环保在线监测系统解决方案设计
环保在线监测系统方案

以我给的标题写文档,最低1503字,要求以Markdown 文本格式输出,不要带图片,标题为:环保在线监测系统方案# 环保在线监测系统方案## 简介随着环境问题的日益严重,环保工作得到了广泛的关注。
为了加强对环境的监测和保护,环保在线监测系统被提出并广泛应用。
本文将介绍一种基于新技术的环保在线监测系统方案。
## 目标环保在线监测系统的目标是实时监测环境中的污染物,并通过数据分析和报警系统提供及时的反馈和预警。
具体目标包括:1. 实时监测环境中的污染物浓度;2. 对监测数据进行实时分析和处理,生成报表和统计结果;3. 建立报警系统,及时发出警报;4. 支持数据远程传输和访问;5. 提供用户友好的界面,便于操作和管理。
## 系统架构环保在线监测系统的架构由以下几个组件组成:1. 传感器网络:负责采集环境数据,包括温度、湿度、气体浓度等。
2. 数据采集器:负责接收传感器数据,进行初步处理并传输给数据处理服务器。
3. 数据处理服务器:负责对采集的数据进行处理和分析,并生成报表和统计结果。
4. 报警系统:根据分析结果生成警报并及时发送给相关人员。
5. 远程传输模块:负责将处理好的数据和报警信息传输到云端或其他地方,方便远程访问和存储。
6. 用户界面:提供用户友好的界面,便于操作和管理系统。
## 系统工作流程1. 传感器网络采集环境数据,并将数据发送给数据采集器。
2. 数据采集器接收到数据后进行初步处理,去除噪声和异常数据,并将处理好的数据传输给数据处理服务器。
3. 数据处理服务器接收到数据后,对数据进行实时分析和处理,并生成报表和统计结果。
4. 报警系统根据分析结果生成警报,并及时发送给相关人员。
5. 远程传输模块将处理好的数据和报警信息传输到云端或其他地方,方便远程访问和存储。
6. 用户界面提供用户友好的操作界面,用户可以通过界面查看实时数据、报表和统计结果,并进行系统的管理和配置。
## 技术选型为了满足系统的要求,我们选择以下技术和工具:1. 传感器网络:使用无线传感器网络(WSN)技术,采用低功耗、高可靠性和长距离传输的传感器。
生态监测系统解决方案(3篇)

第1篇一、引言随着全球环境问题的日益突出,生态环境监测已成为国家和社会关注的焦点。
生态监测系统是通过对自然环境的实时监测、分析和评估,为环境保护、资源管理、灾害预警等提供科学依据的重要手段。
本文将针对生态监测系统的需求,提出一套完整的解决方案,包括系统设计、技术选型、实施步骤和运维保障等方面。
二、生态监测系统需求分析1. 监测目标生态监测系统应覆盖以下监测目标:(1)空气质量:PM2.5、PM10、SO2、NO2、CO等污染物浓度。
(2)水质:pH值、溶解氧、氨氮、总磷、重金属等指标。
(3)土壤质量:土壤有机质、重金属、养分等。
(4)生物多样性:植物、动物、微生物等。
(5)自然灾害:洪水、地震、滑坡、泥石流等。
2. 监测范围生态监测系统应覆盖以下监测范围:(1)全国重点生态功能区。
(2)重点流域、湖泊、水库、湿地等。
(3)重点城市、工业园区、矿区等。
(4)自然保护区、风景名胜区等。
3. 监测周期生态监测系统应满足以下监测周期要求:(1)空气质量:每日监测,实时数据传输。
(2)水质:每周监测,实时数据传输。
(3)土壤质量:每季度监测,实时数据传输。
(4)生物多样性:每半年监测,实时数据传输。
(5)自然灾害:实时监测,及时预警。
三、生态监测系统解决方案1. 系统架构生态监测系统采用分层架构,包括数据采集层、传输层、处理层、应用层和展示层。
(1)数据采集层:负责收集各类监测数据,包括空气、水质、土壤、生物多样性、自然灾害等。
(2)传输层:负责将采集到的数据传输至处理层,确保数据传输的实时性和稳定性。
(3)处理层:负责对采集到的数据进行处理、分析、存储和共享。
(4)应用层:提供各类生态监测应用,如实时监测、历史数据查询、预警预报等。
(5)展示层:通过图形、图表等形式展示监测数据,方便用户直观了解生态环境状况。
2. 技术选型(1)传感器:选择高精度、高稳定性的传感器,如空气质量传感器、水质传感器、土壤传感器等。
智慧环保在线监测系统设计方案 (2)

智慧环保在线监测系统设计方案智慧环保在线监测系统是一种基于物联网技术的环境监测系统,旨在通过实时数据采集、分析和优化,提供智能化的环境监测和管理方案,从而实现环境保护和可持续发展的目标。
以下是针对智慧环保在线监测系统的设计方案。
一、系统架构设计智慧环保在线监测系统的设计需要考虑到数据采集、数据传输、数据处理和数据展示等方面。
根据此需求,可以设计如下的系统架构:1. 数据采集层:此层负责采集环境监测数据,如空气质量、水质监测、噪音监测等。
可以通过传感器设备实时采集环境数据,并将数据发送给数据传输层。
2. 数据传输层:此层负责将采集到的环境数据传输到数据处理层。
可以采用无线传输技术,如Wi-Fi、NB-IoT 等,保证数据传输的稳定性和实时性。
3. 数据处理层:此层负责对采集到的环境数据进行处理和分析,包括数据清洗、数据存储、数据分析等。
可以使用云计算平台进行数据处理和分析,利用大数据分析算法提取环境信息,如环境污染源识别、环境质量趋势预测等。
4. 数据展示层:此层负责将处理后的数据以可视化的方式展示给用户,以帮助用户了解环境状况,并进行环境管理和决策。
可以通过网页或移动应用程序提供实时的环境监测数据和报告。
二、关键技术及功能设计在智慧环保在线监测系统的设计中,需要考虑以下关键技术和功能:1. 传感器技术:选择合适的传感器设备,如空气质量传感器、水质传感器、噪音传感器等,用于实时数据采集,确保数据的准确性和可靠性。
2. 无线传输技术:选择低功耗、长距离的无线传输技术,如Wi-Fi、NB-IoT等,用于将采集到的环境数据传输到数据处理层,保证数据的实时性和稳定性。
3. 云计算技术:借助云计算平台进行数据存储、处理和分析,提取环境信息,如环境污染源识别、环境质量趋势预测等。
4. 数据可视化技术:通过网页或移动应用程序将处理后的数据以可视化的方式展示给用户,以便用户对环境信息进行了解和决策。
5. 报警技术:设定一套智能的报警系统,当环境异常超过一定阈值时,可以通过短信、邮件等方式及时通知相关人员,采取相应的措施。
智慧环保在线监测系统解决方案

环保在线监测系统设计1总体设计系统由污染排放在线监测系统、污染净化设施运行监测系统、预警预告系统、初级控制执行系统、紧急控制执行系统五大系统组成。
对排污数据和环境治理设备运行状况同时进行监测,综合分析两方面的数据,确保排污单位排污状况真实可靠,污染净化设施有效运行。
对企业污染物超标排放或者环保设备偷停不运转的情况,系统会启动生产控制执行程序,远程下达命令,分层断电,及时制止排污行为,改变了传统设备“只监不控”的方式。
对突发性污染事故隐患和污染物泄露事故,系统会立即执行重大事故应急预案,启动排污单位的紧急ESD系统,紧急规避危险,预防灾难性污染事故的发生.如果企业排污超标,系统会在排污单位和环保部门同时报警,并将报警信息通过短信息在第一时间发送到相关单位负责人和管理者的手机上,督促管理者及时处理问题。
系统监控设备监控一体化功能,使排污单位必须自觉维护好系统,因为一旦运行不好,上传数据不正确,没有数据上传视同违法,系统仍然会报警,有效遏止人为破坏,保证系统运行正常。
2功能设计2。
1方便的污染源管理本模块利用GIS技术把环境污染源应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。
能综合分析环境情况,实现污染源信息的综合查询,为计划决策提供信息支持,为有关的评价、预测、规划、决策等服务。
其检索查询功能,可对行政区划、年份等进行条件统计汇总,统计结果可用表格、统计图、文字等多种方式表示。
2。
2动态数据成图系统可根据测量得到的数据,自动对区域环境状况进行直观表现,提供描绘全场平面、立体等值线图,各种数据可生成饼图、柱状图、线状图等多种表现形式,能动态外挂图、文、声、像等多媒体数据。
2。
3环境质量监测系统分为对大气、水、噪声、固体废弃物、土壤及农作物等方面的监测,其主要功能:专题的监测点位图的显示、点位查询、区域查询、信息查询、全区环境分布、全区或个别点环境平均状况随时间的变化情况等.并实现了数据地图化功能,可自动生成交通线上的噪声污染图,功能区噪声图等.2.4评价模型对当前区域内造成的环境质量变化进行评定,为区域开发建设及区域环境污染综合防治提供科学依据。
智慧环保在线监测系统建设方案

智慧环保在线监测
系统建设方案效益
06
评估与展望
经济效益评估
降低企业运营成 本
提高环境治理效 率
增加企业经济效 益
实现可持续发展 目标
社会效益评估
减少污染物排放:智慧环保在线监测系统能够实时监测企业排污情况,有 效减少污染物排放。
提升环境质量:通过在线监测系统的数据分析和预警功能,可以及时采取 措施改善环境质量。
智慧环保在线监测
系统应用场景与案
04
例
城市空气质量在线监测
监测范围:覆 盖城市主要区 域,实现全面
监测
监测项目:包 括PM2.5、 PM10、二氧 化硫等主要空
气污染物
数据传输:实 时传输监测数 据,方便管理 部门掌握城市 空气质量情况
预警机制:建 立预警机制, 对异常数据及
时发出警报
水质在线监测
工业污染源在线监测
监测对象:工业污染源 监测方法:在线监测 监测内容:污染物排放情况、废水废气等 监测意义:控制污染源排放,保护环境
智慧环保在线监测
系统建设方案实施
05
与保障
项目实施计划与时间表
时间安排:制定详细的建设 时间表,包括前期准备、建 设周期和验收时间
实施方案:明确建设目标、 任务和责任人
数据存储设备
服务器:用于存储数据和管理控制 存储设备:用于存储大量的监测数据 备份设备:用于备份重要数据,确保数据安全可靠 数据存储方案:采用分布式存储架构,提高数据存储效率和安全性
数据处理与分析设备
作用:对采集的数据进行实时分析、处理和存储 类型:高性能服务器、工作站等 特点:高可靠性、高可扩展性、高安全性 应用领域:环保、气象、水文等领域
数据传输方式:无 线传输、互联网传 输等
环保行业智慧环保监测系统建设方案

环保行业智慧环保监测系统建设方案第一章环保行业智慧环保监测系统概述 (2)1.1 系统定义 (2)1.2 系统架构 (2)1.3 系统目标 (3)第二章环保监测数据采集 (3)2.1 监测设备选型 (3)2.2 数据采集流程 (3)2.3 数据传输方式 (4)第三章环保监测数据分析 (4)3.1 数据预处理 (4)3.2 数据挖掘方法 (5)3.3 数据可视化 (5)第四章环保监测预警机制 (6)4.1 预警指标体系 (6)4.2 预警阈值设定 (6)4.3 预警信息发布 (6)第五章环保监测应急响应 (6)5.1 应急预案编制 (6)5.2 应急资源调度 (7)5.3 应急演练与培训 (7)第六章环保监测系统运维管理 (8)6.1 系统运维流程 (8)6.1.1 运维概述 (8)6.1.2 运维流程具体内容 (8)6.2 系统安全性保障 (8)6.2.1 安全策略 (8)6.2.2 安全措施 (8)6.3 系统功能优化 (9)6.3.1 功能监测 (9)6.3.2 功能优化措施 (9)6.3.3 持续改进 (9)第七章智慧环保监测平台建设 (9)7.1 平台架构设计 (9)7.2 平台功能模块 (10)7.3 平台互联互通 (10)第八章环保监测系统与第三方合作 (11)8.1 合作模式探讨 (11)8.2 数据共享与交换 (11)8.3 项目实施与管理 (11)第九章环保监测系统政策法规与标准 (12)9.1 政策法规梳理 (12)9.1.1 国家层面政策法规 (12)9.1.2 地方层面政策法规 (12)9.1.3 行业政策法规 (12)9.2 标准制定与实施 (13)9.2.1 标准制定 (13)9.2.2 标准实施 (13)9.3 监测数据质量控制 (13)9.3.1 数据采集质量控制 (13)9.3.2 数据传输质量控制 (13)9.3.3 数据处理与分析质量控制 (14)9.3.4 数据审核与发布质量控制 (14)第十章环保监测系统推广与应用 (14)10.1 系统推广策略 (14)10.2 典型应用案例 (14)10.3 市场前景分析 (15)第一章环保行业智慧环保监测系统概述1.1 系统定义环保行业智慧环保监测系统是指运用现代信息技术,包括物联网、大数据、云计算、人工智能等,对环境质量、污染源排放、生态状况等环境信息进行实时监测、预警、分析、评估和决策支持的一种智能化系统。
面向环保领域企业在线监控系统解决方案

面向环保领域企业在线监控系统的设计与实现目录第一章引言 (3)1.1 研究背景和意义 (3)1.2 研究主要内容 (3)1.2.1 国内外研究现状 (3)1.2.2 论文研究的主要内容 (4)第二章系统相关技术工作 (6)2.1 系统可靠性技术研究 (6)2.1.1 服务器冗余备份技术 (6)2.1.2 数据库冗余备份机制 (8)2.1.3 web服务器健康检查技术 (10)2.2 BP神经网络技术研究 (11)2.3 卷积神经网络技术研究 (15)第三章面向环保领域企业在线监控系统需求分析 (18)3.1 系统目标与可行性分析 (19)3.2 系统功能需求分析 (20)3.2.1用户及权限管理功能 (21)3.2.2信源管理功能 (21)3.2.3算法管理功能 (22)3.2.4场景管理功能 (23)3.2.5报警管理功能 (24)3.2.6报表管理功能 (25)3.2.7可视化模块功能 (26)3.3 系统非功能性需求 (26)第四章面向环保领域企业在线监控系统的设计 (27)4.1软件架构设计 (27)4.1.1系统架构 (27)4.1.2功能架构 (29)4.2 功能模块设计 (29)4.2.1 用户及权限管理模块 (30)4.2.2 信源管理模块 (31)4.2.3 场景管理模块 (32)4.2.4 算法管理模块 (32)4.2.5 报警管理模块 (32)14.2.6 报表管理模块 (33)4.2.7 可视化模块 (33)4.3 系统的数据库设计 (34)4.3.1 数据库概念结构设计 (34)4.3.3 数据库表设计 (37)4.4 系统界面设计 (39)第五章面向环保领域企业在线监控系统的功能实现 (42)5.1 系统环境配置 (42)5.2 系统的功能实现 (43)5.2.1用户及权限管理功能实现 (43)5.2.2信源管理功能实现 (45)5.2.3场景管理功能实现 (47)5.2.4算法管理功能实现 (48)5.2.5报警管理功能实现 (50)5.2.6报表管理功能实现 (51)5.2.7可视化模块功能实现 (51)5.4 系统应用效果 (52)第一章引言1.1 研究背景和意义环境保护是我国的一项基本国策,在我国经济建设发展中的地位愈发重要。
智慧环保在线监测系统建设方案

通过数据挖掘和分析,智慧环 保能够为环保决策提供科学依 据,推动环保治理的精准化和 高效化。
项目目标与预期成果
构建覆盖全区域的环境监测网 络,实现环境数据的实时采集
、传输和处理。
建立智慧环保平台,整合环保 部门和企业资源,实现信息共
享和协同治理。
提高环境监测数据的准确性和 时效性,为环保决策提供有力 支撑。
风险评估、应对措施制定和监控执行
风险评估
对项目实施过程中可能出现的风险进行识别、分 析和评估,形成风险清单。
应对措施制定
针对可能出现的风险,制定相应的应对措施和预 案,降低风险对项目的影响。
监控执行
在项目实施过程中,对风险进行持续监控和跟踪 ,及时调整应对措施,确保项目顺利实施。
项目验收标准、流程和方法论述
量和型号。
硬件设备布局规划及安装要求
根据监测区域和监测项目,合理规划硬件设备的布局,确保监测数据的 全面性和代表性。
硬件设备安装应符合国家相关标准和规范,确保设备的稳定性和安全性 。
对于需要特殊安装环境的设备,应制定相应的安装方案和措施。
设备维护和保养计划
制定详细的设备维护 和保养计划,包括定 期检查、清洁、校准 等。
进行系统试运行,解决运行中出现的问题,组织项目验 收。
资源调配、团队协作和沟通机制建立
01
资源调配
根据项目需求,合理分配人力、 物力和财力资源,确保项目顺利 实施。
团队协作
02
03
沟通机制
建立高效的项目团队,明确团队 成员职责和分工,形成协同工作 的良好氛围。
建立定期的项目会议制度、工作 报告制度和信息交流渠道,确保 项目信息畅通无阻。
提供多种查询和统计功能 ,方便用户快速获取所需 信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环保在线监测系统解决方案领萃环保科技公司一、方案概况污染物在线监测系统是环保监测与环境预警的信息平台。
系统采用先进的无线网络,涵盖水质监测、环境空气质量监测、固定污染源监测(CEMS)、以及视频监测等多种环境在线监测应用。
系统以污染物在线监测为基础,充分贯彻总量管理、总量控制的原则,包含了环境管理信息系统的许多重要功能,充分满足各级环保部门环境信息网络的建设要求,支持各级环保部门环境监理与环境监测工作,适应不同层级用户的管理需求。
二、方案架构污染物在线监测系统设计构成:1、连续、及时、准确地监测排污口(环境空气)各监测参数及其变化状况;2、中心站可随时取得各子站的实时监测数据,统计、处理监测数据,编制报告与图表,并可输入中心数据库或上网查询;3、收集并可长期储存指定的监测数据及各种运行资料、环境资料备案检索;4、系统具有监测项目超标及子站状态信号显示、报警功能;5、具有自动运行、停电保护、来电自动恢复功能;6、运维状态测试,例行维修和应急故障处理;三、污染物在线监测系统解决方案1、环境空气质量在线监测解决方案空气质量监测系统可实现区域空气质量的在线自动监测,能全天候、连续、自动地监测环境空气中的二氧化硫、二氧化氮、臭氧和可吸入颗粒物的实时变化情况,迅速、准确的收集、处理监测数据,能及时、准确地反映区域环境空气质量状况及变化规律,为环保部门的环境决策、环境管理、污染防治提供详实的数据资料和科学依据。
1.1系统构成环境空气质量在线监测系统包括监测子站、中心站、质量保证实验室和系统支持实验室。
子站的主要任务是对环境空气质量和气象状况进行连续自动监测,由采样装置、监测分析仪、校准设备、气象仪器、数据传输设备、子站计算机或数据采集仪以及站房环境条件保证设施等组成,如下图所示:环境空气质量监测的参数主要包括SO2、NOX、O3、CO、PM10(2.5)、气象参数。
1.2系统特点1.2.1系统集成优势核心仪表采用该领域国际先进水平的厂商产品,具有多项认证,如USEPA,TUV,CE,CPA等;可提供不同类型空气站解决方案,如四类常规空气质量监测站、路边空气质量监测站、移动空气质量监测站等;拥有世界最先进的环境空气质量痕量级分析仪,最低检测限达到50ppt,广泛应用于空气质量背景站和农村监测站;在系统集成上完美发挥各仪表特点,充分显示产品技术先进性,并具有专用的数据采集系统,与API或HORIBA仪器采用数据式通讯,中心数据管系统AQMS-EGRP,能够真正的实现对API或HORIBA分析仪的数据采集、运行控制和远程管理;1.2.2仪表级优势仪表采用模块化设计,便于维修,能耗小,具有极小的温度漂移,并有双开关电源,抗干扰能力强,可靠性高;仪器置数据采集器,可存储一百万个数据,并具有以太网接口,可直接连接企业局堿网;各仪表具有独特的预诊断功能,极大减少仪器故障对数据捕获率的影响;仪器具有置的自动校准功能,只要按自动校准功能键就可以实现传统的烦琐的校准工作,用户可以在自动周期校准界面的菜单中设置自动校准的开始时间、间隔时间和量程;可根据被测气体浓度的瞬时值和平均值自动地选择最合适的量程,作为可选项,即使随意设定任何量程(最大量程比在10%以),量程自动选择功能仍可使用;环境压力自动补偿功能确保了检测结果稳定可靠,避免当时大气压力和所处位置的影响;2、环境空气重金属在线监测系统解决方案大气颗粒物是一种重要的空气污染物,对环境影响很大。
引起人们普遍关注的有总悬浮颗粒物(TSP)、可吸入颗粒物(PM10)、可入肺颗粒物(PM2.5)。
随着人们的环保认识不断加深,对PM2.5中所含有各类有毒物质有深入的了解。
重金属污染物(也包括As等类重金属)作为人们耳熟能详的有毒污染物,PM2.5重金属的危害性有目共睹。
因此,加强PM2.5中重金属元素的监测是环保部门迫切需求。
2.1系统构成动态加热采样装置、抽取系统、X荧光光谱仪、数据分析软件组成(如下图所示:)仪器以恒定的工况流量将空气吸入颗粒物切割器中,以PM2.5为例,动力学直径在2.5um附近及以下的颗粒污染物进入到仪器的富集系统中。
经过一段时间的富集后,富集系统自动切换成β射线分析系统,利用β射线的衰减与颗粒物的质量浓度成指数的关系,对颗粒物的质量浓度进行分析。
然后卷膜系统精确地将富集有空气颗粒物的滤纸移动到X射线荧光分析系统,分别利用X射线荧光的能量和强度对颗粒物中的元素成分进行定性和定量的分析,分析后数据通过通讯接口至管理平台。
2.2系统特点空气颗粒物浓度、大气重金属浓度一体式协同测量,为污染溯源及源解析提供更精准数据;TSP、PM10、PM2.5三种切割器可供用户选择,应用于不同的环境评价场合;铅、镉、砷等30多种重金属含量精确测量,最低检出限在pg/m3量级;从光管、探测器、数字多道分析器(DCMA)到整机,数十项XRF核心技术发明专利;具有国家级技术证书和测试报告,仪器的可靠性、准确性得到充分验证;3、水质在线监测系统解决方案水质在线监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动检测技术、自动控制技术、计算机应用技术以及配套的软件和通讯网络组成的一个综合性在线自动监测体系。
方案技术平台基于微定量分析技术及系统智能集成技术,系统通过对水样取样及预处理系统进行控制,从而实现了水样的环境参数进行测量控制预警等功能。
3.1系统构成本系统是由污水排放监测点、监测中心站组成的污水监测系统。
该系统可实现对企业废水和城市污水的自动采样、流量的在线监测和主要污染因子的在线监测;实时掌握企业及城市污水排放情况及污染物排放总量,实现监测数据自动传输;由监测点对水质参数自动采集、处理、保存和远程通讯传输,监测中心站的计算机控制中心进行数据汇总、整理和综合分析;监测信息传至环保局,由环保局对企业进行监督管理。
系统图如下:主要监测参数:pH、电导率、溶解氧、悬浮物、COD、NH-N、总磷、总磷、3总氮、氟化物、氯离子、氰化物、酚、TOC、重金属、流速流量等。
3.1.1污水处理监测点利用各种传感器或专用仪表,采集与污水处理有关的物理、化学参数。
如污水处理设备运行状况,工业用水排放污水流量,污水PH值,污水的相对浊度等。
各种数据从监测仪的通信口传送到GPRS DTU,由GPRS DTU 把数据打成TCP/IP 包,发送到GPRS DTU中设定的具有固定IP地址或者域名的监控中心站数据中心服务器端口上。
3.1.2监控中心站计算机系统主要由数据通信子系统、数据处理子系统和报表系统组成,主要完成的功能有数据通信,数据处理,报表统计报表统计分析等。
3.1.3数据处理子系统、报表系统作为主要的人机交互界面,收监测点传输来的信息和其他污染源的监测信息;负责对监测信息分类、筛选和综合分析;完成对数据的统计、运算、处理,能自动生成各种报表;具有存储、显示、记录、打印、统计等功能,而且还可以向监测点发送有关查询命令和控制信息。
3.1.4各监测点的GPRS DTU上电后自动拨到GPRS网络,和预先设定的IP地址或者域名建立TCP链路,这样监控中心和各个监测点间就实现了双向传输数据。
3.2系统特点3.2.1建设周期短,成本低:GPRS无线网络可为系统提供了简单高效的通信传输手段。
中国移动GPRS系统可提供广域的无线IP连接。
在移动通信公司的GPRS业务平台上构建在线监测系统,无线数据传输具有可充分利用现有网络,缩短建设周期,降低建设成本的优点,而且设备安装方便、维护简单。
3.2.2实时性强:由于GPRS具有实时在线特性,系统无时延,无需轮巡就可以同步接收、处理所有数据采集点的数据。
可很好的满足系统对数据采集和传输实时性的要求。
3.2.3可对环保设备进行远程控制:通过GPRS双向通讯方式还可实现对环保设备进行远程控制,进行参数调整、开关等控制作用。
3.2.4集抄围广:GPRS覆盖围广,在无线GPRS网络的覆盖围之,都可以完成对设备的控制和管理。
而且,扩容无限制,接入地点无限制,能满足山区、乡镇和跨地区的接入需求。
3.2.5系统的传输容量大:环保数据中心要和每一个数据采集点保持实时连接。
由于数据采集点数量众多,系统要求能满足突发性数据传输的需要,而GPRS技术能很好地满足传输突发性数据的需要。
3.2.6数据传送速率高:每个数据采集点每次数据传输量在10Kbps之。
GPRS网络传送速率理论上可171.2kbit/s,目前GPRS实际数据传输速率在40Kbps左右,完全能满足本系统数据传输速率(≥10Kbps)的需求。
3.2.7通信费用低:采用包月计费方式,运营成本低。
3.2.8系统易于扩展和维护:由于GPRS通信是基于IP地址的数据分组通信网络,因此监测中心计算机需要一个固定的IP地址或固定的域名,各个数据采集点采用GPRS模块通过IP地址或域名来访问该主机,从而进行数据通信。
4、固定污染源在线监测系统(CEMS)解决方案污染源烟气在线监测系统,也称CEMS系统。
系统通过在线连续监测烟气固定污染源排放,把采集的各项排污数据通过Modem、GPRS、TCP、IP等传输给环保职能部门,为环保职能部门提供关于排污申报、总量控制、排污收费及时有效的数据资料,对推动环保职能部门在控制大气污染、改善空气质量的标准、政策、法规方面提供准确的量化依据。
4.1系统构成污染源烟气在线监测系统主要由采样子系统、预处理子系统、气态污染物监测子系统、颗粒物监测子系统、烟气参数监测子系统、数据采集控制子系统、辅助系统及站房组成。
如下图所示:采样子系统:气体采样探头是插入烟道气体采集点,采集样品气体的部件。
采样探头装置具有电加热伴热功能,能自行加热并实施温控。
该装置适用于燃烧过程后气样的连续采集。
预处理子系统:烟气预处理系统用于完成样气的净化、除尘、除湿、排水,提高了系统的可靠性、稳定性及检测结果的重复性,降低了运行维护成本。
气态污染物监测子系统气态污染物监测子系统采用紫外光谱法进行分析,该分析仪能够测量SO2、NOx、O2、CO、CO2等气体的浓度,具有测量精度高、可靠性高、响应时间快、适用围广等特点,各项指标达到或超过国外同类产品,可广泛应用于环保在线监测、工业控制、安全监测等场合。
颗粒物监测子系统:颗粒物监测系统采用激光背向散射法测定烟尘浓度:烟气参数监测子系统:采用皮托管测流速,压力传感器测压力,温度传感器测温度,烟气湿度采用高温电容湿度传感器测量:数据采集传输及控制子系统:由数据采集仪、工控机、显示器和系统软件等组成。
数据采集仪主要工作是将各个分析仪的分析结果最终采集储存并能够在工控机屏幕上进行实时显示,生成图表,并接受数据采集传输仪的访问,提供现场数据:辅助系统:辅助系统由供电系统、防雷系统等组成。