集成功率放大器及其应用

合集下载

第11章 集成运算放大器及其应用

第11章  集成运算放大器及其应用

上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。

集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用将电路的元器件和连线制作在同一硅片上,制成了集成电路。

随着集成电路制造工艺的日益完善,目前已能将数以千万计的元器件集成在一片面积只有几十平方毫米的硅片上。

按照集成度(每一片硅片中所含元器件数)的高低,将集成电路分为小规模集成电路(简称SSI) ,中规模集成电路(简称MSI), 大规模集成电路(简称LSI)和超大规模集成电路(VLSI)。

运算放大器实质上是高增益的直接耦合放大电路,集成运算放大器是集成电路的一种,简称集成运放,它常用于各种模拟信号的运算,例如比例运算、微分运算、积分运算等,由于它的高性能、低价位,在模拟信号处理和发生电路中几乎完全取代了分立元件放大电路。

集成运放的应用是重点要掌握的内容,此外,本章也介绍集成运放的主要技术指标,性能特点与选择方法。

一、集成运算放大器简介1. 集成运放的结构与符号1. 结构集成运放一般由4部分组成,结构如图1所示。

142图1 集成运放结构方框图其中:输入级常用双端输入的差动放大电路组成,一般要求输入电阻高,差摸放大倍数大,抑制共模信号的能力强,静态电流小,输入级的好坏直接影响运放的输入电阻、共模抑制比等参数。

中间级是一个高放大倍数的放大器,常用多级共发射极放大电路组成,该级的放大倍数可达数千乃数万倍。

输出级具有输出电压线性范围宽、输出电阻小的特点,常用互补对称输出电路。

偏置电路向各级提供静态工作点,一般采用电流源电路组成。

2. 特点:○1硅片上不能制作大容量电容,所以集成运放均采用直接耦合方式。

○2运放中大量采用差动放大电路和恒流源电路,这些电路可以抑制漂移和稳定工作点。

○3电路设计过程中注重电路的性能,而不在乎元件的多一个和少一个○4用有源元件代替大阻值的电阻○5常用符合复合晶体管代替单个晶体管,以使运放性能最好3. 集成运放的符号从运放的结构可知,运放具有两个输入端v P和v N和一个输出端v O,这两个输入端一个称为同相端,另一个称为反相端,这里同相和反相只是输入电压和输出电压之间的关系,若输入正电压从同相端输入,则输出端输出正的输出电压,若输入正电压从反相端输入,则输出端输出负的输出电压。

电子技术基础第2章 集成运算放大器与应用

电子技术基础第2章 集成运算放大器与应用

电子技术及应用
2.2 集成运算放大器
4.共模抑制比
K CMR
Aud Auc
K CMR
20 lg
Aud Auc
(dB)
电子技术及应用
2.2 集成运算放大器
2.2.3 集成运算放大器的主要参数
1.开环差模电压增益Aod
2.单位增益带宽fT 3.开环带宽fH 4.转换速率SR 5.最大输出电压Uo,max
2.3 反相与同相输入集成运算放大器
在集成运算放大器中,输入级采用差分放大电路,所以运算放大器的 差模输入电阻rid很大,在工程计算中我们可以认为rid→∞。。因此可以 认为运算放大器的同相输入端和反相输入端均无电流输入,
即: iIN=iIP=0
(以后iIN和iIP都用iI表示,iI=0),相当于开路。即iP=iN=0。
电子技术及应用
2.3 反相与同相输入集成运算放大器
2.3.1 反馈的基本概念
把放大电路的输出信号(电压或电流)的一部分或全部,通过一定的 电路(网络)送回到它的输入端,削弱原来的输入信号(电压或电流) 并共同控制该放大电路,这种连接方式称为负反馈。
输入信号 +
净输入信号=输入信号-反馈信号
比较
净输入信号 基本放大电路
电子技术及应用
2.3 反相与同相输入集成运算放大器
2.3.2 反相输入放大器
if
Rf
R1 ii
ii' N
ui
ui'
PA
uo
RP
RL
由于输入信号加在反相输入端,输 出电压和输入电压的相位相反,因此 将它称为反相放大器。
电路由基本放大器A和反馈网络Rf组成。RL为负载电阻。uo为输出信号。 电路输入信号ui经电阻R1加在反相输入端上。电阻R1的作用是将输入电

模拟电子技术教学课件-集成运算放大器的应用

模拟电子技术教学课件-集成运算放大器的应用

小信号进行放大,且具有较强的共模抑制能力。
因为最后一级运算 放大器是双端输入差 分电路,所以:
2021/7/25
4.1 集成运放的线性应用电路
思考与练习
Sikaoyulianxi 1.集成运放构成的基本线性应用电路有哪些?在这些基本 电路中,集成运放均工作在何种状态下?
2.“虚地”现象只存在于线性应用运放的哪种运算电路中?
由一个RC低通电路和一个RC高通 电路形成带通滤波器。

低通

利用同相输入的比例 放大电路做隔离放大 级。为改善频率特性 引入正反馈。
幅频特性:
2021/7/25
带阻滤波器
将一个RC低通电路和一个RC 高通电路的输出求和,即形 成带阻滤波器。
如果带阻滤波器的阻 带设置为某单一频率 时,则可构成陷波滤 波器。
由虚断可得: 数值代入后整理可得: 通频带内的电压放大倍数:
2021/7/25
4.1.8 有有源源滤波高器通——滤常用波的器有源滤波器
通频带内的电压放大倍数: 传输函数为:
电路的特性频率为: 当输入信号的频率f等于通带截止频率f0时:
幅频特性:
2021/7/25
4.1.8 有源滤4带.波1.8器通有—滤源—滤常波波用器的器有源滤波器
第4单元 集成运算放大器的应用
集成运放的运算应用电路

Jichengyunfangdeyunsuanyingyingdianlu

集成运算放大器的非线性应用
3zhongzutaifangdadianludexingnengbijiao
集成运算放大器的选择、使用和保护
Danjixingguandedanjifangdadianlu

集成运算放大器全篇

集成运算放大器全篇
要求。
习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。

集成运算放大器及应用

集成运算放大器及应用

由此可得:
uo
RC
dui dt
输 出电压与 输入电 压对时 间的微分 成正
比。
若 ui 为恒定电压 U,则在 ui 作用于电路 的 瞬间,微 分电路 输出一个 尖脉冲 电压,波
形如图所示。
2021/4/8
26
2.积分运算电路
由于反相输入端虚地,且 i i , 由图可得:
iR iC
iR
ui R
电路实现了中权减法运算。若取R1=R2=R3=RF时,则 u0=uI2-uI1
2021/4/8
24
例5.2.1 某理想集成运算放大器电路如图所
示。求输出电压u0。
解:由于集成运算放大器A1构成电压跟随器,所以
u01=2 V。集成运算放大器A2构成同相比例运算,由 式(5.2.2)可得
u02
1
2R 2R
, iC
C duC dt
C
duo dt
由此可得:
uo
(t)
1 RC
t
0 u1(t)dt
输 出电压 与输入 电压对 时间的 积分
成正比。
2021/4/8
27
例5.2.2 分析如图所示集成运算放大器应用电路中,
输出电压与输入电压的关系。
解:集成运算放大器A1实现了减法运算,由式
(5.2.8)可得
1.开环电压放大倍数Au0 , 104~107
2.最大A输u0 出 2电0 l压g UUUoiopp
dB
在一定电源电压下,集成运算放大器输出电压和输入
电压保持不失真关系的输出电压的峰-峰值。
3.最大差模输入电压Uid max 反向输入端和同相输入端之间所能承受的最大电压值。
4.最大共模输入电压Uic max 集成运算放大器所能承受的最大共模输入电压

电子课件电子技术基础第六版第三章集成运算放大器及其应用

电子课件电子技术基础第六版第三章集成运算放大器及其应用
1. 组成框图 集成运算放大器的组成框图如图所示,通常包括输入级、 中间级、输出级和偏置电路。
集成运算放大器的组成框图
(1)输入级 通常是具有较大输入电阻和一定放大倍数的差动放大电路 ,利用它可以使集成运算放大器获得尽可能高的共模抑制比 。 (2)中间级 中间级的作用是使集成运算放大器具有较强的放大能力, 通常由多级共射极放大器构成。
一、零点漂移
放大直流信号和缓慢变化的信号必须采用直接耦合方式, 但简单的直接耦合放大器,常会发生输入信号为零输出信号 不为零的现象。产生这种现象的原因很多,如温度的变化、 电源电压的波动、电路元件参数的变化等,都会使静态工作 点发生缓慢变化,该变化量被逐级放大,便会使放大器输出 端出现不规则的输出量,这种现象称为“零点漂移”,简称“零 漂”。
三、集成运算放大器的主要参数
为了表征集成运算放大器的性能,生产厂家制定了很多参 数,作为合理选择和正确使用集成运算放大器的依据。下面 介绍几项主要的参数,见表。
集成运算放大器的主要参数
集成运算放大器的主要参数
§3-3 集成运算放大器的基本电路
学习目标
1. 了解理想集成运算放大器的基本概念。 2. 了解集成运算放大器线性工作区和非线性工作区的 特性及工作特点。 3. 理解集成运算放大器“虚短”“虚断”的概念。 4. 了解集成运算放大器电路直流平衡电阻的配置。
2. 消除自激振荡 集成运算放大器是多级放大器,具有极高的电压放大倍数 ,但它极易产生自激振荡,使运算放大器不能正常工作。为 了防止自激振荡的产生,通常按产品手册要求,在补偿端子 上接指定的补偿电容或 RC 移相网络,以便消除自激振荡现 象。
四、集成运算放大器的保护 电路
1. 防止电源极性接反 为了防止电源极性接反而损坏集 成运算放大器,可利用二极管的单向 导电特性来控制,如图所示,二极管 V1、V2 串入集成电路直流电源电路 中,当电源极性接反时,相应的二极 管便截止,从而保护了集成电路。 防止电源极性接反保护电路

集成电路运算放大器36页

集成电路运算放大器36页

01
02
03
04
信号放大
将传感器输出的微弱信号进行 放大,提高信号的幅度。
信号滤波
对传感器输出的信号进行滤波 处理,消除噪声和干扰。
信号线性化
将传感器输出的非线性信号通 过集成电路运算放大器进行线 性化处理,提高测量精度。
信号比较
将传感器输出的模拟信号与预 设阈值进行比较,输出相应的
开关信号。
在音频信号处理中的应用
集成电路运算放大器
02
的工作原理
输入级
01
02
03
差分输入
运算放大器采用差分输入 方式,将两个输入信号进 行减法运算,提高了抗干 扰能力和共模抑制比。
放大器
输入级通常包含一个三极 管或场效应管组成的放大 器,对差分输入信号进行 放大。
射极跟随器
输入级通常采用射极跟随 器作为输出级,以减小信 号的输出阻抗,提高信号 的驱动能力。
时序控制
在数字电路中,集成电路运算放大 器可以用于产生各种时序控制信号, 如时钟信号、复位信号等。
电压偏置
为数字电路中的逻辑门提供适 当的偏置电压,以调整逻辑门 的阈值电压和性能参数。
电流源和电压源
利用集成电路运算放大器可以 构成各种电流源和电压源,为
数字电路提供稳定的电源。
在传感器信号处理中的应用
THANKS.
确保信号的质量和稳定性。
集成电路运算放大器的历史与发展
历史
集成电路运算放大器的概念最早由美国科学家在20世纪60年 代提出,随着半导体技术和集成电路工艺的发展,集成电路 运算放大器逐渐成为电子工程领域的重要器件。
发展
随着技术的不断进步,集成电路运算放大器的性能不断提高 ,功耗不断降低,集成度不断提高,应用领域不断扩大。目 前,集成电路运算放大器已经广泛应用于信号处理、通信、 音频、医疗、工业控制等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使
U1
=
0.5VCC
C5
2.2
R2
F
1 F 22 k
R4
1 2
680
5 0.1 F 220 F
2040 44
3 R5
C7
4
22 k R6 5
C2 22 F
0.01 F
C6
交流电压串联
负反馈
30 dB
第 5 章 线性集成电路的应用
5.4.1 LM386 集成功放及其应用
1. 典型应用参数:
直流电源: 4 12 V 额定功率: 660 mW 带 宽: 300 kHz 输入阻抗: 50 k
18 27 36 45
引脚图
2. 内部电路
第 5 章 线性集成电路的应用
电压串 联负反

1. 8 开路时,
参数:直流电源: 2.5 ~ 20 V 小开电环容增滤益除:高80频d成B分
交压负流串反电联馈功输率出u带功i2C210宽率61kR8R+::012VF12C02C012(WR1k63H(V22Rz20)Lk4=0453-4V)CE03输E.1 入FRC5C阻474抗:252电00频防源kF率自滤补激波偿等
Au = 20 (负反馈最强)
1. 8 交流短路
Au = 200 (负反馈最弱)
V1、V6: 射级跟随器,高 Ri
V2、V4:
V3、V5: V7 ~ V12:
双端输入单端输出差分电路 恒流源负载 V7 为驱动级(I0 为恒流源负载) 功率放大电路 V11、V12 用于消除交越失真
V8、V10 构成 PNP 准互补对称
第 5 章 线性集成电路的应用
3. 典型应用电路
10 F
RP 36 k
C2
C1 10 F38 Nhomakorabea6LM386
5
24 7
C5
+VCC C60.1 F
C3 220 F
10 C4 8
100 F .047 F
频率补偿,抵消电 感高频的不良影响 防止自激等
调节电压 放大倍数
输出电容 (OTL)
第 5 章 线性集成电路的应用
100 k
10
7
5
100C2F C5 100 F
.01C4FR4 4
交流负反馈 R2
56
C7 1000 pF 1
4 700 pF
频率补偿 防自激等
频率补偿,防自激等
第 5 章 线性集成电路的应用
5.4.3 TD2040 集成功放及其应用
特双点电:输源出(短OT路L保)应护、用自动限制功大耗电、容有滤过除热低关频机成保分护
C2
22 F
C5
0.1 F
(-16 V)
4
C6
220 F
0.01 F
输出功率可 大于 15 W
Au 1 22000 / 680 33.35 20lg Au 30 dB
第 5 章 线性集成电路的应用
单电源(OTL)应用:
R1 22 k +VCC(16 V)
ui C1 R3 22 k
C3 C4
第 5 章 线性集成电路的应用
5.4 集成功率放大器 及其应用
引言 5.3.1 LM386 集成功放及其应用 5.3.2 DG810 集成功放及其应用 5.3.3 TD2040 集成功放及其应用
第 5 章 线性集成电路的应用
引言
组成: 前置级、中间级、输出级、偏置电路 特点: 输出功率大、效率高
有过流、过压、过热保护
5.4.2 DG810 集成功放及其应用
功工—电率作源标大电滤+V准波、 源CC音噪 范频1声 围00功小 宽F率、、放频有1大0带保0 宽护、电路
自举电容
C6
C9
R3
输入0.1
F
C
5 F
偏置 u1i R1
1
4
8 9
DG810
12
C8 输出电容
100 F
C10 VCC = 15 V 时 1000 F 输出功率 6 W
相关文档
最新文档