大学物理实验报告声速的测量

合集下载

测量声速实验报告

测量声速实验报告

测量声速实验报告第1篇:测量声速这事儿,听起来挺高大上的,其实操作起来还挺接地气的。

那天,我们物理课上就来了一波实践操作,老师说这能帮我们更好地理解声速这个概念,我心想,这不就是玩儿嘛,谁不喜欢动手啊。

实验开始前,老师先给我们普及了声速的基本知识,原来声音在空气中的传播速度大约是340米每秒。

这数字听着没啥感觉,直到老师说:“如果你们在百米赛跑中,听到枪声再起跑,那估计冠军都到终点了。

”这话一出,大家立刻来了精神,想着得好好做这个实验,看看这声速到底有多快。

我们的实验工具很简单,就是一把尺子、一个计时器和两个木块。

老师让我们两个人一组,一个人负责敲击木块发出声音,另一个人则用计时器记录从看到敲击动作到听到声音的时间差。

我跟小明一组,他负责敲击,我负责计时。

一开始,我还担心自己反应慢,结果发现这事儿比想象中容易多了。

我们选择了一个比较长的走廊来做实验,这样可以尽可能地减少误差。

小明站得远远的,我站在起点,准备好了计时器。

随着小明的一声敲击,我按下了计时器,然后等着声音传到我的耳朵里。

那一刻,我突然有种穿越时空的感觉,就像是在等待着一个来自远方的信息。

虽然实际上只是一两秒的事儿,但那种期待的心情,让我觉得这声速实验也挺有意思的。

经过几轮的测量和计算,我们终于得到了声速的一个大概值。

虽然跟标准值有点差距,但老师说这是正常的,毕竟我们用的是最简单的工具,加上环境因素的影响,能有这样的结果已经很不错了。

最重要的是,通过这次实验,我们对声速有了更直观的认识。

实验结束后,我跟小明还在讨论,如果用不同的材料做实验,比如水或者金属,声速会不会不一样呢?这又激起了我对物理的好奇心,原来学习也可以这么好玩,既能动手又能动脑,真是太棒了。

说真的,这次测量声速的实验给我留下了深刻的印象,不仅仅是因为它让我了解到了声速的概念,更重要的是,它教会了我如何用实践去验证理论,这种体验是书本上学不到的。

以后要是有机会,我还想尝试更多这样的实验,探索科学的奥秘。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告在这个实验中,我们的目标是测量声速。

听起来简单吧?但当你深入了解,才会发现其中的奥秘。

声音是一种波动,依赖于介质。

空气、水,甚至固体中,声音传播的速度都不一样。

今天,就让我们一起走进这个实验的细节吧。

一、实验原理1.1 声音的传播声音在空气中传播时,是通过空气分子的振动传递的。

简单来说,当你说话,声带振动,产生的波动让周围的空气分子开始跳舞,结果就是声音传到了你朋友的耳朵里。

声速受温度、湿度和气压的影响。

温度越高,声速越快。

想象一下,夏天在海边,声音传得比在寒冷的冬天要快得多。

1.2 声速的测量我们使用了一个简单的方法来测量声速。

首先,准备好一个发声装置,比如一个喇叭。

然后,在远处放一个麦克风。

两者之间的距离是已知的。

当喇叭发声时,麦克风接收到声音并记录下时间。

这就是我们的测量方法,直接而有效。

二、实验步骤2.1 准备设备我们需要的设备包括一个喇叭、一个麦克风、一个计时器和一根尺子。

准备这些东西时,心里充满了期待。

我们把喇叭放在一个固定的位置,确保一切都在最佳状态。

然后,调整麦克风的位置,尽量减少环境噪音。

2.2 进行实验一切准备就绪,开始实验!我打开喇叭,发出清晰的声音。

听,那一瞬间,似乎时间都停止了。

我们都聚精会神地盯着计时器,心跳也随之加速。

声音在空气中迅速传播,麦克风记录下了到达的时间。

每次实验,我们都小心翼翼,尽量减少误差。

2.3 数据记录与处理实验结束后,数据收集到了。

根据公式,声速等于距离除以时间。

我们把记录的数据代入公式,经过几轮计算,最终得出了声速的近似值。

这个过程虽然繁琐,但每一步都让人心潮澎湃。

计算结果与理论值非常接近,这让我倍感欣喜。

三、实验结果与分析3.1 数据结果经过多次实验,我们得到了几组数据。

虽然有一些小的误差,但总体趋势很明显。

声速在空气中大约是340米每秒。

这一数字在心中回响,让我感到无比神奇。

声音在我们生活中随处可见,却从未认真思考过它的速度。

大学物理实验报告声速的测量

大学物理实验报告声速的测量

实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。

【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。

本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。

1. 共振干涉法实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。

当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即(3)时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。

因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。

我们只要测出各极大值对应的接收器的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

2.相位比较法波是振动状态的传播,也可以说是位相的传播。

沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。

大学物理实验报告-声速的测量.docx

大学物理实验报告-声速的测量.docx

实 验 报 告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。

【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。

本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

声波的传播速度与其频率和波长的关系为: v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。

1. 共振干涉法实验装置如图1所示,图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S 2为超声波接收器,声波传至它的接收面上时,再被反射。

当S 1和S 2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即L =n ×λ2, n =0,1,2, (3)时,S 1发出的声波与其反射声波的相位在S 1处差2nπ(n=1,2 ……),因此形成共振。

因为接收器S 2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。

我们只要测出各极大值对应的接收器S 2的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

声速测定实验报告体会(3篇)

声速测定实验报告体会(3篇)

第1篇一、实验背景声速测定是物理学中一个基础且重要的实验。

通过本实验,我们不仅能够掌握声速测定的原理和方法,还能深入了解声波传播的特性。

在实验过程中,我们运用共振干涉法、相位比较法以及时差法等多种方法来测量介质中的声速,并学会了用逐差法进行数据处理。

以下是我对本次实验的一些体会。

二、实验目的与原理1. 实验目的(1)学会用共振干涉法、相位比较法以及时差法测量介质中的声速;(2)学会用逐差法进行数据处理;(3)了解声速与介质参数的关系。

2. 实验原理(1)共振干涉法:当声波在两个平面间来回反射时,当两个平面间距L为半波长的整倍数时,接收器表面振动位移可以忽略,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,我们可以通过测量两个平面间距L来得到声速。

(2)相位比较法:通过测量两个相同李萨如图像的位置点来测量波长,进而得到声速。

(3)时差法:通过测量声波传播所经过的距离L和传播时间t,得到声速。

三、实验过程与结果1. 实验过程(1)共振干涉法:搭建实验装置,调整低频信号发生器输出交流电信号,激励压电陶瓷换能器产生声波。

调整接收器与发射器之间的距离,观察共振现象,记录下共振时的距离L。

(2)相位比较法:调整示波器,观察李萨如图像,通过测量两个相同李萨如图像的位置点来测量波长。

(3)时差法:调整信号源,测量声波传播所经过的距离L和传播时间t。

2. 实验结果通过共振干涉法、相位比较法以及时差法,我们得到了不同介质中的声速值,并与理论值进行了比较。

实验结果显示,测量值与理论值基本吻合,说明实验方法可行。

四、实验体会1. 实验过程中,我们学会了如何搭建实验装置,调整实验参数,观察实验现象,从而提高了我们的动手能力和实验技能。

2. 在实验过程中,我们运用了多种方法来测量声速,这使我们认识到,在物理学研究中,根据具体情况选择合适的方法是非常重要的。

3. 通过实验,我们了解了声速与介质参数的关系,为以后的学习和研究打下了基础。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告在我们进行的大学物理实验中,测量声速的实验让我对声音的传播有了更深刻的理解。

这次实验不仅仅是对数字的记录,更是对物理现象的一次亲身体验,让我领悟到声音在空气中是如何穿梭的。

一、实验准备1.1 实验目的实验的主要目标是测量空气中声速的具体数值,并通过实验数据验证理论值。

这听起来简单,但要做到准确、科学,还是需要细致的准备。

1.2 实验器材为了进行这项实验,我们准备了一些基本的设备。

首先是一个音源,我们选择了一个电子音响,因为它能够发出稳定的声音。

接着,我们需要一个麦克风,来接收声音并进行数据记录。

此外,还需要一个计时器和一个测量距离的工具,比如卷尺。

这些工具的选择都是为了保证我们能够精准地进行测量。

二、实验过程2.1 设定实验环境实验前,我们特意选择了一个相对安静的环境,尽量避免其他噪音对实验结果的影响。

这个细节很重要,因为外界的干扰可能会使我们的测量结果不够准确。

我们在教室里将音响和麦克风的距离调整到大约10米,这是一个合适的距离,既能清晰接收到声音,又不会因为距离过远而导致信号减弱。

2.2 进行测量一切准备就绪后,我们开始了实验。

首先,由一名同学负责操作音响发出声音,另一个同学则准备好麦克风和计时器。

当音响发声的瞬间,计时器开始计时,同时麦克风记录下声音到达的时间。

这一过程需要非常协调,任何一点小的失误都可能影响最终的结果。

我们进行多次测量,每次都记录好对应的时间,以便后续的数据处理。

2.3 数据处理实验结束后,我们收集了多次测量的数据。

在处理数据时,我们计算出声音传播的平均时间,并用已知的距离和时间计算出声速。

理论上,声速在空气中约为343米每秒。

通过我们的测量,结果略有偏差,但在可接受范围内。

这让我意识到,尽管我们在实验中尽力追求精确,但总会受到多种因素的影响,比如温度、湿度等环境条件。

三、实验结果与反思3.1 声速的测量结果通过计算,我们得到了一个接近理论值的声速。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

声速测量一、 实验项目名称:声速测量 二、 实验目的1.学会测量超声波在空气中的传播速度的方法2.理解驻波和振动合成理论3.学会逐差法进行数据处理4.了解压电换能器的功能和培养综合使用仪器的能力三、 实验原理声波的传播速度与声波频率和波长的关系为:可见,只要测出声波的频率和波长,即可求出声速。

可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。

根据超声波的特点,实验中可以采用几种不同的方法测出超声波的波长:1. 驻波法(共振干涉法)如右图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。

接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。

由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。

如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。

此时,两换能器之间的距离恰好等于其声波半波长的整数倍。

在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。

当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。

移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距v f fv λ=f λf离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。

2.相位比较法实验接线如下图所示。

波是振动状态的传播,也可以说是位相的传播。

在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。

大学物理实验声速测量实验报告

大学物理实验声速测量实验报告

声速测量一、 实验项目名称:声速测量 二、 实验目的1.学会测量超声波在空气中的传播速度的方法2.理解驻波和振动合成理论3.学会逐差法进行数据处理4.了解压电换能器的功能和培养综合使用仪器的能力三、 实验原理声波的传播速度与声波频率和波长的关系为:可见,只要测出声波的频率和波长,即可求出声速。

可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。

根据超声波的特点,实验中可以采用几种不同的方法测出超声波的波长:1. 驻波法(共振干涉法)如右图所示,实验时将信号发生器输出的正弦电压信号接到发射超声换能器上,超声发射换能器通过电声转换,将电压信号变为超声波,以超声波形式发射出去。

接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。

由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。

如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。

此时,两换能器之间的距离恰好等于其声波半波长的整数倍。

在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。

当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。

移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距v f fv λ=f λf离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。

2.相位比较法实验接线如下图所示。

波是振动状态的传播,也可以说是位相的传播。

在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实 验 报 告
声速的测量
【实验目的】
1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速
2.学会用逐差法进行数据处理;
3.了解声速与介质参数的关系。

【实验原理】
由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。

本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

声波的传播速度与其频率和波长的关系为:v f λ=⋅ (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。

1. 共振干涉法
实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信
号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。

当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即
(3)
时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。

因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。

我们只要测出各极大值对应的接收器的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

2.相位比较法
波是振动状态的传播,也可以说是位相的传播。

沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。

利用这个原理,可以精确的测量波长。

实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与发射器的位相相同时,一国的距离等于与声波的波长。

同样也可以利用李萨如图形来判断位相差。

实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。

3.时差法
用时差法测量声速的实验装置仍采用上述仪器。

由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。

4.逐差法处理数据
在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个的距离为
这样就很容易计算出。

如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。

【实验数据记录、实验结果计算】
实验时室温为16℃,空气中声速的理论值为
1.共振干涉法
频率
使用逐差法进行数据处理,处理过程由C++程序完成,程序如下
#include<iostream>
#include<cstdio>
using namespace std;
const int n=10;
const double f=35.617;
const double L[2*n]={50.00, 52.58, 54.41, 57.46, 59.63, 62.40, 64.46,
67.37, 70.60, 72.16,74.01, 77.00, 79.01, 81.84,
83.80, 86.92, 88.78, 91.66, 93.31, 96.49}; double LMD=0;
int main()
{
for (int i=0;i<n;i++) LMD+=(L[n+i]-L[i])*2/n/n;
printf("v=%.3lf\n",LMD*f*2);
system("pause");
return 0;
}
此程序运行结果为:v = 344.461 m/s;
2.相位比较法
频率
使用逐差法进行数据处理,处理过程由C++程序完成,程序如下
#include<iostream>
#include<cstdio>
using namespace std;
const int n=5;
const double f=35.618;
const double L[2*n]={54.82, 64.41, 74.02, 83.74, 93.40, 103.06, 112.90, 122.36, 131.86, 141.09};
double LMD=0;
int main()
{
for (int i=0;i<n;i++) LMD+=(L[n+i]-L[i])/n/n; printf("v=%.3lf\n",LMD*f);
system("pause");
return 0;
}
此程序运行结果为:v = 343.187 m/s
3.时差法测量空气中声速
计算机作图如下:
由于第二组数据,存在较大误差,因此将其去掉。

计算机计算得v = 344.41 m/s
4.时差法测量液体中声速
计算机作图如下:
计算机计算得v = 1449.43 m/s
【分析讨论】
1 关于误差
其实做这个实验需要极其精细的操作。

为了得到更精确的结果,不仅要每个人时刻集中精力观察仪器,操作仪器,而且需要两个人的默契配合。

当然,还是有一些最基本的需要注意的地方,如操作距离旋钮时,旋转最好不要太快,接近读数点时要放慢速度,最好不要逆向旋转旋钮;示波器的图像最好调节到合适的大小位置,以便观察和减小误差。

观察李萨如图像时应选取水平或垂直线段中的一者为标准,否则无法判断移动的是波长还是半波长。

此时应将图像尽量放大,因为观察重合时图像较小会导致误差很大。

当然最终测得的结果还是有一定的误差,但误差已经很小了。

观察测得得空气中声速发现几种测量方法的测量结果都偏大,一个重要的原因就是空气中含有水蒸汽及其它杂质,声音在这些物质中的传播速度都要比在空气中的传播速度大,所以最后的测量结果都偏大。

而使用相位法测得的结果与真实值最接近,因为这个方法观察图像时,是在图像变化到重合时读数,判断图像重合成直线是相对容易的,所以误差会较小。

【思考题】
1、为什么换能器要在谐振频率条件下进行声速测定?
答:因为在谐振频率下,反射面之间的声压达极大值。

这样从示波器上观察到的电压信号幅值为最大,从而更利于观察。

2、要让声波在两个换能器之间产生共振必须满足那些条件?
答:1、两个换能器的发射面与接受面互相平行。

2、两个换能器间的距离为半波长的整数倍。

3、试举出三个超声波应用的例子,他们都是利用了超声波的那些特性?
答:比如超声波定位系统,超声波探测,超声波洗牙。

他们利用了超声波的波长短,易于定向发射,易被反射等特性。

4、在时差法测量中,为何共振或接受增益过大会影响声速仪对接受点的判断?答:因为当共振或接受增益过大时,接受器将提前接收到信号,这样测得的时间将偏小,导致最后计算出的声速偏大。

【个人想法】
1.我想这个实验测声速的方法可以有更广阔的用处.对于前两种方法,可以测得
一些以波形态传播的物质的速度.如果仪器可以极其精密,就可测得光速.
对于第三种方法,可以用来测量光速.在发射端接收端都安装平面镜,可以记录光走充分大个来回的时间,让发射端和接收端记录光走的来回数,然后用时差法算得光速.。

相关文档
最新文档