功率变换器
功率转换器

从根本上来讲,功率是可以被放大的,但是这要涉及到一种比较高深的技术才可以实现,而我设计的“功率转换器”是不可能放大功率的。
我们学过物理的都知道W=U*I电压是220V,要想提高功率只能是放大电流,但是这在工程上都是一个难以解决的问题,
其实“功率转换器”他的作用原理也不在于此。
大家可能会觉得自己用的电脑以有几百瓦的功率呀,特别是台式机3个人的功率加在一起肯定超过300W了,但是,电脑确实可以正常使用,就算你在多加个5台电脑也是没有任何问题的。
其实电表只对带有“钨丝”的发热的电阻性的用电器限定了瓦数,其它的用电器,如电脑,台灯等没有“钨丝”这种发热的电阻性的用电器,电表是没有瓦数限制的,就算你超过1500W都可以使用。
“功率转换器”就是利用了电表在设计上的这个漏洞,把自己伪装成一个像“电脑”这种没有“钨丝”发热的电阻性的用电器,所以大家在使用的时候感觉好像是功率放大了,其实只是一种小小的障眼法而已。
“功率转换器”是可以放心的使用的,没有任何危险存在。
为了验证我的解释,您可以拆开看看里面的电路情况。
它里面仅仅只加载了一个“电容”而已。
通过多加一个电容,使那些有“钨丝”发热的电阻性的用电器变成了和“电脑”的性质一样不发热的电容性负载,从而欺骗了电表。
主要技术指标:
·额定电压:250V
·额定电流:MAX10A ·频率:50HZ
·材料阻燃等级:UL97V-2·用电器功率:MAX1500W。
功率转换器概述

Switch 开关 Vripple 纹波
In PFM (Pulse Frequency Modulation), the pulse width (ton) is constant. The toff will change with load and input voltage changes. Therefore, the switching period is NOT constant. It is the sum of ton and toff. 在PFM (脉冲频率调制)中,脉冲宽度(ton) 恒定。 toff 随着负载和输入电压变化而改变。所以,开关 周期不恒定。它是ton 和 toff的和。
Pi mechanism generates heat... 转换过程产生热量... η=Pout/Pin is called the efficiency η=Pout/Pin 称为效率
Ploss = Pin − Pout = Pout
η
1 − Pout = Pout ⋅ η − 1
Q1 Cin 1 uF
Enable
启用
+ Vref
Cout 1 uF
Addition of Switching Element 增加开关元件 I feel much cooler
功率转换器设计中的电流共享技术

功率转换器设计中的电流共享技术
在功率转换器设计中,电流共享技术是一种常用的方法,用于提高系统的效率
和稳定性。
电流共享技术可以帮助实现多个功率器件在工作过程中均衡地共享负载,从而减少功率器件之间的功率差异,提高系统的可靠性和效率。
电流共享技术的原理是通过合理设计电路,使得多个功率器件在运行时能够平
衡地分担负载电流。
这样可以避免部分器件负载过载而导致失效,同时也能充分利用每个器件的工作能力,提高整个系统的工作效率。
在实际设计中,电流共享技术需要考虑多个方面因素,包括功率器件的匹配性、电路拓扑结构、控制策略等。
其中,功率器件的匹配性是至关重要的一点,需要保证每个功率器件的参数相近,以确保它们能够平衡地共享负载。
此外,电路拓扑结构也对电流共享技术的实现起着关键作用。
合理的拓扑结构
可以有效地分配负载电流,避免功率器件之间出现功率失衡的情况。
常见的拓扑结构包括并联、串联、混合等,具体选择需根据实际应用需求进行优化设计。
控制策略是实现电流共享技术的另一个重要方面。
通过合理的控制策略,可以
实现对功率器件的动态调控,确保它们始终处于均衡的工作状态。
常见的控制策略包括电流环控制、频率同步控制、相位同步控制等,选择适合的策略可以提高系统的稳定性和效率。
总的来说,电流共享技术在功率转换器设计中扮演着重要的角色,可以帮助提
高系统的可靠性、效率和稳定性。
通过合理设计电路结构、选择适合的功率器件和控制策略,可以实现多个功率器件在工作时平衡地共享负载电流,从而实现系统的优化性能。
功率转换器原理

功率转换器原理随着电子技术的不断发展,功率转换器已成为现代电子设备中的重要组成部分。
功率转换器的作用是将一种形式的电能转换成另一种形式的电能,比如将交流电转换成直流电,或者将低电压转换成高电压,从而满足不同电子设备的需求。
功率转换器的原理主要包括以下几个方面:1.变压器原理变压器是功率转换器中最基本的部分之一,它可以将交流电的电压变换成不同的电压等级。
变压器的原理是利用电磁感应现象,当变压器的一侧通电时,会在另一侧产生电磁感应,从而引起电压的变化。
变压器中的铁芯起到了导磁作用,可以集中磁通,提高变压器的效率。
2.电子元件原理功率转换器中的电子元件主要包括二极管、晶体管、场效应管等,它们的作用是控制电路的电流和电压。
二极管是一种具有单向导电性的电子元件,可以将交流电转换成直流电;晶体管和场效应管则可以控制电流的大小和方向,从而实现电路的开关控制。
3.开关电源原理开关电源是一种能够将交流电转换成直流电的功率转换器,它的原理是利用开关管的开关控制,将交流电转换成高频脉冲信号,再经过变压器和滤波电路,最终得到稳定的直流电。
开关电源具有高效率、小体积、轻量化等优点,已广泛应用于电子设备中。
4.电感电源原理电感电源是一种利用电感元件将直流电转换成高频脉冲信号的功率转换器,它的原理是利用电感元件的自感性和耦合电感性,将直流电转换成高频脉冲信号,再经过滤波电路得到稳定的直流电。
电感电源具有高效率、低噪声、小体积等优点,已广泛应用于无线通信、LED照明等领域。
5.逆变器原理逆变器是一种将直流电转换成交流电的功率转换器,它的原理是利用电子元件的开关控制,将直流电转换成高频脉冲信号,再经过变压器和滤波电路,最终得到稳定的交流电。
逆变器具有输出电压稳定、波形纯正等优点,已广泛应用于太阳能发电、UPS等领域。
以上就是功率转换器的主要原理,不同的功率转换器原理有着不同的应用场景,我们需要根据具体的需求来选择合适的功率转换器。
功率转换器原理

功率转换器原理功率转换器是一种能够将电能转换成机械能、热能或光能等其他能量形式的装置。
它具有高效率、低损耗,且有可能起到保护电气系统的作用,因此受到越来越多应用场合的关注。
下面我们就功率转换器的原理来进行深入研究。
首先,要了解功率转换器中使用的电力系统。
电力系统是以电气能量作为能量转换的系统,它有两个基本的要素:电源和功率设备。
电源是指提供电力之源的装置,其中包括电网、变压器、发动机和发电机等;功率设备是指利用电力的能量完成工作的电气设备,其中包括电机、变流器、继电器等。
功率转换器的工作原理:将电气能量转换成其他能量形式,大致可分为三个步骤:第一步,从电源获取电力;第二步,将电力进行调节和调整;第三步,将电力转换成其他能量形式,如机械能、热能、光能等。
现今,市场上主要有三种功率转换器,即AC-DC转换器、DC-AC 转换器和DC-DC转换器。
AC-DC转换器可以将交流电转换为直流电,主要包括平衡铁心变压器、磁励磁变压器、永磁变压器和空间变压器等;DC-AC转换器可以将直流电转换为交流电,主要有双极型正弦发电机、三极同步发电机和分步式正弦发电机等;DC-DC转换器可以将一个直流电压转换为另一个直流电压,主要有栅极桥变换器、改变位极数变换器等。
在使用功率转换器时,应该考虑以下几个因素:首先来考虑电力系统的安全性,即电力的质量和稳定性;其次,考虑功率转换器的结构及特性;最后,根据功率转换器的实际使用要求,选择最佳的功率转换器。
从以上分析可以看出,功率转换器在电力系统中扮演着重要角色,它能够进行电能转换,帮助用户获取最佳的电力,提升系统的效率,并起到保护电气系统的作用。
在选择功率转换器时,应根据自身要求考虑多方面因素,以便获得更优的效果。
功率转换器原理

功率转换器原理功率转换器是一种电子设备,它能将一种电源输入的电力转化为另一种电源输出的电力。
其主要原理是利用电子元件(如变压器、电容器、电感器、开关管等)进行能量转换和调节,从而实现输入电源到输出电源类型(如交流电到直流电、低电压到高电压等)或电压电流数值(如降压、升压、稳压等)的转换。
根据不同的转换原理和应用要求,功率转换器可以分为多种类型,如隔离型变换器、开关型变换器、共享电感器变换器等。
其中,隔离型变换器通过变压器等元件实现输入与输出之间的电气隔离,可以更好地保护电路和设备,适用于需要电气隔离的场合;开关型变换器则利用开关管进行高频开关操作,实现高效能量转换,适用于大功率输出和高效率要求的场合;共享电感器变换器则结合了开关型和隔离型的优点,通过多级电路和共享元件来提高效率和性能。
无论采用何种原理,功率转换器的基本工作原理都包括以下几个环节:1. 输入电源整流和滤波:将输入电源(可能是交流电源)输入到功率转换器中,首先需要进行整流,将交流电转换为直流电。
然后,通过滤波电路去除直流电中的纹波成分,获得稳定的直流电源。
2. 能量存储和转换:根据输出电源的需求,利用电容器、电感器等元件将输入电源中的能量进行储存、变换和调节。
例如,升压变换器通过储存能量后逐渐释放,实现输出电压的升高;而降压变换器则通过将输入电源经过变压器等元件变换为低电压,再进行整流滤波等步骤,获得稳定的输出电源。
3. 控制和保护:功率转换器通常需要通过控制电路来实现对输出电源的调节和保护。
控制电路可以根据输入电压、输出电压、电流等参数进行反馈,调节开关管的开关频率和占空比,以实现稳定的输出。
同时,还可以增加过流、过压、过温等保护功能,确保转换器和连接设备的安全运行。
通过以上工作原理的组合和调节,功率转换器能够实现不同类型、不同功率的电源转换和调节功能,广泛应用于电力系统、电子设备、通信设备等领域。
功率转换器原理

功率转换器原理
功率转换器是一种能够将电能从一种形式转换为另一种形式的电子设备。
它在
各种电气和电子系统中都扮演着至关重要的角色,比如在电力系统中用于变换电压和电流,以及在电子设备中用于供电和控制。
本文将介绍功率转换器的原理,包括其工作原理、分类、特点以及应用领域。
功率转换器的工作原理主要是利用电子器件(如晶体管、二极管等)来控制电
能的流动和转换。
它通过改变电压、电流和频率等参数,实现对电能的有效调节和转换。
功率转换器可以分为直流转换器和交流转换器两大类,其中直流转换器主要用于直流电源系统,而交流转换器则主要用于交流电源系统。
根据其工作原理和拓扑结构的不同,功率转换器又可以分为多种不同的类型,比如开关电源、逆变器、变压器等。
功率转换器具有许多特点,比如高效率、稳定性好、体积小、重量轻等。
它们
可以根据实际需求进行设计和制造,以满足不同系统的功率转换需求。
在实际应用中,功率转换器被广泛应用于各种领域,比如电力系统、工业自动化、新能源领域、航空航天等。
它们不仅可以提高能源利用效率,还可以提高系统的稳定性和可靠性,为现代社会的发展做出了重要贡献。
总的来说,功率转换器是一种至关重要的电子设备,它在电力系统和电子设备
中都发挥着不可替代的作用。
通过对功率转换器的原理进行深入了解,我们可以更好地理解其工作原理和特点,为相关领域的研究和应用提供更多的参考和借鉴。
希望本文能够对读者有所帮助,谢谢!
(注,以上内容仅供参考,具体细节还需根据实际情况进行深入了解和研究。
)。
buck boost工作原理

buck boost工作原理
Buck-boost 转换器是一种电力转换装置,主要用于改变直流电压的数值。
它是一种开关模式功率转换器,通过不断开闭开关元件来调整电路的结构,从而改变输出电压。
Buck-boost 转换器的工作原理如下:
1. 输入电压与电流:输入电压通过输入电感与输入电容进行滤波,使其稳定。
输入电流经过开关管,并受到控制电路中的控制信号所调节。
2. 控制电路:控制电路根据输出电压与参考电压之间的差异,生成控制信号,并通过控制信号来开闭开关元件。
3. 开闭开关元件:开闭开关元件能够将输入电源与负载连接或断开连接。
当开关打开时,电能通过输入电感和输出电感传输到负载;当开关关闭时,输入电源与负载断开连接,电路储存的能量通过二极管传递给负载。
4. 输出电压:通过适当调节开关的开闭时间比例,控制电路能够确保输出电压在可接受的范围内。
当需要提高输出电压时,开关周期的占空比增加,电路能量储存时间增加,输出电压变高;相反,需要降低输出电压时,开关周期的占空比减小,电路能量储存时间减少,输出电压变低。
总体上,buck-boost转换器通过不断开闭开关元件,控制电路中的能量储存和传输,从而实现输出电压的调整和稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dc/dc功率变换器
1.引言
随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,功率变换技术作为电力电子技术研究的基础之一,有着广泛的应用前景。
本文将就DC/DC 功率变换器的发展与应用展开分析,并探讨其发展的趋势。
2.功率变换器的实际应用
由于功率变换器具有提高系统的效率,增大装置的功率密度的功能。
在现代社会中,其(DC/DC变换器)广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业,有着广泛的应用前景。
近年(DC/DC)功率变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。
由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W 的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,这也显示出了其在远程和数字通讯领域的广阔应用前景。
具体使用,例如:①直流开关电源,其功率变换的核心
就是DC/DC功率变换器;② DC/DC功率变换器也是现代燃料电池车动力系统中一个重要部分,主要功能是把不可调的直流电源变为可调的直流电源。
3.原理分析
DC/DC功率变换器按输入与输出间是否有电气隔离可以分为无电气隔离和有电器隔离的直流变化器两类。
按工作电路区分有降压式(BUCK),升压式(BOOST),升降压式(BUCK/BOOST),库克(CUK),瑞泰(ZETA),塞皮克(SEPIC)等六种。
DC/DC功率变换器基本电路原理图如图1所示。
图1中,功率开关管S1~S4及内部集成的二极管组成全桥开关变换器,S1及S3组成超前桥臂,S2及S4组成滞后桥臂,S1~S4在寄生电容、外接电容C1~C4和变压器漏感的作用F谐振,实现零电压开关。
其中C7为隔直电容,可有效地防止高频变压器的直流偏磁。
低压直流侧滤波电容为C5、C6、L1为共模电感。
下面,我将就升压降压的不同功能分别对其进行原理分析:
(1)普通降压功率变换器原理图如图2,当开关闭合时,加在电感两端的电压为(Vi-Vo ),此时电感由电压(Vi-Vo )励磁,电感增加的磁通为:(Vi-Vo )*Ton 。
当开关断开时,由于输出电流的连续,二极管VD 变为导通,电感削磁,电感减少的磁通为:(Vo )*Toff 。
当开关闭合与开关断开的状态达到平衡时,(Vi-Vo )*Ton=(Vo )*Toff ,由于占空比D<1,所以Vi>Vo ,实现降压功能。
图2 降压型变换器原理图
降压型主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,基本的参数关系如下: ① 电流连续时,负载电压的平均值为 :
t on 为开关处于通态的时间,t off 为开关处于断态的时间,
E E T t E t t t U on off on on o α==+=
T为开关周期,α为导通占空比,简称占空比或导通比。
②电流断续时,负载电压u o平均值会被抬高,一般不希望出现电流断续的情况。
(2)普通升压变换器原理图如图3所示,当开关闭合时,输入电压加在电感上,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton。
当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo- Vi)*Toff。
当开关闭合与开关断开的状态达到平衡时,(Vi)*Ton=(Vo- Vi)*Toff,由于占空比D<1,所以Vi<Vo,实现升压功能。
图3 升压型变换器原理图
升压型变换器基本的参数关系:
①当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即
化简后可得
()
off
o
on
t I
E
U
t
EI
1 1
-
=
上式中
将升压比的倒数记作β,即
,则β和导通占空比α有如下关系
则输出U0可表示为
输出电压
U0高于电源电压,关键有两个原因:一是L 储能之后具有使电压泵升的作用,二是电容C 可将输出电压保持住。
4.总结
总之, DC/DC 功率变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约20%~30%的电能。
直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧谐波电流噪声的作用。
DC/DC 功率变换器现已商品化,模块采用高频PWM 技术,开关频率在500kHz 左右,功率密度为0.31W/cm3~
1
/≥off t T 1=+βα
1.22W/cm3。
随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。
功率变换器随应用需求而不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。
功率变换器高频化、模块化、数字化、绿色化等的实现,标志着这些技术的成熟,实现高效率用电和高品质用电相结合。