第4章功率放大器的应用
高频功率放大器4

第2章 高频功率放大器
对上述这些原则的电路示意说明如图2.12所示。
谐振功放的基极馈电线路的组成原则与集电极馈 电线路相仿。第一,基极电流中的直流分量IB0只流过 基极偏置电源(即EB直接加到晶体管b ,e两端)。第二, 基极电流中的基波分量ib1只流过输入端的激励信号源, 以便使输入信号控制晶体管的工作,实现放大。这些 原则的电路示意说明如图2.13所示。
第2章 高频功率放大器
3. 基极馈电线路 基极馈电线路原则上和集电极馈电相同,也有串 馈与并馈之分。基极串联馈电是指偏置电压EB,输入 信号源ub及管子b,e三者在电路形式上为串联连接的一 种馈电方式,而在电路形式上为并联连接的则称为并 联馈电。
第2章 高频功率放大器
(1)串联馈电。串联馈电如图2.15(a)所示。图中CB2 为滤波旁路电容。由图可见,EB,ub,管子b,e三者为 串联连接,基极电流中的直流分量IB0只流过偏置电压 EB,而基波分量ib1只通过激励信号源ub,符合馈电线路 原则。
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
(2) L型匹配网络。设有一谐振功放,要求的临界 状态电阻为Re,负载为天线,呈现纯阻性rA,且rA<Re, 应如何设计匹配网络呢?
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
第2章 高频功率放大器
T型网络的形式如图2.24(c)所示。它同样可视作是 两节L型匹配网络的级联,如图2.24(d)所示。与Π型匹 配网络相反,T型匹配网络的阻抗变换特点是低→高 →低。
第五章 低频功率放大电路习题及答案

第五章低频功率放大电路一、填空题1、以功率三极管为核心构成的放大器称放大器。
它不但输出一定的还能输出一定的,也就是向负载提供一定的功率。
2、功率放大器简称。
对它的要求与低频放大电路不同,主要是:尽可能大、 _____尽可能高、尽可能小,还要考虑管的散热问题。
3、功放管可能工作的状态有三种:类放大状态,它的失真、效率;它的失真、效率。
4、功率放大电路功率放大管的动态范围大,电流、电压变化幅度大,工作状态有可能超越输出特性曲线的放大区,进入或,产生失真。
5、所谓“互补”放大器,就是利用型管和型管交替工作来实现放大。
6、OTL电路和OCL电路属于工作状态的功率放大电路。
7、为了能使功率放大电路输出足够大的功率,一般晶体三极管应工作在。
8、当推挽功率放大电路两只晶体管的基极电流为零时,因晶体三极管的输入特性,故在两管交替工作时产生。
9、对于乙类互补称功放,当输入信号为正半周时,型管导通,型管截止;当输入信号为负半周时,型管导通,型管截止;输入信号为零(Ui=0)时,两管,输出为。
10、乙类互补对称功放的两功率管处于偏置工作状态,由于电压的在存在,当输入信号在正负半周交替过程中造成两功率管同时 ,引起的失真,称为失真。
11、功率放大器按工作点在交流负载线上的位置分类有:类功放、类功放和类功放电路。
12、甲乙类推挽功放电路与乙类功放电路比较,前者加了偏置电路图向功放管提代少量,以减少失真。
13、乙类互补对称功放允许输出的最大功率Pom= 。
总的管耗Pc= 。
14、为了避免输出变压器给功放电路带来的不便和失真,出现了功放电路;为了避免输出电容引出的失真,又出现了功放电路。
15、所谓复合功率管就是由一个功率三极管和一个功率三极管组成的大功率效三极管。
它分型管组合和型管组合两种。
复合管的等效电流放大系数β= 。
二、选择题1、交越失真是一种()失真。
A、截止失真B、饱和失真C、非线性失真2、OTL和OCL电路的主要区别是()A、有无输出电容B、双电源或单电源供电3、OCL甲乙类功放电路的效率可达()A、25%B、78.5%4、甲类单管变压器耦合功率放大器集电极静态工作电流为I CQ,电源电压E C,输出最大功率为()。
功率放大电路

RL
+
V0
-
V0
-
两射极输出器组成的基本互补对称电路
(a)基本互 补对称电路 (b)由NPN管组 成的射极输出器 (c)由PNP管组 成的射极输出器
1、工作原理(设ui为正弦波) 静态时: ui = 0V T1、T2均不工作 uo = 0V 动态时:
+UCC T1
ic1
ui > 0V
ui 0V
+VCC T1
RL
+ uo
T2
VEE
例 1 已知:VCC = VEE = 24 V,RL = 8 , 忽略 UCE(sat) 求 Pom 以及此时的 PDC、PT1, 并选管。 [解] T1 +VCC
V 2CC 242 Pom 36 ( W) + ui 2 RL 2 8
PDC=2V2CC / RL
则 T1、T2 特性对称,
A
ui
+ C
UC RL UL
T2
U SC U SC UA , UC 2 2
3、动态分析 设输入端在0.5USC直流电平基础上加入正弦信号
U CC ui 2
U CC ui 2
时,T1导通、T2截止; +USC T 时, 1截止、 T2导通。
T1
ic1
交越失真
无输出电容形式 ( OCL电路)
OTL: Output TransformerLess OCL: Output CapacitorLess
无输出变压器的互补对称功放电路(OTL)
1、特点 1. 单电源供电; 2. 输出加有大电容。 2、静态分析 UCC/2 +UCC T1
第三章四互补对称功率放大电路

一个信号 状态 周期内导
通时间
工作特点
整个周 失真小,静态电流
甲类 期内导 大,管耗大,效率
通
低。
半个周 失真大,静态电流
乙类 期内导 为零 ,管耗小,
通
效率高。
甲乙 类
半个多 周期内 导通
失真大, 静态电 流小 ,管耗小,
效率较高。
图示
三、乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless) (一)电路组成及工作原理
U(BR)CEO>2VCC=2×24V=48 V。 放大电路在最大功率输出状态时,集电极电流幅度达最大值
Icmm,为使放大电路失真不致太大,则要求功率管最大允许集电
极电流ICM满足ICM>Icmm=VCC/RL=3A。
四、甲乙类互补对称功率放大电路 (一)甲乙类双电源互补对称功率放大电路
1、乙类互补对称功放的交越失真
2
4.7 / /5.1 2.2
111
Au2 (dB) 20 lg111 41(dB)
RL1 R3 / / Ri2 5.1/ /1.7 1.3k
总的电压增益: Au=Au1·Au2=(-9.6) ×(-111)=1066 A(dB)=Au1(dB)+Au2(dB)=19.6+41=60.6(dB)
(三)甲乙类单电源互补对称放大电路 OTL电路: 1.电路组成
2.工作原理
当 ui > 0 时:V2 导通,C 放电,V2 的等效电源电压 0.5VCC。 当 ui < 0 时:V1导通,C 充电,V1 的等效电源电压 + 0.5VCC。 注意: 应用 OCL 电路有关公式时,要用 VCC / 2 取代 VCC 。
功率放大电路

第5章功率放大电路5.1 教学基本要求教学基本要求主要知识点熟练掌握正确理解一般了解低频功率放大电路的特点、分类、效率和失真问题√√乙类互补推挽功率放大电路的工作原理及主要性能指标计算甲乙类互补推挽功放电路工作原理√互补推挽功率放大电路单电源功率放大电路工作原理√低频功放的能量和效率√功率器件与散热几种功率器件的特点、功率器件的散热√集成功率放大器√5.2 重点和难点一、重点1.理解甲类、乙类和甲乙类低频功率放大器的功率、效率与静态工作点设置的关系。
2.乙类功放的工作原理和功率参数计算方法。
二、难点1.正确理解乙类和甲乙类低频功率放大器中放大管的电流流通角、波形失真及其解决方法。
2.乙类和甲乙类低频功率放大器的功率、效率计算以及提高效率。
5.3 知识要点甲类功放及特点乙类功放及特点1.低频功率放大器甲乙类功放及特点主要技术要求乙类互补对称功率放大器交越失真及其解决办法2.互补对称功率放大器甲乙类互补对称功率放大器单电源互补对称功率放大器BTL功率放大器本课程中对低频功率放大器的讨论和分析的思路为:先讨论功率放大器的特殊问题甲类功放电路的组成、原理及其优缺点提高效率的途径乙类互补功放电路的组成、原理及其优缺点,功率计算(输出信号交越失真)为了克服交越失真甲乙类低频功放的组成、原理及其优缺点需要解决交流输出信号正负半周不对称问题采用自举电路。
然后介绍集成功放以及BTL功放电路等。
5.4 主要内容5.4.1 功率放大电路的特殊问题5.4.1.1 功率放大电路的特点和要求1.在不失真的前提下尽可能地输出较大功率由于功率放大电路在多级放大电路的输出级,信号幅度较大,功率放大管往往工作在极限状态。
功率放大器的主要任务是为额定负载LR提供不失真的输出功率,同时需要考虑功率放大管的失真、功率放大管的安全(即极限参数CMP、CMI、CEO(BR)U)和散热等问题。
2.具有较高的效率由于功率放大电路输出功率较大,所以,效率问题是功率放大电路的主要要问题。
第四章 场效应晶体管及其放大电路

ID
IDSS(1源自U GS U GS(off)
)
2
3. 结型场效应管
结型场效应管的特性和耗尽型绝 缘栅场效应管类似。图4-7 a)、 b) 分别为N沟道和P沟道的结型场效 应管图形符号。
图4-7
使用结型场效应管时,应使栅极与源极间加反偏电压,漏 极与源极间加正向电压。对于N沟道的管子来说,栅源电压应 为负值,漏源电压为正值。
图4-1
(1)工作原理
增强型MOS管的源区(N+)、衬底(P型)和漏区(N+)三者之 间形成了两个背靠背的PN+结,漏区和源区被P型衬底隔开。
当栅-源之间的电压 uGS 0时,不管漏源之间的电源VDD 极 性如何,总有一个PN+结反向偏置,此时反向电阻很高,不能 形成导电通道。
若栅极悬空,即使漏源之间加上电压 uDS,也不会产生漏 极电流 iD ,MOS管处于截止状态。
2) 输出特性曲线 I D f (U DS ) UGS常数
图4-4b)是N沟道增强型MOS管的输出特性曲线,输出特性曲 线可分为下列几个区域。
① 可变电阻区
uDS很小时,可不考虑 uDS 对沟道的影响。于是 uGS一 定时,沟道电阻也一定, 故 iD 与 uDS 之间基本上是 线性关系。
uGS 越大,沟道电阻越
的变化而变化,iD 已趋于饱和, 具有恒流性质。所以这个区域 又称饱和区。
③ 截止区
uGS UGS(th)时以下的区域。
(夹断区)
当uDS增大一定值以后,漏源之间会发生击穿,漏极电流 iD急剧增大。
2. N沟道耗尽型绝缘栅场效应管的结构
上述的增强型绝缘栅场效应管只有当 uGS U GS(th) 时才能形成导电沟道,如果在制造时就使它具有一个原始 导电沟道,这种绝缘栅场效应管称为耗尽型。
习题册参考答案-《电子电路基础(第四版)习题册》-A05-3255

第六章 功率放大器.................................................................................................. 27
2
§6—1 功率放大器的基本要求及分类 ................................................................. 27 §6—2 OTL 和 OCL 功率放大器..............................................................................27 §6—3 集成功率放大器 .........................................................................................28 第七章 直流稳压电源..............................................................................................30 §7—1 整流电路 .....................................................................................................30 §7—2 滤波电路 .....................................................................................................31 §7—3 分立元件直流稳压电源 .............................................................................32 §7—4 集成稳压器 .................................................................................................34 §7—5 开关型稳压电源 .........................................................................................35 第八章 晶闸管及其应用.......................................................................................... 37 §8—1 普通晶闸管 ................................................................................................. 37 §8—2 晶闸管可控整流电路 .................................................................................38 §8—3 特殊晶闸管及其应用 .................................................................................38
功率放大器ppt分析

5、OTL乙类互补对称电路的优、缺点
优点 效率高,理想情况下最在可达
到78.5%,在静态时,ic1 、ic2 为0,
即:静态功耗为0。
缺点 在输入信号为 0 附近的区域内, VT1 和VT2 都不导通,因此会出现 交越失真。所以上电路若不改进, 则没有实用的价值。
6、交越失真现象
⑴ 产生交越失真的原因
0
VCC Icm
由于:
Icm
Vcem / RL
(VCC 2
Vces) / RL
所以:
PV
VCC (VCC / 2 Vces)
RL
VC2C
2RL
⑼ OTL乙类互补对称电路的最大效率m
1 VC2C
m
Pom PV
100%
8 RL VC2C
100% 100% 78.5% 4
2RL
电路实际上的效率比上值要低。因为电源提供的 功率有一部分转化为集电极的功耗,使管子发热产生 了温升。
⑴ 当vI为正半周时: VT1工作在放大 区,VT2工作在 截止区。(推)
⑵ 当vI为负半周时: VT1工作在截止 区,VT2工作在放大区。(挽)
⑶ 最后在两管的集电极合成一个完整的正弦波, 再通过T2耦合到负载RL上。
3、图解分析:
iC1
4、 传统的乙类推挽功率放大电路的 缺点:
⑴ 输入/输出变压器的体积大、重; ⑵ 因为是变压器耦合,故频带窄; ⑶ 存在交越失真和不对称失真; ⑷ 电路采用反馈时,易自激振荡。
负半周均不失真 ,如下图所示。
交流负
VCC
ic 载线
RE
Q
静态工作点:
直流负 载线
VCEQ = 0.5VCC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年9月9日星期三
3
第 4 章 功率放大器及其应用
OCL功放的实际电路
2020年9月9日星期三
4
第 4 章 功率放大器及其应用
本章小结
功率放大器即是将电源静态功率转换为 信号动态功率的能量转换电路,电路中 类似发动机的作用。按工作状态主要分 为甲类、乙类和甲乙类。为了避免交越 失真,而实际电路中的三极管往往工作 于甲乙类状态,典型电路有双电源供电 的OCL电路和单电源供电的OTL两种。
变压器耦合共射 互补对称功放对
电路
管
无变压器 OCL,OTL
2020年9月9日星期三
6
2.功放管的二次击穿
一次击穿 是可逆的, 为雪崩击 穿现象。
二次击穿 是不可逆 的,是结 构或制造 工艺的缺 陷造成的。
措施是:尽量增大管子功率容量、改善散热状况等安全手段。
3.功放管的过压过流保护
2020年9月9日星期三2Leabharlann 第 4 章 功率放大器及其应用
4.2.2 功率放大器实际电路
OTL功放的实际电路
第 4 章 功率放大器及其应用
4.2 功率放大器的应用
主要要求:
1.了解功放实际应用中问题的解决方法 2.了解实际功放电路的组成
2020年9月9日星期三
1
第 4 章 功率放大器及其应用
4.2.1 功放应用中的几个问题
1.功放管散热
功率放大器工作在大电压大电流状态,即使电路效率高也有损 耗,这些损耗以热能形式散发,管子会发热。当温度升高到一 定温度(锗管75°C~90°C,硅管为150°C)管子会损坏。
2020年9月9日星期三
5
第 4 章 功率放大器及其应用
Q点位置 导通角 最高效率 失真现象 典型电路
甲类
乙类
甲乙类
放大区交流负载 放大与截止区临 接近截止区的放
线中点
界
大区域
2π
(360°)
50%
饱和失真,截止 失真
π
(180°)
78.5%
交越失真
π~2π
(180~360°)
趋近78.5 %
无交越失真