AP 的中点,点N 是BP 的中点,利用中点的定义得到12PM AP =,12PN BP =,最后由MN PM PN =+即可得到结论.(4)①设运动时间为t ,当点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,另一个动点Q 同时从B 点出发,以1个单位每秒的速度沿射线向右运动,结合“路程=速度×时间”,再利用数轴上两点间距离公式,则点P 所表示的数是点P 的运动路程加上点A 所表示的数,点Q 所表示的数是点Q 的运动路程加上点B 所表示的数即可.②结合①的结论和点B 所表示的数,分三种情况讨论即可.(1)解:∵在数轴上,点A 表示的数为-6,点B 表示的数为8,∴()8614=--=AB .故答案为:14(2)∵在数轴上,点A 表示的数为6-,点B 表示的数为8,动点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,运动时间为t 秒,∴3AP t =,∴314=-=-BP AP AB t .故答案为:314-t (3)∵点A 表示的数为6-,点B 表示的数为8,动点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,当3t =秒时,3339==´=AP t ,∴1495=-=-=BP AB AP ,又∵点M 是AP 的中点,点N 是BP 的中点,∴1922==PM AP ,1522==PN BP ,∴95722=+=+=MN PM PN .∴此时MN 的长度为7.(4)①设运动时间为t ,当点P 从A 点出发时,以3个单位每秒的速度沿射线AB 的方向向右运动,另一个动点Q 同时从B 点出发,以1个单位每秒的速度沿射线向右运动,∴3AP t =,BQ t =,∴点P 所表示的数为:36t -,点Q 所表示的数为:8t +,故答案为:36t -;8t +②结合①的结论和点B 所表示的数,可知:点B 表示的数为8,点P 所表示的数为:36t -,点Q 所表示的数为:8t +,分以下三种情况:若点B 为中点,则BP BQ =,∴()83688t t --=+-,解得:72t =;若点P 为中点,则BP PQ =,∴()368836--=+--t t t ,解得:285t =;若点Q 为中点,则BQ PQ =,∴()88368+-=--+t t t ,解得:14t =.综上所述,当t 为285秒或7秒或14秒时,B 、P 、Q 三点中有一点恰好是以另外两点为端点的线段的中点.【点睛】本题考查了数轴上的动点问题,数轴上两点之间的距离,一元一次方程的应用,中点的定义,注意分情况讨论.解题的关键是学会用含有t 的式子表示动点点P 和点Q 表示的数.18.(2022·全国·七年级专题练习)如图,在数轴上点A 表示的数为﹣6,点B 表示的数为10,点M 、N 分别从原点O 、点B 同时出发,都向左运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,运动时间为t 秒.(1)求点M 、点N 分别所对应的数(用含t 的式子表示);(2)若点M 、点N 均位于点A 右侧,且AN =2AM ,求运动时间t ;(3)若点P 为线段AM 的中点,点Q 为线段BN 的中点,点M 、N 在整个运动过程中,当PQ +AM =17时,求运动时间t .【答案】(1)点M 、点N 分别所对应的数分别为t -,103t -;(2)4t =;(3)t =1或18【解析】【分析】(1)根据题意进行求解即可;(2)由(1)所求,根据数轴上两点距离公式可得()66AM t t =---=-,()1036163AN t t =---=-,再由2AN AM =,得到163122t t -=-,由此即可得到答案;(3)分当M 、N 均在A 点右侧时,当N 在A 点左侧,M 在A 点右侧时,当M 、N 都在A 点左侧时,三种情况讨论求解即可.【详解】解:(1)由题意得:点M 、点N 分别所对应的数分别为t -,103t -;(2)∵点A 表示的数为-6,点M 、点N 分别所对应的数分别为t -,103t -,∴()66AM t t =---=-,()1036163AN t t =---=-,∵2AN AM =,∴163122t t -=-,∴4t =;(3)如图1所示,当M 、N 均在A 点右侧时,由(1)(2)得点M 、点N 分别所对应的数分别为t -,103t -,()66AM t t=---=-∵点P 为线段AM 的中点,点Q 为线段BN 的中点,∴点P 和点Q 表示的数分别为62t --,1031020322t t -+-=,∴2036262222t t t PQ ----=-=∵17PQ AM +=,∴2626172t t -+-=,∴1t =;如图2所示,当N 在A 点左侧,M 在A 点右侧时,同图1可知点P 和点Q 表示的数分别为62t --,2032t -,∴2036262222t t t PQ ----=-=∵17PQ AM +=,∴2626172t t -+-=,∴1t =,不符合题意;如图3所示,当M 、N 都在A 点左侧时,同图1可得点P 和点Q 表示的数分别为62t --,2032t -,∴6AM t =-,2036262222t t t PQ ----=-=,∵17PQ AM +=,∴2626172t t -+-=,此时方程无解;如图4所示,当M 、N 都在A 点左侧时,同理可得点P 和点Q 表示的数分别为62t --,2032t -,∴6AM t =-,6203226222t t t PQ ----=-=,∵17PQ AM +=,∴2266172t t -+-=,解得18t =,∴综上所述,当17PQ AM +=,t =1或18.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,熟知数轴的相关知识是解题的关键.。
七年级数学上册数轴上的动点问题培优专题练习附答案解析

七年级数学上册数轴上的动点问题培优专题练习附答案解析七年级数学上册数轴上的动点问题培优专题练习含答案解析一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
2.若数轴上点A表示的数为,点B表示的数为,则A与B两点之间的距离用式子可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为,则A点运动的路程可以用式子表示为______________。
4.若数轴上点A表示的数为,A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为,则A点运动秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3;2、,x+1;3、2t;4、二、例题精讲1、如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足(1)点A表示的数为_________,点B表示的数为________。
(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q 两点同时运动,并且在点C处相遇,试求点C所表示的数。
(3)在(2)的条件下,若点P运动到达B点后按原路原速立即返回,点Q继续按原速原方向运动,从P、Q在点C处相遇开始,再经过多少秒,P、Q两点的距离为4个单位长度?解:(1)点A表示的数为____,点B表示的数为___8____(2)设P、Q同时运动t秒在点C处相遇3t+t=24解得t=6此时点C所表示的数是答:点C所表示的数是2.(2)再经过a秒,P、Q两点的距离为4个单位长度分类讨论:①从点C处相遇后反向而行,点P到达B点前相距4个单位长度3a+a=4解得a=1②点P到达B点后返回,此时相当于点Q在P点前4个单位长度解得a=4③点P到达B点后返回,从后追上Q点后又相距4个单位长度,此时相当于点P在点Q前4个单位长度解得a=8答:再经过1秒或4秒或8秒,P、Q两点的距离为4个单位长度。
《1.2.2数轴》培优专项练习 (原卷+解析) 2021-2022学年人教版数学七年级上册

2021年人教版七年级数学上册《1.2.2数轴》培优专项练习一.选择题(共12小题)1.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣32.下列关于数轴的图示,画法不正确的有()A.4个B.3个C.2个D.1个3.下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.64.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>05.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣26.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣17.有理数a在数轴上的对应点的位置如图所示,若有理数b满足﹣a<b<a,则b的值不可能是()A.2B.0C.﹣1D.﹣38.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或49.有理数a、b在数轴上的对应位置如图所示,则下列四个选项正确的是()A.a<b<﹣b<﹣a B.a<﹣b<b<﹣a C.a﹣b>0D.a+b>010.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a﹣c<0;④﹣1<<0,则其中正确结论的序号是()A.①②B.②③C.②③④D.①③④11.在一条可以折叠的数轴上,A,B表示的数分别是﹣7,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是()A.﹣2B.﹣2.5C.﹣1D.112.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2020次后,则数2020对应的点为()A.点A B.点BC.点C D.这题我真的不会二.填空题(共6小题)13.有如下定义:数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A表示数﹣4,点B表示数8,M为数轴一个动点.若点M在线段AB上,且点M是点A、点B的“关键点”,则此时点M表示的数是.14.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B处.将木棒在数轴上水平移动,当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5,则木棒MN的长度为.15.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.17.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是.18.已知在纸面上有一数轴,折叠纸面,数轴上﹣1表示的点与7表示的点重合.若数轴上A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是.三.解答题(共8小题)19.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.20.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A 的联动点定义如下:若射线AB上存在一点C,满足线段AB+AC=2AO,则称点C是点B 关于点A的联动点.如图是点B关于点A的联动点的示意图.当点C与点A重合时,规定AC=0.(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为;②若点B与O重合,则其关于点A的联动点C表示的数为;③若点B关于点A存在联动点,则点B表示的数x的取值范围是.(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为﹣1,点C 表示的数为1,则a的取值范围是.21.【新知理解】如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.22.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.23.如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为24.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3=;(2)如果t<4,且点Q3表示的数为3,那么t=;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.25.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC 的长=;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD 中点,则线段MN的长为多少?26.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?2021年人教版七年级数学上册《1.2.2数轴》培优专项练习参考答案与试题解析一.选择题(共12小题)1.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【分析】M向右平移1个单位后,表示的数是m+1,根据PO=NO列方程即可解得m的值.【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.【点评】本题考查数轴上点表示的数,解题的关键是用含m的代数式表示P表示的数.2.下列关于数轴的图示,画法不正确的有()A.4个B.3个C.2个D.1个【分析】通过观察数轴上的原点,单位长度,正方向即可进行判断,从而选出答案.【解答】解:通过观察易知(1)数轴单位长度不一致故错误;(2)数轴没有原点,故错误;(3)数轴原点,单位长度,正方向都具有,故正确;(4)数轴没有正方向,故错误;故不正确的由(1)(2)(4)共三个,故选:B.【点评】本题考查数轴相关概念,熟练掌握数轴上原点,单位长度,正方向三要素是解题关键.3.下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.6【分析】离原点最近的即是绝对值最小的数,依次求出绝对值进行比较即可选出正确答案.【解答】∵|﹣2|=2,|1.3|=1.3,|﹣0.4|=0.4,|0.6|=0.6,∴0.4<0.6<1.3<2,又∵离原点最近的即是绝对值最小的数,∴离原点最近的是﹣0.4,故选:C.【点评】本题考查数轴相关知识,掌握数轴中绝对值的概念是解题关键.4.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>0【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<c,再由相反数的定义、绝对值的性质以及有理数的加减法法则得出结果.【解答】解:根据数轴可得:b<a<0<c,∴a+b<0、c﹣a>0.∴A、C、D选择正确.∵a<0.∴﹣a>0.∴﹣a>b.∴B选项错误.故选:B.【点评】此题主要考查学生数轴上的点的位置和数的关系.解题的关键是掌握有理数的大小的比较,有理数的加减法运算.5.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【分析】根据右移加可求点P表示的数.【解答】解:点P表示的数是﹣2+4=2.故选:C.【点评】本题考查的是数轴,关键是熟悉数轴上的点左减右加的知识点.6.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【分析】观察数轴易知点A到原点的距离大于点B到原点的距离,且B在原点左边,即可找到B点所表示的数.【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.【点评】本题考查数轴相关知识,熟练掌握数轴上点的相关特征是解题关键.7.有理数a在数轴上的对应点的位置如图所示,若有理数b满足﹣a<b<a,则b的值不可能是()A.2B.0C.﹣1D.﹣3【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【解答】解:根据数轴上的位置得:2<a<3,∴﹣3<﹣a<﹣2,∵﹣a<b<a,∴﹣3<b<3,则b的值不可能为﹣3.故选:D.【点评】此题考查了数轴,弄清b的范围是解本题的关键.8.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或4【分析】根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可.【解答】解:∵AB=|3﹣(﹣1)|=4,点P到A、B两点的距离之和为6,设点P表示的数为x,∴点P在点A的左边时,﹣1﹣x+3﹣x=6,解得:x=﹣2,点P在点B的右边时,x﹣3+x﹣(﹣1)=6,解得:x=4,综上所述,点P表示的数是﹣2或4.故选:D.【点评】本题考查了数轴,主要利用了数轴上两点间的距离的表示方法,读懂题目信息,理解两点间的距离的表示方法是解题的关键.9.有理数a、b在数轴上的对应位置如图所示,则下列四个选项正确的是()A.a<b<﹣b<﹣a B.a<﹣b<b<﹣a C.a﹣b>0D.a+b>0【分析】根据数轴上绝对值所表示的含义作答.【解答】解:由图象可得,a<0<b,|a|>|b|,∴a<﹣b<b<﹣a.故选:B.【点评】本题考查数轴上绝对值的意义及有理数比较大小,解题关键是熟练掌握有理数及绝对值的意义.10.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a﹣c<0;④﹣1<<0,则其中正确结论的序号是()A.①②B.②③C.②③④D.①③④【分析】根据数轴,可得b<0<a<c,|a|<|b|,据此逐项判定即可.【解答】解:①∵b<0<a,|a|<|b|,∴a+b<0,∴①错误;②∵b<0<a<c,∴abc<0,∴②正确;③∵b<0<a<c,∴a﹣c<0,∴③正确;④∵b<0<a,|a|<|b|,∴﹣1<<0,∴④正确.∴正确的有②③④.故选:C.【点评】本题考查了数轴.解题的关键是熟练掌握数轴的特征和运用,以及有理数的运算.11.在一条可以折叠的数轴上,A,B表示的数分别是﹣7,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是()A.﹣2B.﹣2.5C.﹣1D.1【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【解答】解:∵A,B表示的数为﹣7,4,∴AB=4﹣(﹣7)=4+7=11,∵折叠后AB=1,∴BC==5,∵点C在B的左侧,∴C点表示的数为﹣1.故选:C.【点评】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.12.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2020次后,则数2020对应的点为()A.点A B.点BC.点C D.这题我真的不会【分析】根据随着翻转点的变化,可找出点的变化周期为3,结合2020为3的整数倍余1,可得出数2020对应的点为B.【解答】解:∵翻转1次后,数1对应的点为B,翻转2次后,数2对应的点为C,翻转3次后,数3对应的点为A,翻转4次后,数4对应的点为B,…,∴点的变化周期为3.又∵2020÷3=673…1,∴连续翻转2020次后,则数2020对应的点为B.故选:B.【点评】本题考查了数轴以及变化类:数的变化,根据点的变化,找出变化规律是解题的关键.二.填空题(共6小题)13.有如下定义:数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A表示数﹣4,点B表示数8,M为数轴一个动点.若点M在线段AB上,且点M是点A、点B的“关键点”,则此时点M表示的数是5或者﹣1.【分析】根据已知,表示出线段之间的距离,利用定义分类讨论即可求解.【解答】解:设M表示的数为x.∴MA=x﹣(﹣4)=x+4;BM=8﹣x.∵若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.∴MA=3BM或BM=3MA∴x+4=3(8﹣x)或8﹣x=3(x+4).解得:x=5或x=﹣1.故答案为:5或者﹣1.【点评】本题考查数轴上两点之间的距离知识,关键在于设立未知数,利用已知定义建立等式.14.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B处.将木棒在数轴上水平移动,当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5,则木棒MN的长度为6.【分析】设木棒MN长为x,根据“有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5”,结合数轴,得到关于x的一元一次方程,解之即可.【解答】解:设木棒MN长为x,根据题意得:x+x+(1﹣)x=17.5﹣4.5,解得:x=6.故答案为:6.【点评】本题考查了一元一次方程在数轴问题中的应用,找到题目的等量关系是解题的关键.15.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【分析】设B点表示的数为b,则|b﹣3|=5,可求得b的值.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.【点评】本题考查了数轴上两点间距离的求法,绝对值的性质等内容;熟练掌握数轴上两点间距离的求法是解决本题的关键.本题也可画出数轴直接解答.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为6.【分析】根据直尺的长度知x为﹣2右边8个单位的点所表示的数,据此可得.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.【点评】本题主要考查了数轴,解题的关键是确定x与表示﹣2的点之间的距离.17.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是π﹣1或﹣π﹣1.【分析】先求出圆的周长为π,从A滚动先向右运动再向左运动,运动的路程为圆的周长,需要分类讨论.【解答】解:C圆=πd=π,向右滚动:设B点坐标为x,x﹣(﹣1)=π,x=π﹣1,∴B点表示的数为:π﹣1.向左运动:﹣1﹣x=π,x=﹣π﹣1,∴B点表示的数为:﹣π﹣1.∴B点表示数为π﹣1或﹣π﹣1.故答案为:π﹣1或﹣π﹣1.【点评】本题考查了数轴上两点之间的线段长如何用坐标来表示,即:右减左;圆的周长公式及分类讨论.18.已知在纸面上有一数轴,折叠纸面,数轴上﹣1表示的点与7表示的点重合.若数轴上A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是﹣505.【分析】根据数轴上两点间的距离为这两个数差的绝对值,若﹣1表示的点与7表示的点重合,则折痕经过3;若数轴上A、B两点之间的距离为1016(A在B的左侧),则A、B 两个点分别距离中点3都是508个单位长度,进一步得到A点表示的数.【解答】解:依题意得:两数是关于﹣1和7的中点对称,即关于(﹣1+7)÷2=3对称,∵A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A、B关于3对称,1016÷2=508.∴点A在表示3的点的左边508的单位长度,∴点A表示的数为:3﹣508=﹣505.故答案为:﹣505.【点评】本题考查了数轴的知识,注意根据轴对称的性质,可以求得使两个点重合的折痕经过的点所表示的数即是两个数的平均数.三.解答题(共8小题)19.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.【分析】(1))因为bc<0,所以b,c异号,所以原点在第③部分;(2)求出AB的值,然后根据点A在点B左边2个单位求出a的值;(3)由于不知道点D的位置,所以分三种情况分别计算即可.【解答】解:(1)∵bc<0,∴b,c异号,∴原点在第③部分;(2)∵AC=5,BC=3,∴AB=AC﹣BC=5﹣3=2,∵b=﹣1,∴a=﹣1﹣2=﹣3;(3)当点C是OD的中点时,OD=2OC=2×3=6,此时d=6;当O是CD的中点时,OD=OC=3,此时d=﹣3;当D是OC的中点时,OD=OC=×3=,此时d=.∴d=6或﹣3或.【点评】本题考查了数轴,线段的中点,体现了分类讨论的数学思想,做到不重不漏是解题的关键.20.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A 的联动点定义如下:若射线AB上存在一点C,满足线段AB+AC=2AO,则称点C是点B 关于点A的联动点.如图是点B关于点A的联动点的示意图.当点C与点A重合时,规定AC=0.(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为 2.5;②若点B与O重合,则其关于点A的联动点C表示的数为0;③若点B关于点A存在联动点,则点B表示的数x的取值范围是﹣1≤x<1或1<x≤3.(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为﹣1,点C 表示的数为1,则a的取值范围是a<﹣1或a≥1.【分析】(1)①根据点B关于点A的联动点的定义求解即可;②根据点B关于点A的联动点的定义求解即可;③根据点B关于点A的联动点的定义求解即可;(2)分a≥1,a<﹣1,﹣1<a<1三种情况讨论求解即可.【解答】解:(1)①当点A表示的数为1,点B表示的数为1.5时,AB=1.5﹣1=0.5.设点C表示的数为x,则AC=x﹣1.∵AB+AC=2AO,∴0.5+x﹣1=2×1,解得x=2.5,∴点C表示的数为2.5.故答案为:2.5;②当点B与O重合时,OA=AB=1.设点C表示的数为y,则AC=1﹣y.∵AB+AC=2AO,∴1+1﹣y=2×1,解得y=0,∴点C表示的数为0.故答案为:0;③∵点B关于点A存在联动点,∴AC≥0,∵AO=1,∴AB+AC=2AO=2,∴AC=2﹣AB≥0,∴AB≤2,∵点A,B是该数轴上不重合的两点,∴点B表示的数x的取值范围是﹣1≤x<1或1<x≤3.故答案为:﹣1≤x<1或1<x≤3;(2)当点A表示的数为a时,点B表示的数为﹣1,点C表示的数为1,当a≥1时,AC=a﹣1,AB=a+1,AO=a,满足AB+AC=2AO,即当a≥1时,符合题意;当a<﹣1时,AC=1﹣a,AB=﹣1﹣a,AO=﹣a,也满足AB+AC=2AO,即当a<﹣1时,符合题意;当﹣1<a<1时,AB+AC=BC=2,OA<1,∴AB+AC≠2AO,∴当﹣1<a<1时,不存在点B关于点A的联动点C.故a的取值范围是a<﹣1或a≥1.故答案为:a<﹣1或a≥1.【点评】本题考查了数轴,新定义,两点间的距离,掌握点B关于点A的联动点定义是解题的关键.21.【新知理解】如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=18;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC=BD;(填“=”或“≠”)【解决问题】如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.【分析】(1)由BC=2AC即可得答案;(2)求出BD即可得答案;(3)画出图形分类讨论;(4)画出图形分情况讨论即可.【解答】解:(1)∵点C为线段AB的“雅点”,AC=6(AC<BC),∴BC=2AC,∵AC=6,∴BC=12,∴AB=AC+BC=18,故答案为:18;(2)∵点D也是线段AB的“雅点”(不同于点C),∴AD=2BD,而AD+BD=18,∴BD=6,∵AC=6,∴AC=BD,故答案为:=;(3)∵数轴上有一点E表示的数为1,向右平移5个单位到达点F,∴OF=1+5=6,M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,①M、N为线段OF的同一个“雅点”时,MN=0,②M、N为线段OF的不同“雅点”,且MF=2OM,ON=2FN,如答图1:∵MF=2OM,OM+FM=6,∴OM=2,∵ON=2FN,ON+FN=6,∴ON=4,∴MN=ON﹣OM=2,③M、N为线段OF的不同“雅点”,且OM=2FM,FN=2ON,如答图2:∵OM=2FM,OM+FM=6,∴OM=4,∵FN=2ON,ON+FN=6,∴ON=2,∴MN=OM﹣ON=2,总上所述,MN的长为0或2;(4)点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况:①G在线段EF上,EG=2FG,如答图3:∵EG=2FG,EG+FG=5,∴EG=,∵E表示的数为1,∴G点表示的数为1+=,②G在线段EF上,且FG=2EG,如答图4:∵FG=2EG,EG+FG=5,∴EG=,∵E表示的数为1,∴G表示的数为1+=,③G在线段EF外,且EF=2FG,如答图5:∵EF=2FG,EF=5,∴FG=2.5,∴G表示的数是1+5+2.5=8.5,④G在EF外,且FG=2EF,如答图6:∵FG=2EF,EF=5,∴FG=10,∴G表示的数为1+5+10=16,总上所述,G表示的数为:或或8.5或16.【点评】本题考查数轴相关知识,解答需要分类,解题的关键是读懂“雅点”、“雅点”伴侣线段的定义.22.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是1,4;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.【分析】根基题干提供新定义求解.(1)根据所提供四个数字求解.(2)分类讨论点P位置求解.【解答】解:(1)1,4.(2)①设点P对应的数为x.当点P在AB之间时,∵AB=30+10=40,∴BP=AB时,BP=10,即x=30﹣10=20.当BP=AB时,BP=30,即x=30﹣30=0.当点P在点B右侧,AP=3BP.即x+10=3(x﹣30),解得x=50.当点P在点A左侧,BP=3AP.即30﹣x=3(﹣10﹣x),解得x=﹣30.综上,x=20,0,50,﹣30.②由①得点P是倍分点时,P表示的数为20,0,50,﹣30.当A为倍分点,点P在AB之间时,AB=3AP,40=3(x+10),解得x=.P在点A左侧时,AP=3AB,﹣10﹣x=3×40,解得x=﹣130.AB=3AP,40=3(﹣10﹣x),解得x=.点P在点B右侧,AP=3AB,x﹣(﹣10)=3×40,解得x=110.当点B为倍分点时,同理可求x=110,,,﹣90.综上,P点表示的数可为:20,0,50,﹣30,,﹣130,,110,,,﹣90.【点评】本题考查数轴相关知识点,解题关键是根据题意分类讨论符合题干的情况.23.如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示5的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示6的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为﹣1.5,点B表示的数为 5.5【分析】根据两个点对折重合,可求出对折点所表示的数,再根据数轴上两点之间的距离的计算方法,求出该点所对应的数.【解答】解:操作一:表示1的点与表示﹣1的点重合,即对折点所表示的数为=0,设这个数为a,则有0﹣(﹣5)=a﹣0,解得,a=5,故答案为:5;操作二:表示1的点与表示3的点重合,即对折点所表示的数为=2,①设b与﹣2表示的点重合,则有=2,解得,b=6,故答案为:6;②设A点、B点所表示的数为x、y,则有,,解得,x=﹣1.5,y=5.5,故答案为:﹣1.5,5.5.【点评】考查数轴表示数的意义,求出对折点所表示的数以及数轴上两点之间距离的计算方法是解决问题的关键.24.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3=4;(2)如果t<4,且点Q3表示的数为3,那么t=或;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.【分析】(1)分别求出Q1、Q2、Q3所表示的数,进而求出Q1Q3的长;(2)分两种情况进行解答,①当Q3未到点N返回前,②当Q3点到达N返回再到表示3的位置,分别列方程解答即可;(3)分三种情况,①当Q4未到点N前,②当Q4到达点N返回且在Q2的右侧,③当Q4到达点N返回且在Q2的左侧,分别列方程解答即可.【解答】解:(1)当t=4时,Q1表示的数为4,Q1Q2=4×2=8,Q2表示的数为4+8=12,Q2Q3=4×3=12,Q3所表示的数为0,∴Q1Q3=4,故答案为:4.(2)①当Q3未到点N返回前,有t+2t+3t=3,解得:t=,。
第5讲 初识数轴上动点问题 培优训练 2024-2025学年人教版七年级数学上册

第5讲初识数轴上动点问题专题1 动点问题(1)——画图分类讨论法题型一距离倍分问题——画图→分类→设未知数列方程如图,三点A,B,C在数轴上,点A,B在数轴上表示的数分别为—12,16.(规定:数轴上两点A,B之间的距离记为AB)【典例】若点C在数轴上,满足AC: BC=1:3,求点C对应的数.方法小结:结合数轴画图分类讨论,注意设未知数,列方程.题型二距离和差问题——画图→分类→设未知数列方程变式1.若点C 在数轴上,满足AC+BC=32..求点C 对应的数.变式2.若点C 在数轴上,满足AC--BC=12.求点C 对应的数.专题2 动点问题(2)——距离绝对值法模型绝对值距离法在数轴上点P 到—1的距离是到3的距离的3倍.求P点对应的数.题型一距离和差问题【典例】如图,数轴上点C 表示的数为x,点A 和点B 表示的数分别为a,b,且a=—7,b=2,回答下列问题:(1)A,B两点间的距离AB= ;(2)①若AC=1,求x的值;②若点C在点B 的右边,且AC+BC=12,求x的值;(3)点C到A,B两点间所有表示整数的点(不含A,B两点)的距离之和为40.则x的值为.题型二距离倍分问题变式1.如图,A,B 在数轴上分别对应的数为10和—10,点P 对应的数为x,且PB=4PA,求x 的值.变式2.(1)如图1,在数轴上动点P 到A,B 的距离之和为6,即PA+PB=6,求点P 对应的数;(2)如图2,在数轴上点O为原点,点A 对应的数为24,点P 在数轴上,且PA=3PO求点P 对应的数.专题3 动点问题(3)——单动点问题题型一用坐标表示动点位置,距离注意带绝对值【典例】如图,动点P 从点A 出发,以2个单位长度/秒的速度沿数轴向右运动到点B,然后以原速返回A 点,点P 运动的时间为t秒.(1)当t≤5时,P点表示的数为;(2)当5<t≤10时,P 点表示的数为;(3)若OP=2,求t的值.方法:①在数轴上表示P₁,P₂的坐标,. x P1=x A+2t,x P2=x B−2(t−5);circle2OP=|x P−x0|;;③分情况,列方程求解.题型二用坐标表示数轴上两点间距离变式.如图,已知a,b分别对应数轴上A,B两点,并且满足|a−2|+(3a+2b)²=0,点P 为数轴上一个动点,它对应的数是x.(1)填空: a=,b=,AB=;(2)若P 为线段AB 上一点,并且. PA=3PB,,求x的值;(3)若P 点从A 点出发以每秒2个单位长度的速度运动,那么出发几秒钟后,使得. PA=4PB?* 注意|a|=|b|分两种情形:( a=b或a=−b.方法小结:( (1)PA=|x−2|,PB=|x+3|;(2)结合距离关系列方程.专题4 动点问题(4)----双动点问题b|;模型二已知数轴上两点A,B对应的数为-1,3,点P 为数轴上一动点,其对应的数为x.(1)PA=|x+1|,PB=|x-3|;(2)若PA+PB=5,则|x+1|+|x-3|=5,结合图形知.x=-32或x= 72题型一点的位置未定,距离带绝对值【典例】如图,数轴上点A,B分别表示-7,1,点P,Q分别从点A,B同时沿数轴的正方向运动,点P 的速度是每秒2个单位长度,点Q 的速度是每秒1个单位长度,设运动的时间为t秒.(1)在运动过程中,请用含t 的代数式表示点P,Q在数轴上表示的数;(2)当t为何值时,P,Q两点的距离等于2个单位长度?题型二方程法(画图讨论),绝对值法(列绝对值方程)变式.如图,在数轴上点A 表示的数为-4,B表示的数为10,点P,Q分别从点B,A同时出发,相向运动,且在原点相遇.设它们运动的时间为t秒,点P 运动的速度为每秒2.5个单位长度.(1)直接写出点P 对应的数是,点Q对应的数是(用含t 的式子表示);(2)当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.。
人教版七年级上册数学 第一章 有理数 数轴 综合培优练习题

人教版七年级上册数学第一章有理数数轴综合培优练习题1.已知数轴上两点A,B对应的数分别为a,b,点M为数轴上一动点,其中a,b满足(a+2)2+|b ﹣7|=0.(1)写出点A表示的数是;点B表示的数是.(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M是[A,B]的好点.①若点M到运动到原点O时,此时点M [A,B]的好点(填是或者不是);②若点M以每秒1个单位的速度从原点O开始运动,当M是[A,B]的好点时,求点M所表示的数.2.如图,数轴上点A、B分别对应数a、b,其中a<0,b>0.(1)当a=﹣3,b=7时,线段AB的中点对应的数是.(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=3,b>3,且AM=2BM时,求代数式a+2b+2010的值;②a=﹣3.且AM=3BM时学生小朋通过演算发现代数式3b﹣4m是一个定值,老师点评;琪琪同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?3.数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.数轴上表示数a的点与表示数b的点的距离记作|a﹣b|,如|3﹣5|表示数轴上表示数3的点与表示数5的点的距离,|3+5|=|3﹣(﹣5)|表示数轴上表示数3的点与表示数﹣5的点的距离,|a﹣3|表示数轴上表示数a的点与表示数3的点的距离.根据以上材料回答下列问题:(将结果直接填写在答题卡相应位置,不写过程)(1)若|x﹣1|=|x+1|,则x=,若|x﹣2|=|x+1|,则x=;(2)若|x﹣2|+|x+1|=3,则x能取到的最小值是,最大值是;(3)若|x﹣2|﹣|x+1|=3,则x能取到的最大值是;(4)关于x的式子|x﹣2|+|x+1|的取值范围是.4.数轴上两点A,B,其中A表示的数为﹣2,B表示的数为2,若数轴上存在一点C,使得AC+2BC =l,则称C为点A,B的“和l点”(其中AC,BC分别表示点C到点A,B的距离).(1)若点E在数轴上(不与A,B重合),若BE=AE,且点E为点A,B的“和l点”,则l的值可能为;(2)若点D在是点A,B的“和5点”,则点D表示的数可能为.5.如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.6.阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b,A、B两点间的距离表示为AB.则AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,探究下列问题.(1)式子|x+1|+|x﹣2|的最小值是.(2)式子|x+1|﹣|x﹣2|的最大值是.(3)式子|x﹣2|+|2x﹣6|+|3x﹣1|的最小值是.7.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离,在解题中,我们会常常运用绝对值的几何意义:例1:已知|x|=2求x的值.解:在数轴上与原点距离为2的点对应的数为±2,即x=±2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1的距离为2的点对应的数为﹣1,3,即x=﹣1或x=3.参考阅读材料,解答下列问题:(1)已知|x|=3,则x的值为.(2)已知|x+2|=4,则x的值为.(3)已知x是有理数,当x取不同数时,式子|x﹣3|+|x+4|的值也会发生变化,问式子|x﹣3|+|x+4|是否有最小值?若有写出最小值,若没有,请说出理由.8.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案).9.如图,数轴的单位长度为1,点A,B,C,D都在数轴上,且点A,B表示的数互为相反数.(1)请在数轴上描出原点O的位置,并写出点A,C,D所表示的数.(2)点P在数轴上,且PA+PB=PD.①琪琪说:点P不可能在点A左侧.琪琪说得对吗?请说明理由.②求所有满足条件的点P所表示的数.10.甲、乙两辆汽车在东西走向的公路上行驶,规定向东为正,开始时甲车在西60千米的点A处,乙车在东10千米的点B处,(如图所示),甲车的速度为90千米/小时,乙车的速度为60千米/小时.(1)求甲、乙两车之间的距离(列式计算);(2)甲、乙两车同时向东行驶,甲车行驶270千米后进入服务区休息10分钟,然后继续向东行驶30千米,乙车一直向东行驶.①求此时乙车到达的位置点C所表示的数(列式计算);②甲车司机发现自己的手提包丢在服务区,立即调头来取,然后再追赶乙车,当甲车追上乙车时,求乙车到达的位置点D所表示的数(直接写出答案).11.点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,将点A向右移动8个单位得到点C,点D、点E是线段BC的两个三等分点.在所给的数轴(如图)上标出B、C、D、E各点,再写出它们各自对应的有理数.12.数轴上,当点A在原点的左边,点B在原点的右边,点A,B之间的距离为28个单位长度,点A与原点的距离为8个单位长度,若点A,B对应的有理数分别是a,b.(1)求a,b;(2)若质点M从点A沿数轴以每秒1个单位长度向左运动,质点N从点B沿数轴以每秒3个单位长度向左运动,若质点N在点C处追上质点M,求点C对应的有理数c;(3)若质点P从点A沿数轴以每秒2单位长度向右运动,质点Q从点B沿数轴以每秒1个单位长度向右运动,t秒钟后质点P与质点Q之间的距离为18时,求t的值.13.对于数轴上的A、B、C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A、B、C所表示的数分别为1、3、4,则点B是点A、C的“至善点”.(1)若点A表示数﹣2,点B表示数2,下列各数、0、1、6所对应的点分别C1、C2、C3、C4,其中是点A、B的“至善点”的有(填代号);(2)已知点A表示数﹣1,点B表示数3,点M为数轴上一个动点:①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M 表示的数m.14.如图①,在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A 的右边点B′处,若AB′=B′C,求点C在数轴上对应的数是多少?15.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.16.已知A,B两点在数轴上分别示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B 两点之间的距离AB=|a﹣b|.已知数轴上A,B两点对应的数分别为﹣1,3,P为数轴上一动点,A,B两点之间的距离是.设点P在数轴上表示的数为x,则点P与﹣4表示的点之间的距离表示为若点P到A,B两点的距离相等,则点P对应的数为若点P到A,B两点的距离之和为8,则点P对应的数为现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?17.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.18.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.19.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时匀速出发,同向而行时间/秒0 1 5A点位置﹣12 ﹣9B点位置8 18(1)请填写表格;(2)若两只蚂蚁在数轴上点P相遇,求点P在数轴上表示的数;(3)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.。
人教版七年级数学上册 1.2.2 数轴 培优训练卷

人教版七年级数学上册1.2.2 数轴培优训练卷一、选择题(共10小题,3*10=30)1.下列数轴表示正确的是()2.下列对数轴的描述最恰当的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的一条直线3.如图,数轴上点A表示的数是()A.-1 B.0 C.1 D.24.如图,数轴上蝴蝶所在点表示的数可能为()A.3 B.2 C.1 D.-15.若数轴上表示-1和3的两点分别是点A和点B,则点A和点B之间的距离是() A.-4 B.-2 C.2 D.46. 数轴上原点及原点左边的点表示()A.正数B.负数C.非正数D.非负数7.a,b,c在数轴上对应点的位置如图,则下列说法正确的是()A.a,b,c均是正数B.a,b,c均是负数C.a,b是正数,c是负数D.a,b是负数,c是正数8.画一条数轴,利用它判断下列说法:①0和1之间没有正数;②-3和-4之间没有负数;③0.1和0.2之间没有分数;④-1和-2之间有无数个负数.其中正确的有()A.0个B.1个C.2个D.3个9.如图,数轴上一个动点A先向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7 B.3 C.-3 D.-210.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.1二.填空题(共8小题,3*8=24)11.在数轴上表示数3,0,-3时,在原点左边的数是_______,与原点的距离是____个单位长度.12. 如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是_______。
13.如图,点A表示的数是____;点B表示的数是_______;离原点较近的是____;A,B两点之间有____个单位长度.14.数轴上点A表示2,点B表示-3,那么在这两点中,点________距离原点较近.15.如图,数轴上A,B两点所表示的数分别是-4和2,点C是线段AB的中点,则点C所表示的数是________.16.小李不慎将墨水滴在如图的数轴上,根据图中的数值可知,被墨迹盖住的整数有________个.17.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是________。
七年级数学上册 压轴解答题培优测试卷

七年级数学上册 压轴解答题培优测试卷一、压轴题1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.2.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。
(写出具体求解过程)3.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 4.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
②如图 3,点 A、B 都在原点的左边
AB
OB
OA
b
a
b a
ab
o
;
a
b
B
AO
③如图 4,点 A、B 在原点的两边 AB OA OB a b a b a b 。 b
ao
综上,数轴上 A、B 两点之间的距离 AB a b 。
(2)回答下列问题:
BO
A
bo a
①数轴上表示 2 和 5 两点之间的距离是
七年级数学上册利用数轴解题培优训练
一、阅读与思考 数学是研究数和形的学科,在数学里数和形是有密切联系的。我们常用代数的方法来
处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形 之间的相互作用叫数形结合,是一种重要的数学思想。
运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有 力工具,主要体现在以下几个方面: 1、利用数轴能形象地表示有理数; 2、利用数轴能直观地解释相反数; 3、利用数轴比较有理数的大小; 4、利用数轴解决与绝对值相关的问题。 二、知识点反馈 1、利用数轴能形象地表示有理数;
那么点 B( ) A.在 A、C 点右边
B.在 A、C 点左边
C.在 A、C 点之间
D.以上均有可能
6、设 y x 1 x 1 ,则下面四个结论中正确的是( )
A. y 没有最小值
B.只一个 x 使 y 取最小值
C.有限个 x (不止一个)使 y 取最小值
D.有无穷多个 x 使 y 取最小值
7、在数轴上,点 A,B 分别表示 1 和 1 ,则线段 AB 的中点所表示的数是
为
。 b a O c1
2、已知 a b a b 2b ,在数轴上给出关于 a, b 的四种情况如图所示,则成立的
是a 0 。b
b0 a
0a b
0 ba
①
②
③
④
3、已知有理数 a, b, c 在数轴上的对应的位置如下图:则 c 1 a c a b 化简后的结
果是( )
(湖北省初中数学竞赛选拨赛试题) -1 c
O
ab
A. b 1 B. 2a b 1 C.1 2a b 2c D.1 2c b
三、培优训练
1、已知是有理数,且 x 1 2 2 y 12 0 ,那以 x y 的值是(
)
A. 1 B. 3
2
2
C. 1 或 3 22
D. 1或 3 2
2、如图,数轴上一动点 A 向左移动 2 个单位长度到达点 B ,再向右移动 5 个单位5长度到
,数轴上表示-2 和-5 的两点之间的距离
达点 C .若点 C 表示的数为 1,则点 A 表示的数为( )
A. 7
B. 3
C. 3 D. 2
B 2A
C
01
3、如图,数轴上标出若干个点,每相邻两点相距 1 个单位,点 A、B、C、D 对应的数分
别是整数 a,b, c, d 且 d 2a 10 ,那么数轴的原点应是A( ) B C
D
A.A 点 B.B 点 C.C 点
11、 (1)阅读下面材料:
点 A、B 在数轴上分别表示实数 a, b ,A、B 两点这间的距离表示为 AB ,当 A、B 两点中
有一点在原点时,不妨设点 A 在原点,如图 1, AB OB b a b ;当 A、B 两点
O (A)
B
都不在原点时,
o
b
①如图 2,点 A、B 都在原点的右边 AB OB OA b a b a a b ; O A
。
35
8、若 a 0,b 0 ,则使 x a x b a b 成立的 x 的取值范围是
。
9、 x 是有理数,则 x 100 x 95 的最小值是
。
221
221
10、已知 a, b, c, d 为有理数,在数轴上的位置如图所示: d
b
Oa c
且 6 a 6 b 3 c 4 d 6, 求 3a 2d 3b 2a 2b c 的值。
a
Ob
2、把满足 2 a 5 中的整数 a 表示在数轴上,并用不等号连接。
2、利用数轴能直观地解释相反数;
例 2:如果数轴上点 A 到原点的距离为 3,点 B 到原点的距离为 5,那么 A、B 两点的距离
为
。
拓广训练:
1、在数轴上表示数 a 的点到原点的距离为 3,则 a 3 _________ .
。(ห้องสมุดไป่ตู้“ ”号连接)
1、 若 m 0, n 0 且 m n ,比较 m,n, m n, m n, n m 的大小,并用“ ”号连
接。
例 4:已知 a 5 比较 a 与 4 的大小
拓广训练:
1、已知 a 3 ,试讨论 a 与 3 的大小
2、已知两数 a, b ,如果 a 比 b 大,试判断 a
例 1:已知有理数 a 在数轴上原点的右方,有理数 b 在原点的左方,那么( ) A. ab b B. ab b C. a b 0 D. a b 0
拓广训练:
1、如图 a, b 为数轴上的两点表示的有理数,在 a b, b 2a, a b , b a 中,负数的个数
有( )
A.1 B.2 C.3 D.4
2、已知数轴上有 A、B 两点,A、B 之间的距离为 1,点 A 与原点 O 的距离为 3,那么所
有满足条件的点 B 与原点 O 的距离之和等于
。
3、利用数轴比较有理数的大小;
例 3: 已 知 a 0,b 0 且 a b 0 , 那 么 有 理 数 a,b,a, b 的 大 小 关 系
是 拓广训练:
与 b 的大小
4、利用数轴解决与绝对值相关的问题。
例 5: 有理数 a, b, c 在数轴上的位置如图所示,式子 a b a b b c 化简结果为
()
-1 a O 1 b c
A. 2a 3b c
拓广训练:
B. 3b c
C. b c
D. c b
1、有理数 a, b, c 在数轴上的位置如图所示,则化简 a b b 1 a c 1 c 的结果
D.D 点
4、数 a, b, c, d 所对应的点 A,B,C,D 在数轴上的位置如图所示,那么 a c 与 b d 的
大小关系是( )
AD 0C B
A. a c b d B. a c b d C. a c b d D.不确定的 5、不相等的有理数 a, b, c 在数轴上对应点分别为 A,B,C,若 a b b c a c ,