高中数学必修三2.1随机抽样生活中的抽样方法文字素材新人教A版必修3

合集下载

高中数学人教版必修3课件2-1-1简单随机抽样3

高中数学人教版必修3课件2-1-1简单随机抽样3
答 第一步,将总体中的所有个体编号,并把号码写在形状、 大小相同的号签上. 第二步,将号签放在一个容器中,并搅拌均匀.
第三步,每次从中抽取一个号签,连续抽取 n 次,就得到一个容 量为 n 的样本.
问题 4 你认为抽签法有哪些优点和缺点? 答 优点:简单易行,当总体个数不多的时候搅拌均匀很容易, 个体有均等的机会被抽中,从而能保证样本的代表性. 缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差 的可能性很大. 问题 5 阅读教材中随机数表法的内容,归纳出利用随机数 表法从含有 N 个个体的总体中抽取一个容量为 n 的样本的 步骤. 答 第一步,将总体中的所有个体编号. 第二步,在随机数表中任选一个数作为起始数. 第三步,从选定的数开始依次向右(向左、向上、向下)读,将 编号范围内的数取出,编号范围外的数去掉,直到取满 n 个号 码为止,就得到一个容量为 n 的样本.
某车间工人加工一种轴 100 件,为了了解这种轴的直径,要 从中抽取 10 件轴在同一条件下测量,如何采用简单随机抽 样的方法抽取样本?
解 方法一 (抽签法)将 100 件轴编号为 1,2,…,100,并做好 大小、形状相同的号签,分别写上这 100 个数,将这些号签放 在一起,搅拌均匀,接着连续抽取 10 个号签,然后测量这个 10 个号签对应的轴的直径. 方法二 (随机数表法)将 100 件轴编号为 00,01,…,99,在随机 数表中选定一个起始位置,如取第 10 行第 1 个数开始,选取 10 个为 48,30,63,25,60,19,09,81,38,43,这 10 件即为所要抽取 的样本.
例 2 假设我们要考察某公司生产的 500 克袋装牛奶的质量 是否达标,现从 800 袋牛奶中抽取 60 袋进行检验,利用随机 数表法抽取样本时应如何操作?

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021人教版数学3教师用书:第2章 2.1 2.1.1简单随机抽样含解析

2020-2021学年人教A版数学必修3教师用书:第2章2.1 2.1.1简单随机抽样含解析2。

1随机抽样2.1.1简单随机抽样学习目标核心素养1.理解简单随机抽样的定义、特点及适用范围.(重点)2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(难点)1.通过抽取样本,培养数据分析素养.2.借助简单随机抽样的定义,培养数学抽象素养。

1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的方法(1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.抽签法和随机数法的特点优点缺点抽签法简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平随机数法操作简单易行,它很好地解决了用抽签法当总体中的个数较多时制签难的问题,在总体容量不大的情况下是行之有效的如果总体中的个体数很多,对个体编号的工作量太大,即使用随机数表法操作也不方便快捷1.新华中学为了了解全校302名高一学生的身高情况,从中抽取30名学生进行测量,下列说法正确的是()A.总体是302名学生B.个体是每1名学生C.样本是30名学生D.样本容量是30D[本题是研究学生的身高,故总体、个体、样本数据均为学生身高,而不是学生.]2.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定B[在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.]3.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.]4.一个总体共有60个个体,其编号为00,01,02,…,59,现从中抽取一个容量为10的样本,请从随机数表的第8行第11列的数字开始,向右读,到最后一列后再从下一行左边开始继续向右读,依次获取样本号码,直到取满样本为止,则获得的样本号码是________.附表:(第8行~第10行)63 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 79(第8行)33 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54(第9行)57 60 86 32 4409 47 27 96 5449 17 46 09 6290 52 84 77 2708 02 73 43 28(第10行)16,55,19,10,50,12,58,07,44,39[第8行第11列的数字为1,由此开始,依次抽取号码,第一个号码为16,可取出;第二个号码为95〉59,舍去.按照这个规则抽取号码,抽取的10个样本号码为16,55,19,10,50,12,58,07,44,39.]简单随机抽样的概念(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(4)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区参加救灾工作;(5)一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;[解](1)总体数目不确定、不是简单随机抽样.(2)简单随机抽样要求的是“逐个抽取”本题是一次性抽取,不是简单随机抽样.(3)简单随机抽样是不放回抽样,这里的玩具玩以后又放回,再抽下一件,不是简单随机抽样.(4)从中挑出的50名官兵,是200名中最优秀的,每个个体被抽的可能性不同,不是简单随机抽样.(5)符合简单随机抽样的特点,是简单随机抽样.简单随机抽样的判断方法判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.错误!1.判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动.(2)从20个零件中一次性抽出3个进行质量检查.[解](1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.抽签法及应用【例2】为迎接2022年北京冬奥会,奥委会从报名的北京某高校20名志愿者中选取5人组成冬奥会志愿小组,请用抽签法设计抽样方案.[解](1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.抽签法的应用条件及注意点1一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法。

人教版数学高一A版必修3 2.1随机抽样(第3课时)

人教版数学高一A版必修3 2.1随机抽样(第3课时)

课堂探究1.确定分层抽样中各层入样的个体数剖析:当总体由差异明显的几部分组成时,应将总体分成互不交叉的几部分,其中所分成的每一部分叫层,然后按照各部分所占的比例,从各部分中独立抽取一定数量的个体,再将各部分所抽出的个体合在一起作为样本,这就是分层抽样.由于层与层之间有明显的区别,而层内个体间的差异不明显,为了使样本更能充分地反映总体的情况,抽取样本时,必须照顾到各个层的个体.抽样比=样本容量总体容量.这样抽取能使所得到的样本结构与总体结构相同,可以提高样本对总体的代表性.在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目. 2.选择抽样方法的原则剖析:(1)若总体由差异明显的几部分组成,则选用分层抽样.(2)若总体所含个体没有差异,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数法;当总体容量较大,样本容量也较大时宜用系统抽样.(3)采用系统抽样时,当总体容量N 能被样本容量n 整除时,抽样间隔为k =N n;当总体容量N 不能被样本容量n 整除时,先用简单随机抽样剔除多余个体,抽样间隔为k =⎣⎡⎦⎤N n .题型一 如何选择分层抽样【例题1】下列问题中,最适合用分层抽样抽取样本的是( )A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C .从1 000名工人中,抽取100人调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量解析:A 项中总体所含个体无差异且个数较少,适合用简单随机抽样;C 项和D 项中总体所含个体无差异且个数较多,适合用系统抽样;B 项中总体所含个体差异明显,适合用分层抽样.答案:B反思 只要总体中个体有明显差异,那么就必须用分层抽样抽取样本.题型二 确定各层抽取的个体数【例题2】某全日制大学共有学生5 600人,其中专科生有1 300人,本科生有3 000人,研究生有1 300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生,本科生与研究生这三类学生中分别抽取多少人.解:抽样比是2805 600=120,则应在专科生,本科生与研究生这三类学生中分别抽取1 300×120=65(人),3 000×120=150(人),1 300×120=65(人). 反思 一个总体中有m 个个体,用分层抽样方法从中抽取一个容量为n (n <m )的样本,某层中含有x (x <n )个个体,在该层中抽取的个体数目为y ,则有nx m=y ,该等式中含有4个量,已知其中任意三个量,就能求出第四个量.题型三 分层抽样的应用【例题3】一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及其以上的有95人,为了了解与身体状况有关的某项指标,要从所有职工中抽取100名职工作为样本,若职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选用分层抽样来抽取样本.解:用分层抽样来抽取样本,步骤是:(1)分层,按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及其以上的职工.(2)确定每层抽取个体的个数,抽样比为100500=15,则在不到35岁的职工中抽取125×15=25(人);在35岁至49岁的职工中抽取280×15=56(人); 在50岁及其以上的职工中抽取95×15=19(人).(3)在各层分别按抽签法或随机数法抽取样本.(4)综合每层抽样,组成样本.反思分层后,各层的个体数较多时,可采用系统抽样或简单随机抽样取出各层中的个体,一定要注意按比例抽取.题型四易错辨析【例题4】某单位有老、中、青年人各32人,50人,20人,现用分层抽样从三个群体中共抽取20人进行某项调查,问:老、中、青每组应各抽取多少人?每人被抽中的机会是否相等?错解:按分层抽样的要求,可先从老年人中用随机抽样法剔除2人,使三个群体的人数比为3∶5∶2,则共抽20人进行调查,三组中各抽取人数为6人,10人,4人;但由于老年组中先剔除2人,没有参与后面的抽取,因此每人抽中机会不相等.错因分析:由于剔除的2位老人是随机剔除的,因而老年人中每人被抽中的机会仍相等.正解:先从老年人中随机剔除2人,余下的三个群体人数比为3∶5∶2,从三组中各抽取人数分别为6人,10人,4人.每人被抽中的机会相等.。

【人教版A版高中数学必修三PPT课件】2.1.1简单随机抽样

【人教版A版高中数学必修三PPT课件】2.1.1简单随机抽样

题型探究
重点难点 个个击破
类型一 简单随机抽样的基本思想 例1 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次 序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样 方式是不是简单随机抽样?为什么? 解 不是简单随机抽样.因为简单随机抽样的实质是逐个地从总体中随机 抽取样本,而这里只是随机确定了起始牌,其他各张牌虽然是逐张搬牌, 但是各张在谁手里已被确定,所以不是简单随机抽样.
思考二;你认为预测结果出错的原因是什么?
原因是:用于统计推断的样本来自少数 富人,只能代表少数富人的观点,不能代 表全体选民的观点。
思考三
问题: 如何科学地抽取样本?
使得样本能比较准确地反映总体
使得每个个体被抽取的机会均等 合理、公平
这种抽样叫随机抽样
第二章 统计 2.1 随机抽样 2.1.1 简单随机抽样
(4)从箱中每次抽出1个号签,并记 录其编号,连续抽出n次; (5)将总体中与抽到的号签编号一致 的n个个体取出。
开始 编号 制签 搅匀 抽签 取出个体 结束
思考2:用抽签法(抓阄法)确定人选,具体如何操作?
1.每个同学编号 2.用大小质地相同的小纸条写上编号 3.小纸条放在盒子里,并搅拌均匀, 4.然后从中随机逐个不放回抽出5个学号, 5.被抽到学号的同学即为参加活动的人选.
解析答案
类型二 抽签法 例2 某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医 疗小组去参加救治工作,请用抽签法设计抽样方案. 解 方案如下: 第一步,将18名志愿者编号,号码为01,02,03,…,18. 第二步,将号码分别写在相同的纸条上,揉成团,制成号签. 第三步,将得到的号签放到一个不透明的盒子中,充分搅匀. 第四步,从盒子中逐个不放回的取出6个号签,并记录上面的编号. 第五步,与所得号码对应的志愿者就是医疗小组成员.

高中数学 2.1.1简单随机抽样 新人教A版必修3

高中数学 2.1.1简单随机抽样 新人教A版必修3
缺点:当总体个数较多时很难搅拌均匀, 产生的样本代表性差的可能性很大.
ppt课件
思考5:从0,1,2,…,9十个数中每 次随机抽取一个数,依次排列成一个数 表称为随机数表(见教材P103页),每 个数每次被抽取的概率是多少?
思考6:假设我们要考察某公司生产的 500克袋装牛奶的质量是否达标,现从 800袋牛奶中抽取60袋进行检验,利用 随机数表抽取样本时应如何操作?
品店的一批小包装饼干进行卫生达标检
验,打算从中抽取一定数量的饼干作为
检验的样本.其抽样方法是,将这批小包
装饼干放在一个麻袋中搅拌均匀,然后
逐个不放回抽取若干包,这种抽样方法
就是简单随机抽样.那么简单随机抽样的
含义如何?
ppt课件
简单随机抽样的含义: 一般地,设一个总体有N个个体,
从中逐个不放回地抽取n个个体作为样 本(n≤N), 如果每次抽取时总体内 的各个个体被抽到的机会都相等, 则 这种抽样方法叫做简单随机抽样.
思考7:如果从100个个体中抽取一个容 量为10的样本,你认为对这100个个体进 行怎样编号为宜? 思考8:一般地,利用随机数表法从含 有N个个体的总体中抽取一个容量为n的 样本,其抽样步骤如何?
ppt课件
第一步,将总体中的所有个体编号.
第二步,在随机数表中任选一个数作为 起始数.
第三步,从选定的数开始依次向右(向 左、向上、向下)读,将编号范围内的 数取出,编号范围外的数去掉,直到取 满n个号码为止,就得到一个容量为n的 样本.
ppt课件
知识探究(二):简单随机抽样的方法
思考1:假设要在我们班选派5个人去参 加某项活动,为了体现选派的公平性, 你有什么办法确定具体人选?
思考2:用抽签法(抓阄法)确定人选, 具体如何操作?

人教版高中数学必修三 第二章 统计第三章简单随机抽样-知识点

第三章 简单随机抽样第一节 简单随机抽样概述一、简单随机抽样的概念简单随机抽样也叫作纯随机抽样。

其概念可有两种等价的定义方法:定义之一:简单随机抽样就是从总体N 个抽样单元中,一次抽取n 个单元时,使全部可能的)(Nn A 种不同的样本被抽到的概率均相等,即都等于1/A 。

按简单随机抽样,抽到的样本称为简单随机样本。

按上述定义,在抽取简单随机样本之前,应将所有可能的互不相同的样本一一列举出来。

但当N 与n 都比较大时,要列出全部可能的样本是不现实的。

因此,按上述定义进行抽样是不太方便的。

定义之二:简单随机抽样是从总体的N 个抽样单元中,每次抽取一个单元时,使每一个单元都有相等的概率被抽中,连续抽n 次,以抽中的n 个单元组成简单随机样本。

由于定义二无需列举全部可能的样本,故比较便于组织实施。

但按这个定义进行抽样时,仍然需要掌握一个可以赖以实施抽样的抽样框。

二、简单随机抽样的具体实施方法常用的有抽签法和随机数法两种。

(一)抽签法抽签法是先对总体N 个抽样单元分别编上1到N 的号码,再制作与之相对应的N 个号签并充分摇匀后,从中随机地抽取n 个号签(可以是一次抽取n 个号签,也可以一次抽一个号签,连续抽n 次),与抽中号签号码相同的n 个单元即为抽中的单元,由其组成简单随机样本。

抽签法在技术上十分简单,但在实际应用中,对总体各单元编号并制作号签的工作量可能会很繁重,尤其是当总体容量比较大时,抽签法并不是很方便,而且也往往难以保证做到等概率。

因此,实际工作中常常使用随机数法。

(二)随机数法随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

由于计算机产生的随机数实际上是伪随机数,不是真正的随机数,特别是直接采用一般现成程序时,产生的随机数往往不能保证其随机性。

因此,一般使用随机数表,或用随机数骰子产生的随机数,特别在n 比较大时。

1、随机数表及其使用方法随机数表是由0到9的10个阿拉伯数字进行随机排列组成的表。

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案


⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

高中数学必修3讲义 专题2.1 随机抽样

第二章统计2.1 随机抽样1.抽样的必要性在实际中要全面了解总体的情况,往往难以做到,一般也不可能或没有必要对每个个体逐一进行研究.因为:①一些总体中包含的个体数通常是大量的甚至是无限的.如不可能对所有的灯泡进行试验,记录每一个灯泡的使用寿命;②一些总体具有破坏性.如不可能对所有的炮弹进行试射;③一些调查具有破坏性.如不可能对地里所有的种子是否发芽都挖出来检验;④全面调查(普查)往往要浪费大量的人力、物力和财力.所以常通过从总体中抽取一部分个体,根据对这一部分个体的观察研究结果,再去推断和估计总体情况,即用样本估计总体一一这是统计学的一个基本思想.2.相关概念回顾(1)总体:统计中所考察对象的某一数值指标的全体构成的集合称为总体.(2)个体:构成总体的每一个元素叫做个体.(3)样本:从总体中抽取若干个个体进行考察,这若干个个体所构成的集合叫做总体的一个样本,样本中个体的数目叫做样本容量.3.简单随机抽样(1)概念),如果每次一般地,设一个总体含有N个个体,从中逐个___________地抽取n个个体作为样本(n N抽取时总体内的各个个体被抽到的机会都___________,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)两种常用的简单随机抽样方法①抽签法(抓阄法):一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法简单易行,当总体中的个体数___________时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体有均等的机会被抽中,从而能够保证样本的代表性.②随机数法:随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法.随机数表由数字0,1,2,…,9组成,并且每个数字在表中各个位置出现的机会都是一样的.随机数表法简单易行,不论总体容量是多少都可以使用,它很好地解决了用抽签法当总体容量较多时制签难的问题.但是当总体容量很大时,需要的样本容量也很大时,利用随机数法抽取样本仍不方便. 注意:为了保证所选数字的随机性,需在查看随机数表前就指出开始数字的横、纵位置.(3)简单随机抽样的特征:①有限性:简单随机抽样要求被抽取的样本的总体个数是有限的,便于通过样本对总体进行分析②逐一性:简单随机抽样是从总体中逐个地进行抽取,便于实践中操作.③不放回性:简单随机抽样是一种不放回抽样,便于进行有关的分析和计算.④等可能性:简单单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样方法的公平性.4.系统抽样(1)概念在抽样中当总体个体数___________时,可将总体分成___________的若干部分,然后按照预先制定的规则,从每一部分抽取___________个体,得到所需的样本,这种抽样方法叫做系统抽样.(2)步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样:①先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等. ②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取N k n=. ③在第1段用简单随机抽样的方法确定第一个个体编号()l l k ≤.④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号(2)l k +,依次进行下去,直到获取整个样本.注意:若N n不是整数,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.另外,系统抽样适用于总体容量较大,且个体之间无明显差异的情况.5.分层抽样一般地,在抽样时,将总体分成___________,然后按照___________,从各层独立地抽取一定数量的个体,将___________取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.分层抽样适用于已知总体是由差异明显的几部分组成的.6.三种抽样方法的区别和联系三种抽样方法的特点及其适用范围如下表:抽样方法共同点特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽到的可能性都相等从总体中逐个抽取样本容量较小系统抽样将总体平均分成若干部分,按事先确定的规则在各部分中抽取在起始部分抽样时采用简单随机抽样总体容量较大分层抽样将总体分成互不交叉的层,然后分层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成K知识参考答案:3.(1)不放回相等(2)①不多4.(1)较多均衡一个5.互不交叉的层一定的比例各层K—重点简单随机抽样、系统抽样、分层抽样的特点和一般步骤K—难点正确理解简单随机抽样、系统抽样、分层抽样的区别和联系,灵活应用三种抽样方法抽样K—易错容易混淆三种抽样方法的适用条件,从而不能选择合适的方法进行抽样一、简单随机抽样要判断所给的抽样方法是否是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:有限性、逐一性、不放回性、等可能性.(1)总体是数值指标的全体,例如,要考察某班男生的身高,则总体为该班全部男生的身高数据,而不是该班的男生.(2)个体是总体的一个元素,因此构成总体的每一个数值指标都为个体.(3)样本是总体的一部分,因此样本中所含个体的数量不能超过总体的数量,样本中个体的来源为总体中的个体.1.抽签法(1)对于抽签法,注意:①号签的大小、形状要完全相同.②抽签前需将号签搅拌均匀.(2)抽签法的优点:抽签法简单易行,当总体中的个体数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体有均等的机会被抽到,从而能够保证样本的代表性(3)抽签法的缺点:①当总体中的个体数较多时,制作号签的成本就会增加,使得抽签的成本增加;②)号签很多时,把它们搅拌均匀就比较困难,很难保证每个个体人选样本的等可能性,从而产生坏样本(即代表性差的样本)的可能性增加.2.随机数表法(1)对于随机数表法,注意:①抽样过程中选定的初始数和读数的方向是任意的.②若用题中所给的编号,但编号位数不统一时,可在位数少的数前添加“0”来调整.③读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.(2)随机数表的形成随机数表由数字0,1,2,…,9组成,并且每个数字在表中各个位置出现的机会都是一样的(随机数表不是唯一的,只要符合各个位置出现各个数字的可能性相同的要求,就可以构成随机数表.常用的方法是通过随机数生成器,例如使用计算器或计算机的应用程序生成随机数的功能,可以生成一张随机数表,通常根据实际需要和方便使用的原则,将几个数组合在一起,如5个数一组,然后通过随机数表抽取样本)(3)随机数表法的步骤①编号.将N个个体编号,这里所谓的编号,实际上是编数字号码.例如:将100个个体编号成00,01,02,...,99,而不是编号成0,1,2, (99)此外,将起始号码选为00,而不是01,这样可使100个个体都可用两位数字号码表表示,便于运用随机数表取数.②选定初始值(数).为了保证所选数字的随机性,在查看随机数表前就指出开始数字的横、纵位置.③选号.从选定的数字开始按照一定的方向读下去,得到的号码若不在编号中或已被选用,则跳过,直到选满n个为止.④确定样本.按步骤③选出的号码从总体中找出与其对应的个体,组成样本.(4)随机数表法的优缺点优点:简单易行,不论总体容量是多少都可以使用,它很好地解决了用抽签法当总体容量较大时制签难的问题.缺点:当总体容量很大,需要的样本容量也很大时,利用随机数表法抽取样本仍不方便.【例1】某单位举办一场活动,共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.【答案】答案详见解析.【名师点睛】一个抽样试验能否用抽签法,关键看制作号签是否方便以及号签是否容易被搅拌均匀.(1)用随机数表法抽取样本时,任选一个数作为开始,读数的方向可以向左,也可以向右、向上或向下,因此根据同一个随机数表所抽取的样本并不是唯一的.(2)由于随机数表中各数出现的机会是相等的,因此利用随机数表法抽取的样本保证了个体被抽到的可能性是相等的.(3)若个体的编号是三位数,则从随机数表中选定的数字开始,每次连续读取三个数为一个号码.(4)由于需要编号,如果总体中的个体数目大多,采用随机数表法进行抽样就显得不太方便.【例2】为了适应新高考改革,尽快推行不分文理科教学,对比目前文理科学生考试情况进行分析,决定从80名文科同学中抽取10人,从300名理科同学中抽取50人进行分析.由于本题涉及文科生和理科生的混合抽取,你能选择合适的方法设计抽样方案吗?试一试.【答案】答案详见解析.【解析】文科生抽样用抽签法,理科生抽样用随机数表法,抽样过程如下:(1)先抽取10名文科同学:第一步,将80名文科同学依次编号为1,2,3, (80)第二步,将号码分别写在形状、大小均相同的纸片上,制成号签;第三步,把80个号签放入一个不透明的容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;第四步,与号签上号码相对应的10名同学的考试情况就构成一个容量为10的样本.(2)再抽取50名理科同学:第一步,将300名理科同学依次编号为001,002, (300)第二步,拿出随机数表前先确定起始位置,并确定读数方向(可以向上、向下、向左或向右),然后每次读取三位,凡不在001~300范围内的数跳过去不读,前面已经读过的也跳过去不读,依次下去,可以得到50个号码;第三步,这50个号码所对应的同学的考试情况就构成一个容量为50的样本.【名师点睛】利用随机数表法抽取个体时,关键是确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.二、系统抽样解决系统抽样问题的关键步骤为:(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.【例3】某电视机厂每天生产1000台电视机,要求质检员每天抽取30台,检查其质量状况,请你设计一个调查方案.【答案】答案详见解析.【解析】我们可采用系统抽样,方案如下:第一步,把一天生产的电视机分成30组,由于100030的商是33,余数是10,所以每组有33台电视机,还剩10台,抽样间隔为33;第二步,用简单随机抽样的方法从总体中抽取10台电视机,不进行检验;第三步,将剩下的电视机进行编号,编号分别为0,1,2, (989)第四步,从第一组(编号为0,1,2,3,…,32)的电视机中按照简单随机抽样的方法抽取1台电视机,比如说其编号为k;第五步,顺序地抽取编号分别为下面数字的电视机:k+33,k+66,k+99,…,k+29×33,这样总共抽取了30个样本,对这30个样本进行检验.【名师点睛】系统抽样不一定就是等距离的抽样,即系统抽样只要按照一定的规则在每段内抽出一个样本即可,样本与样本之间的间隔距离可以不相等.三、分层抽样若总体中已经分成差异明显的几层,则适合用分层抽样法抽取样本. 对于分层抽样中的比值问题,求解时,常用的技巧为:=n N 样本容量该层抽取的个体数总体的个数该层的个体数,总体中某两层的个体数之比=样本中这两层抽取的个体数之比.【例4】某校高一年级500名学生中,血型为O 型的有200人,血型为B 型的有125人,血型为AB 型的有50人,血型为A 型的有125人.为了研究血型与色弱之间的关系,要从中抽取一个容量为20的样本,应如何抽样?请写出抽样过程.【答案】答案详见解析.【解析】应采用分层抽样法,具体步骤如下:第一步,分层.按血型分为4层.第二步,确定各层抽取的人数. 因为抽样比为20150025=,所以从血型为O 型的人中抽取1200825⨯=(人), 从血型为B 型的人中抽取1125525⨯=(人), 从血型为AB 型的人中抽取150225⨯=(人), 从血型为A 型的人中抽取1125525⨯=(人). 第三步,按分层抽样抽取分别在4种血型的人中用简单随机抽样的方法抽取样本.【名师点睛】在分层抽样中,确定抽样比是抽样的关键.1.对于简单随机抽样,下列说法中正确的为①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中按排列顺序逐个地进行抽取;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.A.①②③B.①②④C.①③④D.①②③④2.某校期中考试后,为分析该校高二年级2000名学生的学习成绩,从中随机抽取了200名学生的成绩单,下面说法正确的是A.2000名学生是总体B.每个学生是个体C.200名学生的成绩是一个个体D.样本容量是2003.总体由编号为00,01,02,…48,49的50个个体组成,利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为附:第6行至第9列的随机数表:26 35 79 00 33 70 91 60 16 20 38 82 77 57 49 5032 11 49 19 73 06 49 16 76 77 87 33 99 74 67 3227 48 61 98 71 64 41 48 70 86 28 88 85 19 16 2074 77 01 11 16 30 24 04 29 79 79 91 96 83 51 25A.3 B.16 C.38 D.494.某年级文科班共有4个班级,每班各有40位学生(其中男生8人,女生32人).若从该年级文科生中以简单随机抽样抽出20人,则下列选项中正确的是A.每班至少会有一人被抽中B.抽出来的女生人数一定比男生人数多C.已知小文是男生,小美是女生,则小文被抽中的概率小于小美被抽中的概率D.若学生甲和学生乙在同一班,学生丙在另外一班,则甲、乙、丙三人各自被抽中的概率相等5.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是A.110,110B.310,15C.15,310D.310,3106.将高一(10)班的所有学生按体重大小排成一路纵队,用掷骰子的方法在前六名学生中任选一名,用里l表示该名学生在队列中的序号.将队列中序号为(l+6k)(k=1,2,3,…)的学生抽出作为样本,这里运用的抽样方法是A.系统抽样法B.抽签法C.随机数表法D.简单随机抽样法7.一个年级共有20个班,每个班学生的学号都是1~50,为了交流学习的经验,要求每个班学号为22的学生留下,这里运用的是A.分层抽样法B.抽签法C.随机抽样法D.系统抽样法8.在一个个体数目为1201的总体中,利用系统抽样抽取一个容量为30的样本,则需要把总体分成几组A.400 B.30 C.401 D.319.某校有男生450人,女生500人,现用分层抽样的方法从全校学生中抽取一个容量为95的样本,则抽出的男生人数是A.45 B.50 C.55 D.6010.要从1000个球中抽取100个进行抽样分析,其中红球共有50个,如果用分层抽样的方法对球进行抽样,则应抽取红球A.33个B.20个C.5个D.10个11.将一个总数为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取的个体数为A.20 B.30 C.40 D.5012.某中学高中学生有900名.为了考察他们的体重状况,打算抽取容量为45的一个样本.已知高一有400名学生,高二有300名学生,高三有200名学生.若采取分层抽样的办法抽取,则高二学生需要抽取的学生个数为A.20人B.15人C.10人D.5人13.我校现有教职工320人,其中专任教师有248人,教辅人员48人,后勤人员24人,现用分层抽样从中抽取一容量为40的样本,则应抽取教辅人员的人数为A.4 B.6 C.8 D.3114.某单位有若干名员工,现抽取n人去体检,若老、中、青人数之比为2∶1∶2,已知抽到10位中年人,则样本容量为A.40 B.100 C.80 D.5015.从50个产品中抽取10个进行检查,则总体个数为__________,样本容量为__________.16.总体有编号为001,002,…,599,600的600个个体组成.利用下面的随机数表选取60个个体,选取方法是从随机数表第8行第8列的数8开始向右读,则选出来的第5个个体的编号为__________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 6378 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 7864 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.17.在某年有奖明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式,确定号码的后四位数为2709的为三等奖,这样确定获奖号码的抽样方法是____________.18.某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是____________.19.某初级中学采用系统抽样的方法,从该校全天800名学生中抽50名学生作牙齿检查,现将800名学生从1到800进行编号,在1–16中随机抽取了一个数,如果抽到的是7,则从49–64中应取的号码是____________.20.某学校高一年级为了表彰第一次月考成绩优异者,需要5件不同的奖品,这些奖品要从由1–200编号的200件不同奖品中随机抽取确定,用系统抽样的方法确定其中一件奖品编号为6,则其他四件奖品编号为____________.21.某班共有56人,学号依次为1,2,3,…,56,现用系统抽样的方法抽取一个容量为4的样本,已知学号为2,30,44的同学在样本中,则还有一位同学的学号应为____________.22.将某班的120名学生编号为001,002,…,120,采用系统抽样方法抽取一个容量为6的样本,且随机抽样的一个号码为04,则剩下的五个号码依次是____________.23.一个单位共有职工200人,其中不超过45岁的有128人,超过45岁的有72人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工__________人.24.某学校高一、高二、高三年级的学生人数之比为2∶3∶5,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为150的样本,则应从高二年级抽取__________名学生.25.某校高一年级有x个学生,高二年级有y个学生,高三年级有z个学生.采用分层抽样的方法抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,若高三年级共有300人,则此学校共有__________人.26.从N个编号中要抽取n个号码入样,若采用系统抽样方法抽取,则分段间隔应为([Nn]表示Nn的整数部分)A.NnB.n C.[Nn] D.[Nn]+127.某校高中部共n名学生,其中高一年级450人,高三年级250人,现采用分层抽样的方法从全校学生中随机抽取60人,其中从高一年级中抽取27人,则高二年级的人数为A.250 B.300 C.500 D.100028.某鱼贩一次贩运糟鱼,青鱼,鲢鱼,鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行重量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼和鲤鱼共有A.6条B.8条C.10条D.12条29.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你写出第二个被检测的种子的编号__________.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.30.一个总体的60个个体的编号为0,1,2,…,59,现要从中抽取一个容量为10的样本,请根据编号按被6除余3的方法,取足样本,则抽取的样本号码是____________.31.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取6个班进行调查,若抽到的编号之和为87,则抽到的最小编号为____________.32.某中学高一年级有x个学生,高二年级共有900个学生,高三年级有y个学生,采用分层抽样抽一个容量为370人样本,高一年级抽取120人,高三年级抽取100人,则全校高中部共有多少学生?33.某企业共有3200名职工,其中,中、青、老年职工的比例为5∶3∶2,从所有职工中抽取一个容量为400的样本,采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?34.某农场在三类土地上种植某种试验作物工,其中平地种了150亩,河沟地种了30亩,坡地种了90亩,为了研究这种试验作物和,准备抽取18亩作为研究对象,应该采用哪种抽样方法更合理?分别抽取多少亩?35.某校有学生2000人,其中高一年纪的学生与高三年级的学生之比为3∶4,从中抽取一个容量为40的样本,高二年级恰好抽取了12人.求各年级的人数及高一年级、高三年级各抽取的人数.36.(2018•新课标Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是___________.37.(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取___________件.1 2 3 4 5 6 7 8 9 10C D C D A A D B A C11 12 13 14 26 27 28A B B D C B A1.【答案】C【解析】①简单随机抽样中被抽取样本的总体的个数有限,正确;②简单随机抽样是从总体中逐个地进行抽取,不正确;③简单随机抽样是一种不放回抽样,正确;④简单随机抽样是一种等可能抽样,即每个个体被抽取的可能性相等,正确.故选C.4.【答案】D【解析】在抽样过程中,不管使用什么抽样,每个个体被抽到的概率都相等,从该年段文科生中以简单随机抽样抽出20人,所有班的学生被抽到的概率都一样,男生女生被抽到的概率都一样,简单随机抽样,每个个体被抽中的概率相等,故选D.5.【答案】A【解析】在抽样过程中,个体a每一次被抽中的概率是相等的,∵总体容量为10,故个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性均为110,故选A.6.【答案】A【解析】∵将队列中序号为(l+6k)(k=1,2,3,…)的学生抽出作为样本,∴抽出样本的间距为6,这样选出的样本是采用系统抽样的方法,故选A.7.【答案】D【解析】一个年级有20个班,每个班学生的学号都是1~50,要求各班学号为22的学生参加交流活动,这里运用的抽样方法是系统抽样,故选D.8.【答案】B【解析】∵利用系统抽样抽取一个容量为30的样本,则需要把总体分成30组,故选B.9.【答案】A【解析】男生有450人,女生有500人,用分层抽样的方法从全校学生中抽取一个容量为95的样本,则抽出的男生人数是95×450450500+=45.故选A.10.【答案】C【解析】要从1000个球中抽取100个进行抽样分析,其中红球共有50个,∴抽样比f=1001 100010=,用分层抽样的方法对球进行抽样,则应抽取红球:50×110=5个.故选C.11.【答案】A【解析】∵A、B、C三层,个体数之比为5∶3∶2.又有总体中每个个体被抽到的概率相等,∴分层抽样应从C中抽取100×210=20.故选A.14.【答案】D【解析】根据分层抽样原理,抽取中年人的频率是112125=++,所以样本容量为n=10÷15=50.故选D.15.【答案】50,10【解析】由题意知,总体个数为50,样本容量为10,故答案是:50,10.16.【答案】443【解析】从随机数表第8行第8列的数开始向右读,选的第一个个体的编号为555,∵671、998>600,∴选的第二个个体的编号为105;选的第三个个体的编号为071;∵751>600,∴选的第四个个体的编号为286;∵735、807>600,∴选的第五个个体的编号为443.故答案为:443.17.【答案】系统抽样【解析】本抽样方式按照随机抽取的方式确定后四位数为2709的号码作为中奖号码,所抽取号码间隔相同,为系统抽样.故答案为:系统抽样.。

专题 2.1 随机抽样-高一数学(人教版必修3)

第二章统计2.1 随机抽样1.抽样的必要性在实际中要全面了解总体的情况,往往难以做到,一般也不可能或没有必要对每个个体逐一进行研究.因为:①一些总体中包含的个体数通常是大量的甚至是无限的.如不可能对所有的灯泡进行试验,记录每一个灯泡的使用寿命;②一些总体具有破坏性.如不可能对所有的炮弹进行试射;③一些调查具有破坏性.如不可能对地里所有的种子是否发芽都挖出来检验;④全面调查(普查)往往要浪费大量的人力、物力和财力.所以常通过从总体中抽取一部分个体,根据对这一部分个体的观察研究结果,再去推断和估计总体情况,即用样本估计总体一一这是统计学的一个基本思想.2.相关概念回顾(1)总体:统计中所考察对象的某一数值指标的全体构成的集合称为总体.(2)个体:构成总体的每一个元素叫做个体.(3)样本:从总体中抽取若干个个体进行考察,这若干个个体所构成的集合叫做总体的一个样本,样本中个体的数目叫做样本容量.3.简单随机抽样(1)概念),如果每次一般地,设一个总体含有N个个体,从中逐个___________地抽取n个个体作为样本(n N抽取时总体内的各个个体被抽到的机会都___________,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)两种常用的简单随机抽样方法①抽签法(抓阄法):一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法简单易行,当总体中的个体数___________时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体有均等的机会被抽中,从而能够保证样本的代表性.②随机数法:随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.这里仅介绍随机数表法.随机数表由数字0,1,2,…,9组成,并且每个数字在表中各个位置出现的机会都是一样的.随机数表法简单易行,不论总体容量是多少都可以使用,它很好地解决了用抽签法当总体容量较多时制签难的问题.但是当总体容量很大时,需要的样本容量也很大时,利用随机数法抽取样本仍不方便. 注意:为了保证所选数字的随机性,需在查看随机数表前就指出开始数字的横、纵位置. (3)简单随机抽样的特征:①有限性:简单随机抽样要求被抽取的样本的总体个数是有限的,便于通过样本对总体进行分析 ②逐一性:简单随机抽样是从总体中逐个地进行抽取,便于实践中操作. ③不放回性:简单随机抽样是一种不放回抽样,便于进行有关的分析和计算.④等可能性:简单单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样方法的公平性. 4.系统抽样 (1)概念在抽样中当总体个体数___________时,可将总体分成___________的若干部分,然后按照预先制定的规则,从每一部分抽取___________个体,得到所需的样本,这种抽样方法叫做系统抽样. (2)步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,可以按下列步骤进行系统抽样: ①先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等. ②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取N k n=. ③在第1段用简单随机抽样的方法确定第一个个体编号()l l k ≤.④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号(2)l k +,依次进行下去,直到获取整个样本. 注意:若Nn不是整数,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.另外,系统抽样适用于总体容量较大,且个体之间无明显差异的情况. 5.分层抽样一般地,在抽样时,将总体分成___________,然后按照___________,从各层独立地抽取一定数量的个体,将___________取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.分层抽样适用于已知总体是由差异明显的几部分组成的. 6.三种抽样方法的区别和联系三种抽样方法的特点及其适用范围如下表:3.(1)不放回 相等 (2)①不多 4.(1)较多 均衡 一个5.互不交叉的层 一定的比例 各层一、简单随机抽样要判断所给的抽样方法是否是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:有限性、逐一性、不放回性、等可能性.(1)总体是数值指标的全体,例如,要考察某班男生的身高,则总体为该班全部男生的身高数据,而不是该班的男生.(2)个体是总体的一个元素,因此构成总体的每一个数值指标都为个体.(3)样本是总体的一部分,因此样本中所含个体的数量不能超过总体的数量,样本中个体的来源为总体中的个体.1.抽签法(1)对于抽签法,注意:①号签的大小、形状要完全相同.②抽签前需将号签搅拌均匀.(2)抽签法的优点:抽签法简单易行,当总体中的个体数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体有均等的机会被抽到,从而能够保证样本的代表性(3)抽签法的缺点:①当总体中的个体数较多时,制作号签的成本就会增加,使得抽签的成本增加;②)号签很多时,把它们搅拌均匀就比较困难,很难保证每个个体人选样本的等可能性,从而产生坏样本(即代表性差的样本)的可能性增加.2.随机数表法(1)对于随机数表法,注意:①抽样过程中选定的初始数和读数的方向是任意的.②若用题中所给的编号,但编号位数不统一时,可在位数少的数前添加“0”来调整.③读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.(2)随机数表的形成随机数表由数字0,1,2,…,9组成,并且每个数字在表中各个位置出现的机会都是一样的(随机数表不是唯一的,只要符合各个位置出现各个数字的可能性相同的要求,就可以构成随机数表.常用的方法是通过随机数生成器,例如使用计算器或计算机的应用程序生成随机数的功能,可以生成一张随机数表,通常根据实际需要和方便使用的原则,将几个数组合在一起,如5个数一组,然后通过随机数表抽取样本)(3)随机数表法的步骤①编号.将N个个体编号,这里所谓的编号,实际上是编数字号码.例如:将100个个体编号成00,01,02,...,99,而不是编号成0,1,2, (99)此外,将起始号码选为00,而不是01,这样可使100个个体都可用两位数字号码表表示,便于运用随机数表取数.②选定初始值(数).为了保证所选数字的随机性,在查看随机数表前就指出开始数字的横、纵位置.③选号.从选定的数字开始按照一定的方向读下去,得到的号码若不在编号中或已被选用,则跳过,直到选满n个为止.④确定样本.按步骤③选出的号码从总体中找出与其对应的个体,组成样本. (4)随机数表法的优缺点优点:简单易行,不论总体容量是多少都可以使用,它很好地解决了用抽签法当总体容量较大时制签难的问题.缺点:当总体容量很大,需要的样本容量也很大时,利用随机数表法抽取样本仍不方便.1)下列抽样检验中,适合用抽签法的是( )A .从某厂生产的5 000件产品中抽取600件进行质量检验B .从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C .从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D .从某厂生产的5 000件产品中抽取10件进行质量检验 【答案】B【解析】A ,D 中总体的个体数较多,不适宜用抽签法,C 中,一般甲、乙两厂的产品质量有区别,也不适宜用抽签法,故选B .2)某单位举办一场活动,共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程. 【答案】答案详见解析. 【解析】抽样过程:第一步,将50名志愿者编号,号码为1,2,3,…,50. 第二步,将号码分别写在号签上.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,依次不放回地抽取6次,并记录其编号,对应编号的志愿者参加活动.【名师点睛】一个抽样试验能否用抽签法,关键看制作号签是否方便以及号签是否容易被搅拌均匀. (1)用随机数表法抽取样本时,任选一个数作为开始,读数的方向可以向左,也可以向右、向上或向下,因此根据同一个随机数表所抽取的样本并不是唯一的.(2)由于随机数表中各数出现的机会是相等的,因此利用随机数表法抽取的样本保证了个体被抽到的可能性是相等的.(3)若个体的编号是三位数,则从随机数表中选定的数字开始,每次连续读取三个数为一个号码. (4)由于需要编号,如果总体中的个体数目大多,采用随机数表法进行抽样就显得不太方便.1)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【答案】D【解析】由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.2)为了适应新高考改革,尽快推行不分文理科教学,对比目前文理科学生考试情况进行分析,决定从80名文科同学中抽取10人,从300名理科同学中抽取50人进行分析.由于本题涉及文科生和理科生的混合抽取,你能选择合适的方法设计抽样方案吗?试一试.【答案】答案详见解析.【解析】文科生抽样用抽签法,理科生抽样用随机数表法,抽样过程如下:(1)先抽取10名文科同学:第一步,将80名文科同学依次编号为1,2,3, (80)第二步,将号码分别写在形状、大小均相同的纸片上,制成号签;第三步,把80个号签放入一个不透明的容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;第四步,与号签上号码相对应的10名同学的考试情况就构成一个容量为10的样本.(2)再抽取50名理科同学:第一步,将300名理科同学依次编号为001,002, (300)第二步,拿出随机数表前先确定起始位置,并确定读数方向(可以向上、向下、向左或向右),然后每次读取三位,凡不在001~300范围内的数跳过去不读,前面已经读过的也跳过去不读,依次下去,可以得到50个号码;第三步,这50个号码所对应的同学的考试情况就构成一个容量为50的样本.【名师点睛】利用随机数表法抽取个体时,关键是确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.二、系统抽样解决系统抽样问题的关键步骤为:(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.1)为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .51【答案】C【解析】由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,从而可知选C .2)某电视机厂每天生产1000台电视机,要求质检员每天抽取30台,检查其质量状况,请你设计一个调查方案.【答案】答案详见解析.【解析】我们可采用系统抽样,方案如下: 第一步,把一天生产的电视机分成30组, 由于100030的商是33,余数是10,所以每组有33台电视机,还剩10台,抽样间隔为33;第二步,用简单随机抽样的方法从总体中抽取10台电视机,不进行检验; 第三步,将剩下的电视机进行编号,编号分别为0,1,2, (989)第四步,从第一组(编号为0,1,2,3,…,32)的电视机中按照简单随机抽样的方法抽取1台电视机,比如说其编号为k ;第五步,顺序地抽取编号分别为下面数字的电视机:k +33,k +66,k +99,…,k +29×33,这样总共抽取了30个样本,对这30个样本进行检验.【名师点睛】系统抽样不一定就是等距离的抽样,即系统抽样只要按照一定的规则在每段内抽出一个样本即可,样本与样本之间的间隔距离可以不相等. 三、分层抽样若总体中已经分成差异明显的几层,则适合用分层抽样法抽取样本. 对于分层抽样中的比值问题,求解时,常用的技巧为:=n N 样本容量该层抽取的个体数总体的个数该层的个体数,总体中某两层的个体数之比=样本中这两层抽取的个体数之比.1)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:青年观众”中抽取了8人,则n的值为________.【解析】由题意可得n=840×150=30.【答案】302)某校高一年级500名学生中,血型为O型的有200人,血型为B型的有125人,血型为AB型的有50人,血型为A型的有125人.为了研究血型与色弱之间的关系,要从中抽取一个容量为20的样本,应如何抽样?请写出抽样过程.【答案】答案详见解析.【解析】应采用分层抽样法,具体步骤如下:第一步,分层.按血型分为4层.第二步,确定各层抽取的人数.因为抽样比为20150025=,所以从血型为O型的人中抽取1200825⨯=(人),从血型为B型的人中抽取1125525⨯=(人),从血型为AB型的人中抽取150225⨯=(人),从血型为A型的人中抽取1125525⨯=(人).第三步,按分层抽样抽取分别在4种血型的人中用简单随机抽样的方法抽取样本.【名师点睛】在分层抽样中,确定抽样比是抽样的关键.1.人民礼堂有50排座位,每排有60个座位号,一次报告会坐满了听众,会后留下座位号为18的所有听众50人进行座谈,这是运用了()A.抽签法B.随机数法C.系统抽样D.放回抽样【答案】C【解析】由于每相邻两个座位号为18之间间隔60个座位,属于等距离抽样,可知,所选的抽样方法为系统抽样法,故选C.2.某校有高一学生450人,高二学生480人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为n的样本,已知从高一学生中抽取15人,则n为()A.15 B.16C.30 D.31【答案】D【解析】根据分层抽样原理,可列方程15450480450n=+,解得n=31.故选D.3.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验【答案】D【解析】A选项,在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;为系统抽样;B选项,某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;为系统抽样;C选项,某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见;为分层抽样;D选项,用抽签法从10件产品中选取3件进行质量检验;为简单随机抽样,故选D.4.下面三件事,合适的抽样方法依次为()①从某厂生产的3000件产品中抽取600件进行质量检验②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,10人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m决赛的6名同学安排跑道.A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样【答案】D【解析】①从某厂生产的3000件产品中抽取600件进行质量检验,适合系统抽样的方法;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,10人低于90分.现在从中抽取12人了解有关情况;适合分层抽样的方法;③运动会服务人员为参加400 m决赛的6名同学安排跑道;适合简单随机抽样,故选D.5.已知两个问题:(1)某学校为了了解2017年高考数学学科的考试成绩,在高考后对1200名学生进行抽样调查,其中文科200名考生,理科800名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.三种方法:Ⅰ简单随机抽样法.Ⅱ系统抽样法.Ⅲ分层抽样法.则问题(1)、(2)与方法Ⅰ、Ⅱ、Ⅲ配对合理的是()A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅠD.(1)Ⅲ,(2)Ⅱ【答案】A【解析】(1)中由于1200名学生各个学生层次之间存在明显差别,故(1)适合采用分层抽样的方法(2)中由于总体数目不多,而且样本容量不大,故(2)适合采用简单随机抽样.故问题和方法配对合理的是:(1)Ⅲ(2)Ⅰ.故选A.6.在一个个体数目为2003的总体中,利用系统抽样抽取一个容量为100的样本,则总体中每个个体被抽到的机会为()A.120B.1100C.1002003D.12000【答案】C【解析】因为采用系统抽样的方法从个体数目为2003的总体中抽取一个样本容量为100的样本,每个个体被抽到的可能性都相等,于是每个个体被抽到的机会是1002003.故选C.7.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为()A.24 B.25 C.26 D.28【答案】B【解析】由于5008不能被200整除,故应从5008名学生中剔除部分学生后再按系统抽样的方法进行抽样,因为5008除以200的商为25,余数为8,所以每组的容量为25.故选B .8.下列问题中,最适合用系统抽样法抽样的是( )A .从某厂生产的20个电子元件中随机抽取5个入样B .一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家,为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C .从参加竞赛的1500名初中生中随机抽取100人分析试题作答情况D .从参加期末考试的2400名高中生中随机抽取10人了解某些情况【答案】C【解析】选项A 中,由于总体容量较小,样本容量也较小,可采用抽签法;选项B 中,由于总体中的个体有明显的层次,不适宜用系统抽样法;选项C 中,由于总体容量较大,样本容量也较大,可用系统抽样法;选项D 中,总体容量较大,样本容量较小,可用随机数表法.故选C .9.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1160~编号,并按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若按等距的规则从第16组抽出的号码为126,则第1组中用抽签法确定的号码是( )A .6B .7C .5D .4 【答案】A【解析】根据系统抽样的概念,可知若第1组抽取的号码为x ,则第16组为815x +⨯,即815126x +⨯=,解得6x =,故选A .10.某学校有2200名学生,现采用系统抽样方法抽取44人,将2200人按1,2,…,2200随机编号,则抽取的44人中,编号落在[101,500]的人数为( )A .7B .8C .9D .10 【答案】B 【解析】每一个小组的人数为22005044=,所以编号落在[101,500]的人数为500100850-=.故选B . 11.某校1000名学生中,O 型血有400人, A 型血有250人, B 型血有250人, AB 型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为60人的样本,按照分层抽样的方法抽取样本,则O 型血、A 型血、B 型血、AB 型血的人要分别抽的人数为( )A .24,15,15,6B .21,15,15,9C .20,18,18,4D .20,12,12,6【答案】A 【解析】根据分层抽样的特点可知,O 型血的人要抽取的人数为40060241000⨯=, A 型血的人要抽取的人数为25060151000⨯=,B 型血的人要抽取的人数为25060151000⨯=, AB 型血的人要抽取的人数为1006061000⨯=,故选A . 12.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n 的样本,若样本中男生比女生多12人,则n =( ) A .990B .1320C .1430D .1560 【答案】B 【解析】依题意可得6512111110n ⎛⎫-⨯= ⎪⎝⎭,解得1320n =,故选B . 13.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为( )A .5B .10C .4D .20 【答案】B【解析】设应抽取的女生人数为x ,则25360540360x =+,解得10x =.故选B . 14.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则从高一年级抽取的学生人数为( )A .15B .20C .25D .30 【答案】B【解析】设高一年级所抽取的学生人数为x ,则45010x =,解得20x ,故选B .15.将一个总体分为甲、乙、丙三层,其个体数之比为5:3:2,若用分层抽样的方法抽取容量为200的样本,则应从丙层中抽取的个体数为( )A.20 B.40C.60 D.100 【答案】B【解析】因为甲、乙、丙三层,其个体数之比为5:3:2,所以丙层所占的比例为20.2532=++,所以应从丙层中抽取的个体数为0.220040⨯=,故选B.16.从总数为N的一批零件中随机抽取一个容量为30的样本,若每个零件被抽中的可能性为25%,则N 为()A.200B.150C.120D.100【答案】C【解析】由300.25N=,得120N=,故选C.17.某学校有高中学生1000人,其中高一年级、高二年级、高三年级的人数分别为320,300,380.为调查学生参加“社区志愿服务”的意向,现采用分层抽样的方法从中抽取一个容量为100的样本,那么应抽取高二年级学生的人数为()A.68 B.38C.32 D.30【答案】D【解析】根据题意得,用分层抽样在各层中的抽样比为1001100010=,则高二年级抽取的人数是300110⨯=30人,故选D.18.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为()A.16 B.24C.32 D.48【答案】B【解析】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为37224234⨯=++.故选B.19.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为__________.【答案】54【解析】设抽取的样本中老年教师的人数为x ,学校所有的中老年教师人数为270人, 由分层抽样的定义可知:32=160270x ,解得:54x =.故答案为54. 20.高二(3)班有32名男生,24名女生,用分层抽样的方法,从该班抽出7名学生,则抽到的男生人数为__________.【答案】4 【解析】男生人数为:32743224⨯=+,故答案为4. 21.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是__________.【答案】16、28、40、52.【解析】分段间隔为60125=,则所选的剩余的号码依次为16、28、40、52,故答案为:16、28、40、52.22.某校为了解高二年级学生对教师教学的意见,打算从高二年级500名学生中用系统抽样的方法抽取50名进行调查,记500名学生的编号依次为1,2,…,500,若抽取的前两个号码为6,16,则抽取的最大号码为__________.【答案】496【解析】由于间距为5001050=,而前两个号码为6,16,则编号构成是以6为首项,10为公差的等差数列,因此最大编号为()650110496+-⨯=,故答案为:496.23.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是__________.【答案】5【解析】用系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5.故答案为:5.24.某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200人,并从中抽取了40人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生活中的抽样方法
例1某学校有职工140人,其中教师91人,教辅行政人员28人,总务后勤人员21人。

为了解职工的某种情况,要从中抽取一个容量为20的样本。

以下的抽样方法中,依简单随机
抽样,系统抽样,分层抽样顺序的是()
方法1:将140人从1140编号,然后制作出有编号1140的形状、大小相同的号签,并将号签放入同一箱子里进行均匀搅拌,然后从中抽出20个号签,编号与号签相同的20个人被选出。

方法2:将140人分成20组,每组7人,并将每组7人按17编号,在第一组采用
抽签法抽出k号(17
k),其余各组k号也被抽出,20个人被选出。

方法 3 按20:1401:7的比例,从教师中抽出13人,从教辅行政人员中抽出4人,从总务后勤人员中抽出3人。

从各类人员中抽出所需要人员时,均采用随机数表法,可抽到
20人。

A.方法 2 ,方法1,方法 3 B.方法 2 ,方法3,方法 1
C.方法1,方法 2 ,方法 3 D.方法3,方法1,方法 2
分析:结合简单随机抽样、系统抽样、分层抽样的含义判断。

解析:方法1是简单随机抽样,方法2是系统抽样,方法3是分层抽样。

故选C
评注:该例主要考查对三个抽样概念的理解以及灵活运用的能力。

例2选择合适的抽样方法,写出抽样过程。

(1)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样。

(2)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样。

(3)有甲厂生产的300个篮球,抽取10个入样。

(4)有甲厂生产的300个篮球,抽取30个入样。

分析:应结合三种抽样方法的使用范围和实际情况,灵活使用各种抽样方法解决问题。

解:(1)总体由差异明显的几个层次组成,需选用分层抽样法。

第一步:确定抽取个数30
3
10
,所以甲厂生产的应抽取
21
7
3
(个),乙厂生产的应抽取
9
3
3
(个);
第二步:用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个,这些篮球便组成了我们要抽取的样本。

(2)总体容量较小,可以采用抽签法,具体步骤如下:
第一步:将30个篮球编号,编号为00,01,02,,29;
第二步:将以上30个编号分别写在一张小纸条上,揉成小球,制成号签;
第三步:把号签放入一个不透明的袋子中,充分搅匀;
第四步:从袋子中逐个抽取3个号签,并记录上面的号码;
第五步:找出和所得号码对应的篮球。

(3)总体容量较大,样本容量较小宜用随机数表法。

第一步:将300个篮球用随机方式编号,编号为001,002,,300;
第二步:在随机数表中随机地确定一个数作为开始,如第8行第29列的数“7”开始,任选一个方向作为读数的方向,比如向右读;
第三步:从数“7”开始向右读,每次读三位,凡不在001300中的数跳过去不读,遇到
已经读过的数也跳过去不读,便可依次得到286,211,234,297,207,013,027,086,284,281这10个号码,这就是所要抽取的10个样本个体的号码。

(4)总体容量较大,样本容量也较大宜用系统抽样法。

第一步:将300个篮球用随机方式编号,编号为000,001,002,,299,并分成30段;
第二步:在第一段000,001,002,009这10个编号中用简单随机抽样抽出一个(如002)作为起始号码;
第三步:将编号为002,012,022,,292的个体抽取,组成样本。

相关文档
最新文档