03第三章反渗透、纳滤基础知识全解

合集下载

反渗透和纳滤原理

反渗透和纳滤原理

反渗透和纳滤原理渗透我们知道渗透是指稀溶液中的溶剂(水分子)自发地透过半透膜(反渗透膜或纳滤膜)进入浓溶液(浓水)侧的溶剂(水分子)流动现象。

渗透压定义为某溶液在自然渗透的过程中,浓溶液侧液面不断升高,稀溶液侧液面相应降低,直到两侧形成的水柱压力抵销了溶剂分子的迁移,溶液两侧的液面不再变化,渗透过程达到平衡点,此时的液柱高差称为该浓溶液的渗透压。

反渗透原理即在进水(浓溶液)侧施加操作压力以克服自然渗透压,当高于自然渗透压的操作压力施加于浓溶液侧时,水分子自然渗透的流动方向就会逆转,进水(浓溶液)中的水分子部分通过膜成为稀溶液侧的净化产水。

纳滤原理纳滤与反渗透没有明显的界限。

纳滤膜对溶解性盐或溶质不是完美的阻挡层,这些溶质透过纳滤膜的高低取决于盐份或溶质及纳滤膜的种类,透过率越低,纳滤膜两侧的渗透压就越高,也就越接近反渗透过程,相反,如果透过率越高,纳滤膜两侧的渗透压就越低,渗透压对纳滤过程的影响就越小。

反渗透和纳滤过程根据反渗透和纳滤原理可知,渗透和反渗透及纳滤必须与具有允许溶剂(水分子)透过的半透膜(反渗透膜或纳滤膜)联系在一起才有意义,才会出现渗透现象和反渗透或纳滤操作。

反渗透膜:允许溶剂分子透过而不允许溶质分子透过的一种功能性的半透膜称为反渗透膜;纳滤膜:允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜称为纳滤膜;膜元件:将反渗透或纳滤膜膜片与进水流道网格、产水流道材料、产水中心管和抗应力器等用胶粘剂等组装在一起,能实现进水与产水分开的反渗透或纳滤过程的最小单元称为膜元件;膜组件:膜元件安装在受压力的压力容器外壳内构成膜组件;膜装置:由膜组件、仪表、管道、阀门、高压泵、保安滤器、就地控制盘柜和机架组成的可独立运行的成套单元膜设备称为膜装置,反渗透和纳滤过程通过该膜装置来实现;膜系统:针对特定水源条件和产水要求设计的,由预处理、加药装置、增压泵、水箱、膜装置和电气仪表连锁控制的完整膜法水处理工艺过程称为系统。

反渗透纳滤基础知识

反渗透纳滤基础知识

反滲透纳滤基础知识水处理设备及知识2010-02-01 12:26:50 阅读75 评论0 字号:大中小订阅膜分离:物质世界是由原子、分子和细胞等微观单元构成的,然而这些很小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。

膜分理技术得基础是分离膜。

分离莫是具有选择性透过性的薄膜,某些分子(或微粒)可以透过薄膜,而其他的则被阻隔。

这种分离总是依赖于不同的分子(或微粒)之间的某种区别,最简单的区别就是尺寸大小,三维空间之中,什么都有大上巨细而膜有孔径。

全量过滤:全量过滤也称为直流过滤、死端过滤、与常规的滤布过滤相似,被处理物料进入模组件,等量透过液流出模组件,截流物留在模组件内。

为了保证膜性能的可恢复性,必须及时从模组件内卸载截留物,因此需要定时反冲洗(过滤的反过程)等措施来去除膜面沉积物、恢复膜通量。

模组件污染后不能拆开清洗,通常使用在线清洗方式(CIP)超滤/微滤水处理过程一般采用全量过滤模式。

错流过滤被处理料液以议定的速度流过膜面,透过液以垂直方向透过膜,同时大部分截留物被浓缩液夹带出模组件。

错流过滤模式减小了膜面浓度极化层的厚度,可以有效降低膜污染,反滲透、纳滤均采用错流过滤方式。

膜系统:膜系统是指膜分离装置单元。

压力驱动膜系统主要由预处理系统、升压泵、模组件(压力容器和膜元件)、管道阀门和控制系统构成。

膜污染:各种原水中均含有一定浓度的悬浮物和溶解性物质。

悬浮物主要由无机颗粒物、胶体和微生物、藻类等生物性颗粒。

溶解性物质主要是易溶盐(如氯化物)和难溶盐(如碳酸盐、硫酸盐和硅酸盐)。

再反渗透过程中,进水的体积在减少,悬浮物和溶解性物质的浓度在增加。

悬浮颗粒会沉积在膜上,堵塞进水流道、增加摩擦阻力(压力降)。

难溶盐会从浓水中沉淀出来,在磨面上形成结垢,降低RO膜的通量。

这种在膜面上形成沉积层的现象叫膜污染,膜污染是膜系统性能的劣化。

反滲透/纳滤基本原理:半透膜:是具有选择性透过性能的薄膜。

反渗透和纳滤的基础知识

反渗透和纳滤的基础知识

第三章反渗透和纳滤的原理3.1 反渗透和纳滤基础3.1.1 膜与膜过程膜在自然界中是广泛存在的,尤其在生物体内。

但是人类首次注意到由生物膜引起的渗透现象是在1748 年,法国学者Abbe Nollet(1700 – 1770)很偶然的发现包裹在猪膀胱里的水可以自己扩散到膀胱外侧的酒精溶液中。

法国植物学家Henri Dutrochet(1776 – 1847)在1827 年提出了Osmosis(渗透)一词来定义Abbe Nollet 发现的现象。

但是,这一现象并未能引起足够的重视,直到1854 年英国科学家Thomas Graham(1805 – 1869)在实验中发现,放置在半透膜一侧的晶体会比胶体更快的扩散到另一侧,并提出了Dialysis(透析)的概念。

这时人们才对半透膜产生了兴趣,并由德国生物化学家Moritz Traube(1826 – 1894)在1864 年制造出了人类历史上第一张人造膜——亚铁氰化铜膜。

完整的渗透压理论直到20 世纪才由荷兰物理化学家Van't Hoff(1852 – 1911)提出。

后来,随着各个学科的不断发展,膜分离现象也不断为人们发现并研究。

1960 年,人类终于实现了从苦咸水中制取淡水的梦想,工作于美国加利福尼亚大学洛杉矶分校(UCLA)的科学家Sidney Loeb (1917 –)和Srinivasa Sourirajan(1923 –)共同研制出世界第一张非对称醋酸纤维素反渗透膜。

从那时起的近半个世纪以来,膜分离技术,包括反渗透和纳滤,在世界范围得到了广泛的发展和应用。

表3.1 列出了膜分离技术发展简史。

表3.1 膜分离技术发展史随着膜材料、制膜方法以及膜应用的不断发展,膜分离技术逐渐成为分离技术大家族中的重要成员。

与传统的分离技术(例如:过滤、蒸馏、萃取、电泳和层析等)相比,膜分离技术的分离精度高、易于操作和管理、在应用中对环境造成的二次污染小。

进口反渗透、纳滤的基础知识

进口反渗透、纳滤的基础知识

反渗透、纳滤基础知识1 分离膜与膜过程膜分离物质世界是由原子、分子和细胞等微观单元构成的,然而这些微小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。

人们发明了过滤、蒸馏、萃取、电泳、层析和膜分离等分离技术来获取纯净的物质。

膜分离技术的基础是分离膜。

分离膜是具有选择性透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则被阻隔。

这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么都有大小巨细,而膜有孔径。

当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性(亲油、亲水),深解性,等等。

按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、纳滤(纳米级)、超滤(10纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、膜蒸馏等膜分离过程。

表-1 主要的膜分离过程气体分离气体、气体与蒸汽分离浓度差易透过气体不易透过气体薄膜复合膜薄膜复合膜由超薄皮层(活性分离层)和多孔基膜构成。

基膜一般是在多孔织物支撑体上浇筑的微孔聚砜膜(即0.2mm厚),超薄皮层是由聚酰胺和聚脲通过界面缩合反应技术形成的。

薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是化学稳定性,在中等压力下操作就具有高水通量和盐截留率及抗生物侵蚀。

它们能在温度0-40℃及pH2-l2间连续操作。

像芳香聚酰胺一样,这些材料的抗氯及其他氧化性物质的性能差。

过滤图谱平膜结构图-1 非对称膜与复合膜结构比较美国海德能公司的RO/NF膜(CPA, ESPA, SWC, ESNA, LFC)均是复合膜。

CPA3的断面结构如图-2所示。

可以看出在支撑层上形成褶皱状的表面致密层。

原水以与皮层平行方向进入,通过加压使其透过密致分离层,产水从支撑层流出。

图-2 CPA3的断面结构表面致密层构造根据膜种类不同,制作平膜的表面致密层材质也有差异。

反渗透和纳滤基本知识

反渗透和纳滤基本知识

目录3-1 ........................................................................................ 反渗透和纳滤技术发展历史3-2 3-2 ........................................................................................................ 膜法分离过程分类3-2 3-3 ........................................................................................................ 反渗透和纳滤原理3-3 3-4.................................................................... 影响反渗透和纳滤膜性能的因素3-4 3-5........................................................................ 了解反渗透膜元件脱盐率规范3-73-1 反渗透和纳滤技术发展历史自从上世纪五十年代未六十年代初期,反渗透(RO)和纳滤(NF)技术产品商品化投放市场,尤其是陶氏化学公司全资子公司发明的超薄聚酰胺复合膜进入实用阶段,使得RO和NF成为实用化的化工分离单元操作,它们的应用领域得到不断地扩展。

起初,反渗透主要用于海水和苦咸水脱盐,由于工业领域对保护水源、减少能耗、控制污染以及从废水中回收有价值物质的需求日益增加,反渗透和纳滤的新用途变得更有经济价值。

此外,伴随着膜分离技术的发展,促进了生物技术和制药行业的技术进步,相对于传统蒸馏法,膜法分离浓缩技术更加节省能量消耗,同时也不会引起产品热分解变质。

纳米通净水:微滤、超滤、纳滤、反渗透技术介绍

纳米通净水:微滤、超滤、纳滤、反渗透技术介绍

一、微滤的定义Microfiltration,MF,又称微孔过滤,它属于精密过滤,一般精度范围为0.1微米以上,能够过滤微米(micron)级的微粒和细菌,能够截留溶液中的沙砾、淤泥、黏土等颗粒和贾第虫、隐孢子虫、藻类和一些细菌等,而大量溶剂、小分子及大分子溶质都能透过的膜的分离过程。

二、微滤膜过滤原理微滤过滤是一种筛分过程,操作压力一般在0.07~0.7MPa(0.7~7个大气压)。

原料液在静压差作用下,透过一种过滤材料,过滤材料包括:折叠滤芯、熔喷滤芯、布袋式除尘器等。

透过纤维素或高分子材料制成的微孔滤膜(微孔膜的规格目前有十多种,孔径范围为0.1~100 μm,膜厚120~150 μm),利用其均一孔径,来截留水中的微粒、细菌等,使其不能通过滤膜从而被去除。

决定膜的分离效果的是膜的物理结构、孔的形状和大小。

三、微滤技术的优势* 占地面积小,膜面积大,有效过滤面积高;* 制作工艺成熟,精度高,0.1~100 μm范围内,微滤膜都能满足处理要求;* 抗性高,纳污能力强,部分材质膜抗酸碱、抗氧化能力强,能适用各种恶劣水质,如PVDF(聚偏氟乙烯)性能稳定,寿命长,抗酸碱、高温等;* 成本低,部分无机膜清洗方便,可重复使用。

四、微滤技术的缺点收制备工艺及本身结构的限制,微滤对于水中离子、有机物、病毒等小分子物质几乎没有去除效果。

五、微滤技术的应用领域* 海水淡化工程:作为工业反渗透进水的预处理工艺* 工业污水处理:微滤主要应用处理污水中大颗粒杂质* 制药行业:液体-固体分离* 饮料行业:液体-固体分离六、微滤技术在纳米通产品中的应用纳米通几乎所有家用净水设备中均采用了微滤作为初步过滤手段,有效除去水中泥沙、铁锈、大型藻类植物等,保护进一步处理中使用的各种膜材及设备,使系统精度更高、使用寿命更长。

一、超滤概念超滤是切向流过滤(据滤膜的截留孔径分类)中的一种,也称切向流超滤,能截留0.002~0.1微米之间的大分子物质和蛋白质,允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,用于表示超滤膜孔径大小的切割分子量范围一般在1000-500000之间。

反渗透和纳滤应用说明

反渗透和纳滤应用说明

反渗透和纳滤应用说明1 如何确定系统回收率工业用大型反渗透装置由于膜元件的数量多、给水流程长,实际系统回收率一般均在75 %以上,有时甚至可以达到90 %。

对于小型反渗透装置也要求较高的系统回收率,以免造成水资源的浪费。

应该主要根据以下两点来确定系统的回收率:⑴根据膜元件串联的长度;⑵根据是否有浓水循环以及循环流量的大小。

在系统没有浓水循环时,一般按照以下规定:决定膜元件和系统回收率。

2 膜元件标准测试压力与实际使用压力膜元件标准测试压力为膜元件生产厂家在标准测试条件下所使用的压力,以美国海德能公司CPA系列产品为例,其标准测试压力为1.55 MPa。

膜元件使用压力为膜元件实际工作时所需要的压力,很多设计人员或使用人员以为膜元件的标准压力即为膜元件的使用压力,从而造成有时系统产水量很大,用户认为膜元件生产厂家的产品质量很好,不知道此时由于系统平均水通量过高,超出了前面所介绍的设计产水量的要求,为反渗透系统长期安全运行埋下了祸根。

有时系统产水量很小,认为膜元件生产厂家的质量不好,向膜元件生产厂家索赔。

实际上膜元件的标准压力与膜元件的使用压力有着本质的不同,膜元件标准压力是膜元件生产厂家为了检验其膜元件质量而人为设定的压力,而实际使用压力则受到温度、平均水通量选取值、进水含盐量、系统回收率、膜元件种类等各种因素的影响,膜元件的使用压力应根据各种因素的不同而不同。

最简单的办法就是通过膜元件生产厂家提供的计算软件进行实际计算。

3 如何计算系统脱盐率系统脱盐率是反渗透系统对盐的整体脱除率,它受到温度、离子种类、回收率、膜种类以及其他各种设计因素的影响,因而不同的反渗透系统的脱盐率是不一样的,其计算公式为:系统脱盐率= (总的给水含盐量-总的产水含盐量)/ 总的给水含盐量× 100 %有时出于方便的原因,也可以用下列公式来近似估算系统脱盐率:系统脱盐率= (总的给水电导率- 总的产水电导率)/ 总的给水电导率× 100 %以此近似估算得到的系统脱盐率往往低于实际系统脱盐率,因而经常在反渗透系统验收时引起争议。

纳滤知识

纳滤知识

纳滤膜主要用于截留粒径在0.1~1nm, 分子量为1000左右的物质,可以使一价盐 和小分子物质透过,具有较小的操作压 (0.5~1MPa)。其被分离物质的尺寸介于 反渗透膜和超滤膜之间,但与上述两种膜有 所交叉。 目前关于纳滤膜的研究多集中在应用方 面,而有关纳滤膜的制备、性能表征、传质 机理等的研究还不够系统、全面。进一步改 进纳滤膜的制作工艺,研究膜材料改性,将 可极大提高纳滤膜的分离效果与清洗周期。
4. 纳滤膜及其技术的应用领域
纳滤技术最早也是应用于海水及苦咸 水的淡化方面。由于该技术对低价离子与高 价离子的分离特性良好,因此在硬度高和有 机物含量高、浊度低的原水处理及高纯水制 备中颇受瞩目;在食品行业中,纳滤膜可用 于果汁生产,大大节省能源;在医药行业可 用于氨基酸生产、抗生素回收等方面;在石 化生产的催化剂分离回收等方面更有着不可 比拟的作用。
2)水分子极性很高,能溶解众多物质,造成 水溶液组份很复杂(杂质); 3)在所有液态和固态物质中,水的比热最大, 水的汽化潜热也最大。
2.水资源短缺
100 80 60 40 20 0
• 2003年——国际淡水年 • 淡水资源分布极不平均
– 65%淡水→不到10个国家 – 20亿人口严重缺水
• 中国的水资源
• 无机物 各种离子
• 有机物 • 微生物 细菌、病毒
预处理的方法
»结 垢 酸化 阻垢剂 冷/热石灰软化 树脂软化 »污 堵 混凝沉降 絮凝过滤 机械过滤 氧化/锰砂过滤 氯化、O3氧化 炭滤(有机物/氧化物) 杀生剂 MF/UF膜滤
– 第六位↔四分之一
海水

淡水
• 中国工程院2000年7月提 出“21世纪中国可持续 发展水资源战略研究”报 告
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反过程)等措施来去除膜面沉积物、恢复膜通量。膜组件污染后不能拆开清洗,通常采用在线清洗方式(
CIP)。超滤
/ 微滤水处理过程一般采用全量过滤模式。
错流过滤
被处理料液以一定的速度流过膜面,透过液从垂直方向透过膜,同时大部分截留物被浓缩液夹带出膜组件。错流过滤
模式减小了膜面浓度极化层的厚度,可以有效降低膜污染。反渗透、纳滤均采用错流过滤方式。
声明 : 本文提及的技术方案均属于海德能公司的专利范围。除非来自海德能公司的书面保证,海德能公司对于本文提供
的信息及本文提供的产品和系统性能没有义务提供担保。
第三章 反渗透、纳滤基础知识
1 分离膜与膜过程
膜分离
物质世界是由原子、分子和细胞等微观单元构成的,然而这些微小的物质单元总是杂居共生,热力学第二定律揭示了
少,悬浮颗粒和溶解性物质的浓度在增加。悬浮颗粒会沉积在膜上,堵塞进水流道、增加摩擦阻力(压力降)。难溶
盐会从浓水中沉淀出来,在膜面上形成结垢,降低
RO膜的通量。这种在膜面上形成沉积层的现象叫做膜污染,膜污染
的结果是系统性能的劣化。
2 反渗透 / 纳滤基本原理
半透膜
半透膜是具有选择性透过性能的薄膜。当液体或气体通过半透膜时,一些组分透过,而另外一些组分被截留。实际上
留率及抗生物侵蚀。 它们能在温度 0- 40℃及 pH2- l2 间连续操作。 像芳香聚酰胺一样, 这些材料的抗氯及其他氧化性
物质的性能差。
过滤图谱
平膜结构
图 -1 非对称膜与复合膜结构比较 美国海德能公司的 RO/NF膜(CPA, ESPA, SWC, ESNA, LFC) 均是复合膜。 CPA3的断面结构如图 -2 所示。可以看出在支 撑层上形成褶皱状的表面致密层。原水以与皮层平行方向进入,通过加压使其透过密致分离层,产水从支撑层流出。
压力差
水、溶剂
无机盐、糖类、氨基酸、 BOD、 COD等
透析
脱除溶液中的盐类及低分 子物
浓度差
离子、低分子物、酸、 碱
无机盐、尿素、尿酸、糖类、氨基酸
电渗析
脱除溶液中的离子
电位差
离子
无机、有机离子
渗透气化
溶液中的低分子及溶剂间 的分离
压力差、 浓度 蒸汽

液体、无机盐、乙醇溶液
气体分离
气体、气体与蒸汽分离
半透膜对于任何组分都有透过性,只是透过的速率相差很大。在反渗透过程中,溶剂(水)的透过速率远远大于溶解
在水中的溶质(盐分)。通过半透膜实现了溶剂和溶质的分离,得到纯水以及浓缩的盐溶液。
渗透
渗透是当流体在跨越半透膜屏障时的一种自然过程。如果将一箱纯水用一张半透膜垂直分为两部分,纯水与理想半透
微观粒子都会倾向于无序的混合状态。人们发明了过滤、蒸馏、萃取、电泳、层析和膜分离等分离技术来获取纯净的
物质。
膜分离技术的基础是分离膜。分离膜是具有选择性透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则
被阻隔。这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么
膜的褶皱形状明显高于 CPA3。膜分离过程实际上是通过这些褶皱实现的,显然褶皱越高,比表面积越大,产水量越大。
通过膜表面微观结构的精确控制来改善膜性能,这是海德能对于膜工业的重要贡献。
ESPA系列产品是世界上性能最好
的超低压膜,明显降低了反渗透运行成本,扩大了反渗透的应用范围。
图 -3 CPA3与 ESPA2的皮层断面 TEM照片
浓度差
易透过气体
不易透过气体
薄膜复合膜
薄膜复合膜由超薄皮层(活性分离层)和多孔基膜构成。基膜一般是在多孔织物支撑体上浇筑的微孔聚砜膜
( 即 0.2mm
厚 ) ,超薄皮层是由聚酰胺和聚脲通过界面缩合反应技术形成的。
薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是化学稳定性,在中等压力下操作就具有高水通量和盐截
都有大小巨细,而膜有孔径。当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性
(亲油、亲水),深解性, 等等。 按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、
纳滤(纳米级)、
超滤( 10 纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、
膜蒸馏等膜分离过程。
表 -1 主要的膜分离过程
膜的种类
膜的功能
分离驱动力
透过物质
被截留物质
微滤
多孔膜、 溶液的微滤、 脱微 压力差
粒子
水、溶剂、溶解物
悬浮物、细菌类、微粒子
超滤
脱除溶液中的胶体、 各类大 压力差
分子
溶剂、离子和小分子
蛋白质、各类酶、细菌、病毒、乳胶、 微粒子
反渗透和纳 滤
脱除溶液中的盐类及低分 子物
图 -5 卷式膜元件结构示意图
膜系统
膜系统是指膜分离装置单元。压力驱动膜系统主要由预处理系统、升压泵、膜组件(压力容器和膜元件)、管道阀门
和控制系统构成。
膜污染
各种原水中均含有一定浓度的悬浮物和溶解性物质。悬浮物主要是无机颗粒物、胶体和微生物、藻类等生物性颗粒。
溶解性物质主要是易溶盐(如氯化物)和难溶盐(如碳酸盐、硫酸盐和硅酸盐)。在反渗透过程中,进水的体积在减
图 -2 CPA3的断面结构 表面致密层构造 根据膜种类不同,制作平膜的表面致密层材质也有差异。大多数都是采用交链全芳香族聚酰胺。其构造如图
-3 所示。
図 -3 交链全芳香族聚酰胺结构
不同的表面致密层构造的 RO膜的性能有较大的差异。图 -4 是 CPA3与 ESPA2断面透射电镜 TEM照片。可以发现 ESPA2
入膜元件,部分作为产水透过膜,其余部分作为浓水从膜元件的另外一侧排出。透过膜的产水进入膜袋,沿产水网格
呈螺旋状向内流动,经过中心管上的孔进入中心集水管,通过产水排出口流出。
ቤተ መጻሕፍቲ ባይዱ
全量过滤
全量过滤也称为直流过滤、死端过滤,与常规的滤布过滤类似,被处理物料进入膜组件,等量透过液流出膜组件,截
留物留在膜组件内。为了保证膜性能的可恢复性,必须及时从组件内卸载截留物,因此需要进行定时反冲洗(过滤的
卷式膜元件
卷式膜元件是由多个膜袋缠绕在一开有孔洞的工程塑料中心集水管上制成
( 图 -5) 。每个膜袋由两张相背的膜片构成,
膜片中间夹一层聚酯纤维编织淡水网格,膜周围
3 条边用环氧或聚氨酯粘合剂密封,第四边留作产水通道与中心集水
管连接。在相邻两膜袋之间铺夹塑料隔网构成进水流道(进水网格)。进水沿膜袋外侧的进水网格从膜元件的一端进
相关文档
最新文档