风电并网变换器直接功率控制策略

合集下载

并网逆变器原理

并网逆变器原理

并网逆变器原理
并网逆变器是一种将直流电能转化为交流电能,且可将电能提供给电网的设备。

其工作原理如下:
1. 输入电路:并网逆变器的输入电路接收来自太阳能电池组或其他直流电源的直流电能。

输入电路通常包括一个DC-DC变
换器,用于调整输入电压和电流的参数。

2. 拓扑结构:并网逆变器采用不同的拓扑结构,最常见的是单相桥式逆变器或三相桥式逆变器。

这些拓扑结构能够将低电压和电流的直流电能转化为交流电,并保持满足电网的传输要求。

3. 控制策略:并网逆变器的控制策略是关键。

通过使用先进的控制算法,可以实现逆变器的最大功率点追踪,以确保太阳能电池组或其他直流电源能够以最佳效率运行。

此外,控制策略还要保证逆变器输出的交流电能与电网的频率和相位相匹配,以确保平稳的电能传输。

4. 输出电路:并网逆变器的输出电路将转换后的交流电能连接到电网上。

输出电路通常包括一个滤波器,用于消除或减少输出电流中的谐波成分,并确保电能传输的质量和稳定性。

5. 电网连接:最后一步是将并网逆变器连接到电网上。

这通常需要遵守电网运营商的规定和标准,并进行相应的配置和调试。

2.风力发电及其并网技术

2.风力发电及其并网技术

3 、风力机的功率调节
(3) 直驱永磁变速恒频风力发电机 PMSG
PMSG
电 网
机侧 变换器
网侧 变换器
2.3 风力发电系统的并网运行
1 大容量风电场并网对电力系统电能质量的影响 电压 恒速异步感应风电机组接入瞬间会产生较大的冲击电流,
使电网电压瞬时跌落;异步发电机运行时要从电网吸收感性无 功来建立磁场,也会引起无功损耗和电压损耗导致电压偏差增 大。变速双馈感应风电机组和永磁同步风电机组能实现有功和 无功的解偶控制,控制调节功率因数为1时,风电场与电网之间 可以不发生无功功率的交换,较之恒速异步风电机组,能够在 一定程度上缓解地区性的电压偏差问题。但当风力发电机出力 较大时,由于有功功率在线路上流动而消耗的无功功率,也可 能会造成电压降落,引起电压偏差过大。
2、全球区域风资源分布
三、风能资源的分布
三、风能资源的分布
三、风能资源的分布
三、风能资源的分布
3、我国分能资源分布
三、风能资源的分布
2.2风力发电机组
根据系统的运行方式,风力发电机组可以分: 离网型运行机组 互补运行机组 并网型运行机组
风力发电系统包括风力机及其控制系统与发电机及其控制系统两个 部分。
2.3 风力发电系统的并网运行
2 风电并网对系统安全稳定性的影响 暂态稳定性 恒速异步感应风电机组与电网的机电耦合紧密,动态 稳定性受异步发电机临界转速和故障持续时间的影响 较大。变速恒频风电机组利用变流器参与系统的无功 和电压控制,具有一定的无功调节能力,风电机组可 以按照不同的控制策略,吸收或发出无功功率进行电 压控制,其电网暂态稳定性的好坏主要取决于风电机 组的控制策略。
2.3.3风力发电机组的并网技术
1 风力发电机组的并网方式 异步风力发电机 降压并网 为了降低并网合闸瞬间冲击电流的大小和电网电压 下降的幅度,并网时在异步发电机每相绕组与电网 之间串联电阻或电抗器,或者接入自耦变压器。当 发电机并网稳定运行后再将接入的元件迅速从线路 中切除以免其消耗功率。

风电场风电机组优化有功功率控制的研究

风电场风电机组优化有功功率控制的研究

风电场风电机组优化有功功率控制的研究2017年度申报专业技术职务任职资格评审答辩论文题目:风电场风电机组优化有功功率控制的研究作者姓名:李亮单位:中核汇能有限公司申报职称:高级工程师专业:电气二Ο一七年六月十二日摘要随着风电装机容量的与日俱增,实现大规模的风电并网是风电发展的必然趋势。

然而,由于风能是一种波动性、随机性和间歇性极强的清洁能源,导致风电并网调度异于常规能源。

基于此,本文将针对风电场层的有功功率分配开展工作,主要工作概括如下:(1)对风电机组和风电场展开研究,分析风力发电机组运行特性、风力发电机组控制策略、风电场的控制策略。

(2)提出了一种简单有效的风电场有功功率分配算法,可以合理利用各机组的有功容量,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。

(3)优化风机控制算法后,通过现场实际采集数据将所提方法与现有方法进行了比较,验证了所提方法的合理性。

关键词:风电机组、风电场、有功功率控制、AGCAbstractWith increasing wind power capacity, to achieve large-scale wind power is an inevitable trend of wind power development. However, since the wind is a volatile, random and intermittent strong clean energy, resulting in wind power dispatch is different from conventional energy sources. And the wind farm is an organic combination for a large number of wind turbines, wind farms under active intelligent distribution layer hair is also included in the grid scheduling section. Based on this, the active allocation and scheduling for grid scheduling side active layer wind farm work, the main work is summarized as follows:(1)Wind turbines and wind farms to expand research, in-depth analysis of the operating characteristics of wind turbines, wind turbine control strategy, control strategies of wind farms.(2)This paper proposes a simple and effective wind power active power allocation algorithm, can reasonable use each unit capacity, according to the optimization of wind farms in active dispatching command, decrease The Times of turbine control system action smooth wind power output fluctuation unit.(3)After optimization of the fan control algorithm, through the practical field data collected will be presented method are compared with those of the existing method, the rationality of the proposed method was verified.Keywords:wind turbine, wind farm, active power control目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题研究背景 (1)1.2 有功功率控制的现状 (1)第2章风力发电机组及风电场有功控制基础 (2)2.1 风力发电机组运行原理 (2)2.1.1 风电机组的组成 (2)2.1.2 风电机组数学模型 (2)2.1.3 风力发电机组运行特性 (8)2.1.4 风力发电机组控制策略 (9)2.2 风电场有功功率控制 (10)2.2.1 风电场的基本结构 (10)2.2.2 风电场的控制策略 (11)第3章风电场内有功功率控制策略 (13)3.1 风电场有功功率控制的基本要求 (13)3.2 风电场有功功率工作模式 (13)3.3 风电场有功功率控制状态 (14)3.5 风电场实测数据对比 (15)3.5.1 风电场电气接线 (15)3.5.2 单台风力发电机组测试 (15)第4章结论 (19)参考文献 (20)第1章绪论1.1 课题研究背景相比于常规的火电和燃气电站,风电场的有功调节能力十分有限。

新能源发电与并网技术(3)-3

新能源发电与并网技术(3)-3

– 当采用定子电压定向时,vsd = Vs , vsq = 0 忽略暂态过程及定子电阻上的压降:
vsd = −ωs ψsq = Vs vsq = ωs ψsd = 0
ψsq = − ψsd = 0 Vs ψsd = Ls isd + Lm ird = 0 ψsq = Ls isq + Lm irq = − Vs
isq = − Lm irq Ls ψsd = Ls isd + Lm ird = ψ s ψsq = Ls isq + Lm irq = 0 Lm ird isd = − Ls Ls
ψs
3ωS Lm ψ s irq ps = 2 Ls qs = − 3ωS ψ s (ψ s − Lm ird ) 2 Ls
ωs
ωs
Lm ird isd = − Ls
Lm irq Vs − isq = − ωs Ls Ls
新能源发电与并网技术 电气与电子工程学院
9
3.7 双馈异步风电机组
(2) 动态模型
3 3 Lm ps = vsd isd = − Vs ird 2 2 Ls 3 3 ⎛ Vs 2 Vs Lm ⎞ qs = − vsd isq = ⎜ irq ⎟ + Ls 2 2 ⎝ ωs Ls ⎠
– 双馈电机的定子侧有功(或电磁转矩)、定子侧无功分 别由转子电流的d 、 q轴分量决定。
新能源发电与并网技术
电气与电子工程学院
10
3.7 双馈异步风电机组
(2) 动态模型
• 定子输出功率 – 当采用定子磁链定向时, 忽略暂态过程及定子电阻上的压降: ψ sd = ψ s ,ψ sq = 0
vsd = −ωs ψsq = 0 vsq = ωs ψsd = ωs ψs

双馈型风力发电变流器及其控制

双馈型风力发电变流器及其控制

双馈型风力发电变流器及其控制随着环保意识的日益增强和可再生能源的广泛应用,风力发电技术得到了快速发展。

双馈型风力发电变流器作为风力发电系统中的关键设备之一,在提高风能利用率和电能质量方面具有重要作用。

本文将介绍双馈型风力发电变流器的工作原理、特点优势及其控制方式。

双馈型风力发电变流器是一种交直流变换设备,可将风力发电机发出的交流电转换为直流电,再供给电力系统使用。

其工作原理是采用双馈(交流和直流)线路,通过电力电子器件(如IGBT、SGCT等)的开关动作,控制交流和直流电流的双向流动,实现能量的交直流转换。

高效性:双馈型风力发电变流器具有较高的能量转换效率,可实现风能的最大化利用。

灵活性:双馈型风力发电变流器可通过控制开关器件的占空比,调节输出电流的幅值、频率和相位,满足不同风速和负荷条件下的运行需求。

稳定性:双馈型风力发电变流器可有效平抑风速波动带来的影响,提高电力系统的稳定性。

维护性:双馈型风力发电变流器采用模块化设计,便于维护和检修,降低了运维成本。

矢量控制:通过控制交流侧电流的幅值和相位,实现有功功率和无功功率的解耦控制,提高电力系统的稳定性。

直接功率控制:采用瞬时功率采样,通过控制逆变侧电流的幅值和相位,直接控制有功功率和无功功率,具有快速的动态响应。

神经网络控制:利用神经网络技术,建立风力发电变流器数学模型,实现自适应控制和优化运行。

模糊控制:基于模糊逻辑理论,通过模糊控制器对变流器进行非线性控制,具有良好的鲁棒性和适应性。

双馈型风力发电变流器作为风力发电系统的关键设备之一,具有高效、灵活、稳定和维护简便等特点及优势。

其控制方式多种多样,包括矢量控制、直接功率控制、神经网络控制和模糊控制等,可根据实际应用场景选择合适的控制方式以实现最优运行。

随着风电技术的不断发展,双馈型风力发电变流器在未来将发挥更加重要的作用,为可再生能源的广泛应用和绿色能源转型提供强有力的支持。

随着环境保护和可持续发展的日益重视,风力发电作为一种清洁、可再生的能源,越来越受到人们的。

双馈风电系统全风速下的功率控制策略

双馈风电系统全风速下的功率控制策略

双馈风电系统全风速下的功率控制策略李军军;易吉良;肖强辉【摘要】为了实现全风速条件下的功率调节,对双馈风力发电机组的功率控制策略进行了研究.额定风速以下采用基于叶尖速比的最大功率追踪控制,实现最大风能捕获;额定风速以上采用变桨距角控制,输出功率维持恒定,保证整个系统安全稳定地运行.利用MATLAB建模并进行了仿真,仿真结果表明:在较大的风速变化区间内,双馈风电机组能实现对输出功率的有效调节,两种功率控制策略切换时系统能保持较好的稳定性.【期刊名称】《湖南工业大学学报》【年(卷),期】2014(028)004【总页数】7页(P46-52)【关键词】双馈风力发电;最大功率跟踪;变桨距角控制;稳定性【作者】李军军;易吉良;肖强辉【作者单位】湖南工业大学电气与信息工程学院,湖南株洲412007;湖南工业大学电气与信息工程学院,湖南株洲412007;湖南工业大学电气与信息工程学院,湖南株洲412007【正文语种】中文【中图分类】TM614风能是一种绿色环保的新型能源,近些年已被大规模开发与利用,使得风力发电已成为极具商业化发展前景的发电方式。

双馈风电机组通过控制变换器实施交流励磁,可改变转子电流的频率、幅值和相位,实现变速恒频运行。

双馈电机转子仅提供转差功率,与转子相连的变换器容量为机组的25%~30%,变换器投资低,非常具有市场优势。

为了提高发电效率,在风速较小的情况下,风电机组通常采用最大功率追踪控制,这方面的研究文献[1-6]较多;但对全风速下的功率控制策略的研究较少。

本文对双馈型风电机组在全风速下的功率控制策略进行研究,在较大的风速变化区间内,能实现输出功率的有效调节与控制。

双馈风力发电系统如图1所示,主要由双馈风电机组、双PWM变换器以及电网等部分组成。

其中:Ps, Qs, Is表示双馈电机定子输出的有功、无功功率和电流;Pr, Qr, Ir表示双馈电机转子输出的有功、无功功率和电流;Pg, Qg, Ig表示双馈电机网侧变换器输出的有功、无功功率和电流;P0, Q0, I0表示机组向电网输出的有功、无功功率和电流;Ur表示转子侧电压;Ug表示网侧变换器电压;Us表示机组与电网并网点电压;U表示电网电压;Udc表示直流电压;r为电机转子角速度;L0,R0表示网侧变换器滤波电感、电阻;Lt表示线路、变压器折算后电感。

风力发电机组控制技术

风力发电机组控制技术
与电网的稳定连接。
故障诊断与保护
实时监测风力发电机组的运行 状态,发现异常情况及时采取 保护措施,避免设备损坏。
控制策略的分类
直接控制策略
通过控制器直接调节执行 器,实现风能的最大捕获 和稳定运行。
优化控制策略
根据风能参数和机组状态, 优化控制目标,实现最优 控制效果。
智能控制策略
利用人工智能和机器学习 技术,实现自适应和学习 型的控制方式。
03
风力发电机组控制技术
风速控制技术
风速控制技术
通过控制风力发电机组的叶片 角度和转速,实现风能的捕获
和利用。
风向标控制
利用风向标传感器监测风向变 化,自动调整叶片角度,以适 应不同风向。
变速控制
根据风速的变化,自动调整发 电机组的转速,实现最佳功率 输出。
偏航控制
通过偏航系统自动对准风向, 提高风能利用率和发电效率。
偏航控制技术
自动对准风向
通过偏航系统自动调整机组的朝向,使叶片 始终对准风向。
风向变化跟踪
根据风向变化自动调整机组的朝向,提高风 能利用率。
减小振动
通过偏航控制减小机组的振动,提高机组的 稳定性和寿命。
安全保护
在机组出现异常时,偏航系统可自动停机并 报警。
液压与制动控制技术
液压系统控制
通过液压系统实现对机组各部件的精 确控制,确保机组的稳定运行。
参数匹配问题
不同型号和规格的发电机组需要匹配 不同的控制系统参数。解决方案包括 根据实际情况调整控制参数,以及采 用智能优化算法进行参数优化。
维护与保养的问题及解决方案
维护成本高昂
风力发电机组通常安装在偏远地区,维护成本较高。解决方案包括采用远程监 控技术,定期进行远程检查和维护,以及优化维护计划以降低成本。

三相电压型并网逆变器预测直接功率控制

三相电压型并网逆变器预测直接功率控制

This paper investigates a novel direct power control, predictive direct power control
(P-DPC), for three-phase grid-connected voltage-sourced inverters(GC-VSI). Different strategies to select voltage vectors and their duration time appropriately are addressed to eliminate the low-orders harmonic of currents, and obtain better dynamic and static performance. The P-DPC, which is implemented in the stationary reference frame directly, can obtain a fixed switch frequency instead of the shortcoming of variable switching frequency appears in conventional look-up table direct power control (LUT-DPC) and, meanwhile, it still maintains the fast transient feature of DPC. Furthermore, it requires no synchronous reference frame transformation and space vector pulse width modulation. The simulation and experimental investigation on LUT-DPC, vector control and P-DPC are carried out on a 2kVA GC-VSI. The results show the effectiveness of the proposed P-DPC strategy and its application potential on renewable energy industry. Keywords: Grid-connected voltage sourced inverter (GC-VSI), predictive,direct power control (P-DPC), fixed switch frequency 得到了空前的发展。电压型并网逆变器 [1] 因其具有 较好的输入 / 输出特性、 有功功率和无功功率独立调 节等优势,被广泛地应用在可再生能源分布式发电 和高压直流输电等领域,其在智能电网技术中也有 着十分重要的作用和地位。 矢量控制( VC)以其良好的稳态性能,被广泛
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档