(最新版)基于PLC的变频恒压供水系统的毕业设计论文
基于PLC变频调速的恒压供水系统论文

目录摘要 (1)前言 (1)第1章常见的变频恒压供水概况 (1)1.1PLC控制的变频恒压供水 (1)1.2常见的供水方式 (1)1.3变频恒压调节的基本原理 (1)1.4变频驱动方式和调节方式以及压力传感变送器的使用 (3)1.4.1 恒压供水系统的驱动方式 (3)1.4.2 恒压供水调节方式 (3)1.4.3 关于压力传感变送器的使用 (4)第2章、恒压供水系统的硬件设计 (5)2.1PLC、变频器控制的恒压供水系统方案 (5)2.1.1 方案特点 (5)2.1.2 变频-工频双回路恒压供水方案优点 (6)2.1.3 设备选型 (6)2.2模拟供水系统的拟定 (6)2.3主电路设计 (7)2.4电气控制系统接线原理图及说明 (8)2.5控制流程图 (9)2.6输入输出元件与PLC地址对照表 (11)2.7PLC程序设计 (12)第3章、恒压供水系统的软件设计 (13)3.1 水泵的转速与其扬程H、流量Q及功率的关系 (14)3.2 PID控制及其调节 (15)总结 (16)致谢 (21)参考文献 (22)基于PLC变频调速的恒压供水系统摘要:随着我国社会经济的发展,住房制度改革的不断深入,人民生活水平的不断提高,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。
城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的提高。
传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。
随着人们对供水质量和供水系统可靠性要求的不断提高,需要利用先进的自动化技术、控制技术以及通讯技术,要求设计出高性能、高节能、能适应供水厂复杂环境的恒压供水系统成为必然趋势。
最后,从分析该恒压供水变频供水的可靠性,改造理论、技术、经济可行性等方面进行多次实验分析;其次分别从确定变频器的参数,设计变频主电机、变频电机的运行模式、控制模式及流程。
《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。
恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。
其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。
本文将详细介绍基于PLC恒压变频供水系统的设计与实现。
二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。
其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。
2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。
此外,还需要具有与其他设备通信的能力。
在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。
3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。
供水泵站则负责实际的供水任务。
在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。
三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。
在选型过程中,应充分考虑设备的性能、价格、维护等因素。
安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。
2. 软件实现软件部分主要包括PLC程序的编写和调试。
在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。
在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。
四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。
测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。
如果发现问题,应及时进行排查和修复。
2. 系统运行经过测试后,系统可以正式投入运行。
《2024年基于PLC的变频恒压供水系统的设计》范文

《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。
传统的供水系统往往存在能耗高、调节不精确等问题。
因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。
本文将详细介绍基于PLC的变频恒压供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。
具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。
2. 通过变频技术实现电机的节能运行。
3. 实现系统的自动化控制,降低人工干预。
4. 具备故障自诊断和保护功能,确保系统安全稳定运行。
三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。
2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。
3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。
5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。
四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。
2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。
3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。
4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。
5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。
6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。
五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化水平的不断提高,PLC(可编程逻辑控制器)在供水系统中的应用越来越广泛。
恒压变频供水系统作为一种高效、节能的供水方式,其设计及实现成为现代供水工程的重要课题。
本文将详细介绍PLC在恒压变频供水系统设计中的应用,包括系统构成、工作原理、设计方法及实施效果等方面。
二、系统构成恒压变频供水系统主要由水源、水泵、压力传感器、PLC控制器、变频器等部分组成。
其中,水源提供系统所需的水资源,水泵负责将水输送到指定地点,压力传感器实时监测水管中的水压,PLC控制器则负责整个系统的控制与调节,变频器则用于调节水泵电机的转速,实现恒压供水。
三、工作原理恒压变频供水系统的工作原理是通过PLC控制器实时采集压力传感器的数据,根据设定的压力值与实际压力值的差异,通过变频器调节水泵电机的转速,从而保持水管中的水压恒定。
当实际水压低于设定值时,PLC控制器会增加水泵电机的转速,提高水压;反之,则会降低水泵电机的转速,降低水压。
此外,系统还具有过载、过流、过压等保护功能,确保系统的安全稳定运行。
四、设计方法1. 确定系统参数:根据实际需求,确定供水系统的流量、扬程、工作压力等参数。
2. 选择设备:根据系统参数,选择合适的水泵、压力传感器、PLC控制器及变频器等设备。
3. 设计电路:设计PLC控制电路及变频器驱动电路,确保电路的稳定性和可靠性。
4. 编程控制:使用编程软件对PLC进行编程,实现恒压控制、故障诊断及保护等功能。
5. 安装调试:将设备安装到现场,进行系统调试,确保系统正常运行。
五、实施效果PLC实现恒压变频供水系统的设计具有以下优点:1. 节能:通过实时调节水泵电机的转速,实现恒压供水,避免了能源的浪费。
2. 稳定:系统具有较高的稳定性,能够根据实际需求自动调节水压,保证供水的稳定性和连续性。
3. 智能:通过PLC控制器实现智能化控制,具有故障诊断及保护等功能,提高了系统的安全性。
《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。
恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。
本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。
同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。
三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。
其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。
四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。
2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。
3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。
4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。
五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。
2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。
3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。
4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。
六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。
2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。
基于PLC变频调速恒压供水系统的设计毕业设计(论文)

基于PLC变频调速恒压供水系统的设计毕业设计(论文)洛阳理工学院毕业设计(论文)基于PLC变频调速恒压供水系统的设计摘要随着社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高。
再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然趋势。
论文分析了采取变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能机理。
通过对变频器内置PID模块参数的预置,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。
依据供水要求,设计了一套由PLC、变频器、远传压力表、多台水泵机组等主要设备构成的全自动变频恒压供水,具有全自动变频恒压运行、自动工频运行和现场手动控制等功能。
关键词:可编程序控制器, 变压变频调速, 恒压供水, PLCI洛阳理工学院毕业设计(论文)PLC-BASED INVERTER CONTRL CONSTANT PRESSURE WATER SUPPLYSYSTEM DESIGNABSTRACTWith the rapid socio-economic development of water quality and water supply systems to improve reliability requirements. In addition, the current energy shortage, the use of advanced automation technology, control technology and communication technology, the design of high performance, high energy, able to adapt to different areas of constant pressure watersupply system has become an inevitable trend.Paper analyzes the way VVVF speed control constant pressure water supply compared with the traditional way of constant pressure water supply valve to control the energy-saving mechanism. Converter built by the preset parameters of PID module, using the hydraulic pressure gauge feedback Fareast one volume, constitute a closed-loop system, in accordance with changes in water consumption. In this paper, based on water requirements, the design of a set by the PLC, frequency converter, Far Easton pressure, multi-pump unit consisting of major equipment such as automatic frequency conversion constant pressure water supply, with automatic constant frequency operation, automatic frequency run and on-site features such as manual control.KEY WORDS:: programmable logic controller, VVVF speed control, constant pressure water supply, PLCII洛阳理工学院毕业设计(论文)目录前言 ................................................. 1 第1章绪论 (2)1.1 本课题设计的背景 ................................ 2 1.2 本课题设计的内容 .. (3)1.2.1 恒压供水系统的选型 ........................ 3 1.2.2 系统的硬件设计 ............................ 3 1.2.3 系统的软件设计 ............................ 3 1.3 系统控制的原理 .................................. 3 第2章系统的硬件设计 (5)2.1 恒压供水系统的基本构成 .......................... 6 2.2 可编程控制器(PLC)的选型 (9)2.2.1 PLC概述 ................................... 9 2.2.2 PLC的选型 ................................. 9 2.3 PLC模拟量控制单元的配置以及应用 ............... 12 2.4供水系统主要器件选型 ........................... 14 2.5 PLC及变频器控制电路 (15)2.5.1 供水系统电气主电路 ....................... 15 2.5.2 供水系统控制电路 ......................... 16 2.6 硬件接线图 ..................................... 17 2.7 控制系统的I/O点及地址分配 ..................... 19 第3章系统的软件设计 (22)3.1 PLC梯形图设计 (22)3.1.1 梯形图绘制 ............................... 22 3.1.2 梯形图指令 ............................... 25 3.1.3 程序的结果以及程序功能的实现 ............. 28 3.2 系统工作流程图 .................................29 3.3 控制系统程序设计 (30)3.3.1 启动程序 (30)III洛阳理工学院毕业设计(论文)3.3.2 水泵切换程序 ............................. 31 3.3.3 逐台停泵程序 ............................. 31 3.3.4 故障处理 (31)第4章系统调试 (32)4.1 PLC程序的运行和模拟调试 ....................... 32 4.2 系统总体调试 ................................... 32 结论 ................................................ 33 谢辞 ................................................. 34 参考文献 .............................................. 35 外文资料翻译 (36)IV洛阳理工学院毕业设计(论文)前言随着各住宅小区的宿舍楼等一座座高楼拔地而起,相应的生活用水量也大幅度增加。
《2024年基于PLC的变频恒压供水系统的设计》范文
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会的进步与工业的发展,供水和节水系统的高效性和稳定性日益成为社会关注的焦点。
为满足人们日益增长的用水需求和实现水资源的高效利用,我们设计了一种基于PLC(可编程逻辑控制器)的变频恒压供水系统。
此系统在控制与调节供水量、稳定水压方面表现优异,并实现了较高的自动化程度。
二、系统概述基于PLC的变频恒压供水系统,主要包括水源、供水设备、PLC控制器、变频器等部分。
该系统能够实时监测水压,并根据实际需求调整电机转速,以实现恒压供水。
同时,PLC控制器对整个系统进行集中控制,确保系统的稳定运行。
三、系统设计1. 硬件设计(1) 水泵:系统中的主要设备,负责供水和调节水压。
(2) PLC控制器:作为系统的核心,负责接收传感器信号,发出控制指令。
(3) 变频器:连接水泵和PLC,根据PLC的指令调整电机转速。
(4) 传感器:实时监测水压、流量等参数,并将数据传输给PLC。
(5) 其他辅助设备:如阀门、管道等。
2. 软件设计(1) 数据采集:PLC通过传感器实时采集水压、流量等数据。
(2) 数据处理:PLC对采集的数据进行处理,判断是否需要调整电机转速。
(3) 控制输出:PLC根据处理结果,向变频器发出控制指令,调整电机转速。
(4) 故障诊断:系统具有故障自诊断功能,当设备出现故障时,能够及时报警并停止运行。
四、系统功能1. 恒压供水:系统能够实时监测水压,并根据实际需求调整电机转速,以实现恒压供水。
2. 节能环保:通过变频技术,根据实际需求调整电机转速,实现节能环保。
3. 自动化程度高:PLC控制器对整个系统进行集中控制,实现较高的自动化程度。
4. 故障自诊断:系统具有故障自诊断功能,当设备出现故障时,能够及时报警并停止运行,保证系统的稳定性和安全性。
五、实施与应用该系统可广泛应用于居民小区、办公楼、工厂等需要供水的场所。
通过实时监测水压、流量等参数,调整电机转速,实现恒压供水,满足人们的用水需求。
《2024年基于PLC的变频恒压供水系统的设计》范文
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着城市化进程的不断推进和居民生活质量的提升,对供水的需求和质量要求也越来越高。
为满足这些需求,我们提出了一种基于PLC的变频恒压供水系统设计方案。
此系统结合了可编程逻辑控制器(PLC)与变频技术,有效控制了水泵的运行状态,达到了稳定供水的目的。
该设计不仅能实现水压的稳定输出,还可以降低能源消耗,具有很高的实际应用价值。
二、系统概述基于PLC的变频恒压供水系统主要由以下几个部分组成:PLC控制器、变频器、水泵、传感器和管网等。
其中,PLC控制器和变频器是该系统的核心部分,负责实现水压的稳定输出和能源的节约。
三、系统设计1. PLC控制器设计PLC控制器是整个系统的“大脑”,负责接收传感器采集的数据,并根据这些数据对变频器进行控制,以实现水压的稳定输出。
在设计过程中,我们选择了高性能的PLC控制器,其处理速度快、可靠性高,可以确保系统的稳定运行。
2. 变频器设计变频器是实现恒压供水的关键设备。
它可以根据PLC控制器的指令调整水泵的转速,从而达到控制水压的目的。
我们选择了高性能的变频器,具有较高的转换效率和稳定的运行性能。
3. 水泵设计水泵是供水系统的核心设备。
在设计过程中,我们选择了高效、低噪音的水泵,以满足供水的需求。
同时,我们还考虑了水泵的节能性能,选择了能效较高的水泵。
4. 传感器设计传感器负责采集水压、流量等数据,为PLC控制器提供控制依据。
我们选择了高精度的传感器,以确保数据的准确性。
5. 管网设计管网是供水系统的“血管”,其设计直接影响到供水的质量和效率。
我们采用了高强度、耐腐蚀的管道材料,并进行了合理的布局和安装,以确保供水的稳定和高效。
四、系统实现在系统实现过程中,我们首先对各个设备进行了选型和采购,然后进行了设备的安装和调试。
在调试过程中,我们对系统的各项性能进行了测试和优化,确保系统能够稳定、高效地运行。
最后,我们对系统进行了实际运行测试,验证了该设计的可行性和实用性。
《2024年基于PLC的变频恒压供水系统的设计》范文
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率成为了关键因素。
变频恒压供水系统因其良好的节能效果和稳定的水压输出,被广泛应用于各种工业和民用领域。
本文将介绍一种基于PLC(可编程逻辑控制器)的变频恒压供水系统的设计,通过精确控制水泵的运转,实现恒压供水,并提高整个系统的可靠性和灵活性。
二、系统设计概述基于PLC的变频恒压供水系统主要由水泵、变频器、压力传感器、PLC控制器等部分组成。
其中,PLC控制器作为整个系统的核心,负责接收压力传感器的信号,根据预设的压力值调整变频器的输出频率,从而控制水泵的运转,实现恒压供水。
三、硬件设计1. 水泵:选用高效、低噪音的水泵,根据实际需求选择合适的型号和数量。
2. 变频器:选用性能稳定、调速范围广的变频器,与水泵匹配,实现精确控制。
3. 压力传感器:安装在水管网络上,实时监测水压,并将信号传输给PLC控制器。
4. PLC控制器:作为整个系统的核心,选用高性能、高可靠性的PLC控制器,具备强大的数据处理和逻辑控制能力。
四、软件设计1. 数据采集与处理:PLC控制器通过压力传感器实时采集水压数据,经过数据处理后,与预设的压力值进行比较。
2. 控制算法:根据比较结果,采用PID(比例-积分-微分)控制算法,调整变频器的输出频率,从而控制水泵的运转,实现恒压供水。
3. 逻辑控制:PLC控制器根据实际需求,实现系统的逻辑控制,如自动启停、故障报警等。
五、系统实现1. 连接硬件:将水泵、变频器、压力传感器等硬件设备连接起来,形成完整的供水系统。
2. 编程与调试:使用专业的编程软件对PLC控制器进行编程,实现数据采集、处理、控制算法和逻辑控制等功能。
经过反复调试,确保系统稳定、可靠地运行。
3. 安装与调试:将编程好的PLC控制器安装到系统中,进行实际运行测试。
根据测试结果,对系统进行优化和调整,确保系统达到预期的恒压供水效果。
《2024年基于PLC的变频恒压供水系统的设计》范文
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的发展和城市化进程的加速,对供水的稳定性和可靠性要求越来越高。
为了满足这一需求,本文提出了一种基于PLC(可编程逻辑控制器)的变频恒压供水系统设计。
该系统采用先进的变频技术,通过PLC控制,实现供水的恒压、节能、稳定等目标。
二、系统设计目标本系统的设计目标主要包括以下几个方面:1. 恒压供水:通过精确控制水泵的转速和启停,实现供水压力的稳定,满足用户需求。
2. 节能降耗:采用变频技术,根据实际需求调整水泵转速,降低能耗。
3. 自动化控制:通过PLC实现系统的自动化控制,减少人工干预,提高系统运行的可靠性。
4. 故障诊断与保护:系统具备故障诊断和保护功能,一旦出现故障,能够及时报警并采取相应措施。
三、系统组成本系统主要由以下几部分组成:1. 水泵:负责供水的动力设备,采用高效、低噪音的水泵。
2. PLC控制系统:包括PLC控制器、变频器、传感器等,负责系统的控制、调节和保护。
3. 压力传感器:用于实时检测供水压力,为PLC提供反馈信号。
4. 变频器:根据PLC的指令,调节水泵的转速,实现恒压供水。
5. 其他辅助设备:如水管、阀门、过滤器等,保证供水的质量和稳定性。
四、系统工作原理本系统的工作原理如下:1. 压力传感器实时检测供水压力,将信号传输给PLC控制器。
2. PLC控制器根据压力传感器的信号,结合预设的压力值,计算出实际压力与设定压力的偏差。
3. PLC控制器根据计算出的偏差,向变频器发出控制指令,调节水泵的转速。
4. 变频器根据PLC的指令,调整水泵的转速,使供水压力保持恒定。
5. 如果出现故障或异常情况,系统会立即报警并采取相应措施,保证系统的安全运行。
五、系统实现1. 硬件实现:根据系统设计目标和组成,选择合适的水泵、PLC控制器、变频器、压力传感器等设备,进行硬件连接和安装。
2. 软件实现:编写PLC控制程序,实现系统的自动化控制、故障诊断与保护等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PLC的变频恒压供水系统摘要:随着社会主义市场经济的发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势本论文分析变频恒压供水的原理及系统的组成结构,提出不同的控制方案,通过研究和比较,本论文采用变频器和PLC实现恒压供水和数据传输,然后用数字PID对系统中的恒压控制进行设计。
最后对系统的软硬件设计进行了详细的介绍。
本论文设计与实现通过MCGS进行数据传输的远程网络巡回监控系统。
具体讲述了系统的总体设计与软件的实现,并对系统采取的可靠性措施进行了说明。
本论文的变频恒压供水系统已在国内许多实际的供水控制系统中得到应用,并取得稳定可靠的运行效果和良好的节能效果。
经实践证明该系统具有高度的可靠性和实时性,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益。
关键字:变频调速;恒压供水;PLC;MCGS;监控系统IFrequency Conversion Constant Pressure Water-supplySystem Based on PLCAbstract:With the rapid development of socialistic marketing economy,there is a growing demand for better quality of water supply and addition ,considering the current common energy crisis, achieving the scheme of automatingthe water supply system. So it is an inevitable tendency to design and create an energy-savingconstant-pressure water supply system of excellent performance with the ,monitor-control system; and communication. Meanwhile, the System can also adapt to various water Supply regions.This paper analyzes the structure of VF speed regulating constant-pressure water supply,and proposes several control methods.By careful study and comparison, PLC and inverter's method fits water supply system and datatransmission very well. Finally the paper shows the design of constant pressure supply water controller according to PID data and detailed introduction of its software and this paper,the author designs and realizes the remote monitor and control system through MCGS, and then illustrates its general design, software implement and the measures of preventable disturbance in details.The system, which completed with reliable performance and excellent energy-saving effect, proves to possess not only remarkably improve the quality of water supply, but also economize on labor, which will surely bring us both economic and social benefits.Key Words: VF speed; constant pressure water supply; PLC; MCGS; monitor and control- systemIII第1章绪论1.1 城市供水系统的要求众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。
在恒压供水技术出现以前,出现过许多供水方式。
以下就逐一分析。
(1) 一台恒速泵直接供水系统这种供水方式,水泵从蓄水池中抽水加压直接送往用户,有的甚至连蓄水池也没有,直接从城市公用水网中抽水,严重影响城市公用管网压力的稳定。
这种供水方式,水泵整日不停运转,有的可能在夜间用水低谷时段停止运行。
这种系统形式简单、造价最低,但耗电、耗水严重,水压不稳,供水质量极差。
(2) 恒速泵+水塔的供水方式这种方式是水泵先向水塔供水,再由水塔向用户供水。
水塔的合理高度是要求水塔最低水位略高于供水系统所需要压力。
水塔注满后水泵停止,水塔水位低于某一位置时再启动水泵。
水泵处于断续工作状态中。
这种供水方式,水泵工作在额定流量额定扬程的条件下,水泵处于高效能区。
这种方式显然比前种节电,其节电率与水塔容量、水泵额定流量、用水不均匀系数、水泵的开、停时间比、开停频率等有关。
供水压力比较稳定。
但这种供水方式基建设备投资最大,占地面积也最大;水压不可调,不能兼顾近期与远期的需要;而且系统水压不能随系统所需流量和系统所需要压力下降而下降,故还存在一些能量损失和二次污染问题。
而且在使用过程中,如果该系统水塔的水位监控装置损坏的话,水泵不能进行自动的开、停,这样水泵的开、停,将完全由人操作,这时将会出现能量的严重浪费和供水质量的严重下降。
(3)射流泵十水箱的供水方式这种方式是利用射流泵本身的独特结构进行工作,利用压差和来水管粗,出水管细的变径工艺来实现供水,但是由于其技术和工艺的不完善,加之该方式会出现有压无量1(流量)的现象,无法满足高层供水的需要。
(4) 恒速泵十高位水箱的供水方式这种方式原理与水塔是相同的,只是水箱设在建筑物的顶层。
高层建筑还可分层设立水箱。
占地面积与设备投资都有所减少,但这对建筑物的造价与设计都有影响,同时水箱受建筑物的限制,容积不能过大,所以供水范围较小。
一些动物甚至人都可能进入水箱污染水质。
水箱的水位监控装置也容易损坏,这样系统的开、停,将完全由人工操作,使系统的供水质量下降能耗增加。
(5)恒速泵十气压罐供水方式这种方式是利用封闭的气压罐代替高位水箱蓄水,通过监测罐内压力来控制泵的开、停。
罐的占地面积与水塔水箱供水方式相比较小,而且可以放在地上,设备的成本比水塔要低得多。
而且气压罐是密封的,所以大大减少了水质因异物进入而被污染的可能性。
但气压罐供水的方式也存在着许多缺点,在介绍完变频调速供水方式后,再将二者作一比较。
(6)变频调速供水方式这种系统的原理是通过安装在系统中的压力传感器将系统压力信号与设定压力值作比较,再通过控制器调节变频器的输出,无级调节水泵转速。
使系统水压无论流量如何变化始终稳定在一定的范围内.变频调速水泵调速控制方式有三种:水泵出口恒压控制、水泵出口变压控制、给水系统最不利点恒压控制。
①出口恒压控制水泵出口恒压控制是将压力传感器安装在水泵出口处,使系统在运行过程中水泵出口水压恒定。
这种方式适用于管路的阻力损失在水泵扬程中所占比例较小,整个给水系统的压力可以看作是恒定的,但这种控制方式若在供水面积较大的居住区中应用时,由于管路能耗较大,在低峰用水时,最不利点的流出水头高于设计值,故水泵出口恒压控制方式不能得到最佳的节能效果。
②出口变压控制水泵出口变压控制也是将压力传感器安装在水泵出口处,但其压力设定值不只是一个。
是将每日24小时按用水曲线分成若干时段,计算出各个时段所需的水泵出口压力,进行全日变压,各时段恒压控制。
这种控制方式其实是水泵出口恒压控制的特殊形式。
他比水泵出口恒压控制方式能更节能,但这取决于将全天24小时分成的时段数及所需水泵出口压力计算的精确程度。
所需水泵出口压力计算得越符合实际情况越节能,将全天分得越细越节能,当然控制的实现也越复杂。
③最不利点恒压控制最不利点恒压控制是将压力传感器安装在系统最不利点处;使系统在运行过程中保持最不利点的压力恒定。
这种方式的节能效果是最佳的,但由于最不利点一般距离水泵较远,压力信号的传输在实际应用中受到诸多限制,因此工程中很少采用。
变频调速的方式在节能效果上明显优于气压罐方式。
气压罐方式依靠压力罐中的压缩空气送水,气压罐配套水泵运行时,水泵在额定转速、额定流量的条件下工作.当系统所需水量下降时,供水压力将超出系统所需要的压力从而造成能量的浪费。
同时水泵是工频率启动,且启动频繁,又会造成一定的能耗。
而变频恒压供水在系统用水量下降时可无级调节水泵转速,使供水压力与系统所需水压大致相等,这样就节省了许多电能,同时变频器对水泵采用软启动,启动时冲击电流小,启动能耗比较小。
另外气压罐要消耗一定的钢量,这也是它的一个较大的缺点。
而变频调速供水系统的变频器是一台由微机控制的电气设备,不存在消耗多少钢材的问题。
同时由于气压罐体积大,占地面积一般为几十平米。
而变频调速式中的调速装置占地面积仅为几平米。
由此可见变频调速供水方式比气压罐供水方式将节省大量占地面积。
在运行效果上,气压罐方式与调速式相比也存在着一定差距。
气压罐方式的运行不稳定,突出表现在它的频繁启动。
由于气压罐的调节容量仅占其总容积的13-16,因而每个罐的调节能力很小,只得依靠频繁的启动来保证供水,这样将产生较大的噪声,同时由于启动过于频繁,压力不稳,加之硬启动,电气和机械冲击较大,设备损坏很快。
变频调速式的运行十分稳定可靠,没有频繁的启动现象,加之启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击。