发酵工程

合集下载

发酵工程的名词解释

发酵工程的名词解释

发酵工程的名词解释发酵工程是一门综合性科学,涵盖了生物学、化学、工程学和食品科学等多个学科的知识。

它借助于微生物和酶等生物媒介,通过控制条件促使有机物质发生生物化学反应,从而产生特定的代谢产物。

发酵工程的应用十分广泛,涉及制药、食品、饮料、化妆品等多个领域。

首先,发酵工程的基本原理是利用微生物来转化有机物质。

微生物是一类非常小巧的生物体,包括细菌、真菌和酵母等。

它们具有很强的代谢能力,并且在适宜的环境下,能够分解和转化复杂的有机物质。

发酵工程中常用的微生物包括乳酸菌、酵母菌和大肠杆菌等。

在发酵工程中,关键的一步就是培养和增殖微生物。

微生物的培养需要提供合适的培养基,其中包含了养份、碳源、氮源和微量元素等。

培养基的配方对于微生物的生长和产物的合成至关重要,因此需要根据具体的微生物种类和应用目的进行调整和优化。

另外,发酵工程中的温度、pH值、氧气供应等条件也对发酵过程起着至关重要的作用。

温度的控制能够影响微生物的生长速度和产物的合成效率。

pH值的调控则可以影响微生物酶的活性和代谢产物的组成。

此外,氧气供应也能够影响微生物的生长和代谢过程。

发酵工程的最终目的是获得特定的代谢产物。

常见的代谢产物包括酒精、有机酸、氨基酸和维生素等。

通过控制发酵过程中的微生物种类、培养条件和培养时间等因素,可以实现对产物种类和产量的调控。

在食品行业中,发酵工程被广泛应用于食品加工和保鲜等领域。

例如,酸奶的生产过程就是发酵工程的应用之一。

酸奶中含有很多对人体有益的活性物质,如乳酸菌和益生菌等。

通过控制酸奶发酵过程中的温度和时间等条件,可以促使乳酸菌发酵乳糖产生乳酸,从而使牛奶变酸,并且延长了酸奶的保质期。

另外,发酵工程在制药工业中的应用也非常广泛。

许多药物的合成都需要通过微生物进行发酵反应。

例如,青霉素的合成就是利用青霉菌在适宜的培养条件下发酵产生的。

总的来说,发酵工程是一门综合性的科学,通过控制微生物代谢过程实现有机物质的转化。

发酵工程知识点总结归纳

发酵工程知识点总结归纳

发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。

2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。

随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。

3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。

二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。

发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。

2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。

三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。

不同的微生物在发酵过程中起到不同的作用。

2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。

3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。

四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。

按照其作用方式可以分为氧化酶、还原酶、水解酶等。

2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。

3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。

五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。

2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。

3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。

六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。

发酵工程综合实验报告(3篇)

发酵工程综合实验报告(3篇)

第1篇一、实验目的1. 了解发酵工程的基本原理和操作方法;2. 掌握微生物的培养、分离、鉴定及发酵条件优化等实验技术;3. 提高实验操作能力和数据分析能力。

二、实验原理发酵工程是一门研究微生物发酵过程及其应用的科学。

通过发酵工程,可以利用微生物的代谢活动生产出各种有用的产品,如食品、医药、化工产品等。

本实验主要涉及微生物的培养、分离、鉴定及发酵条件优化等实验技术。

三、实验材料与仪器1. 材料:土壤样品、牛肉膏蛋白胨培养基、葡萄糖、酵母提取物、氯化钠、硫酸铵、磷酸二氢钾、硫酸镁、琼脂等;2. 仪器:高压蒸汽灭菌器、恒温培养箱、显微镜、电子天平、pH计、发酵罐、酒精灯、试管、培养皿等。

四、实验方法1. 微生物分离与纯化(1)土壤样品的采集与处理:在校园内采集土壤样品,将土壤样品过筛,去除杂质,备用;(2)牛肉膏蛋白胨培养基的制备:按照实验要求,称取牛肉膏、蛋白胨、葡萄糖、氯化钠、硫酸铵、磷酸二氢钾、硫酸镁等试剂,加入适量的水,搅拌均匀,煮沸10分钟,待冷却后加入琼脂,搅拌均匀,倒入培养皿中,待凝固;(3)土壤样品的接种:将处理好的土壤样品稀释,取适量涂布在牛肉膏蛋白胨培养基上,置于恒温培养箱中培养;(4)分离纯化:观察菌落特征,挑选单菌落进行纯化,重复以上步骤,直至获得纯化菌株。

2. 微生物鉴定(1)观察菌落特征:观察纯化菌株在牛肉膏蛋白胨培养基上的菌落特征,如菌落大小、形状、颜色、边缘等;(2)显微镜观察:将纯化菌株进行涂片、染色,在显微镜下观察菌体形态、染色特性等;(3)生化试验:进行糖发酵试验、氧化酶试验、淀粉酶试验等,鉴定菌株的生理生化特性。

3. 发酵条件优化(1)发酵培养基的制备:根据实验要求,称取葡萄糖、酵母提取物、氯化钠、硫酸铵、磷酸二氢钾、硫酸镁等试剂,加入适量的水,搅拌均匀,煮沸10分钟,待冷却后加入琼脂,搅拌均匀,倒入发酵罐中;(2)发酵条件优化:通过改变发酵温度、pH值、接种量、发酵时间等条件,观察发酵产物的产量和品质,确定最佳发酵条件。

《发酵工程》课件

《发酵工程》课件

产物分离纯化的优化
分离纯化方法
常见的分离纯化方法包括过滤、离心、萃取、蒸馏、膜分离等。
优化策略
根据产物的性质和发酵液的特点,选择合适的分离纯化方法,并优化工艺参数,以提高产物的纯度和收率。
06
未来发酵工程的发展趋势
新技术应用与设备改进
生物信息学
利用生物信息学技术,对微生物基因组学、转录组学和蛋白质组学 进行深入研究,为发酵工程提供更精确的微生物代谢调控手段。
为防止发酵污染,应定期对菌种进行 纯化、复壮,严格控制培养基和设备 的灭菌温度和时间,加强发酵过程中 的监控和检测。
发酵效率的提高
影响因素
影响发酵效率的因素包括菌种特性、培养基成分、发酵温度、pH值、溶解氧浓度等。
优化方法
通过调整培养基成分、控制发酵温度、调节pH值、提高溶解氧浓度等方法,可以有效提高发酵效率。
合成生物学
利用合成生物学技术,设计和构建具有特定功能的微生物细胞工厂, 实现高效、定向的物质转化。
基因编辑技术
通过基因编辑技术,改造和优化微生物的代谢途径,提高发酵产物 的产量和品质。
可持续性与环保
1 2
节能减排
通过优化发酵工艺和设备,降低能源消耗和减少 废弃物排放,实现发酵工程的绿色可持续发展。
抗菌素
抗菌素是一类具有抗菌活性的物质,通过抑制或杀死病原微生物,达到防治病害 的目的。抗菌素在医疗、农业、食品工业等领域广泛应用。
其他发酵产物及其应用
柠檬酸
柠檬酸是发酵工程中重要的有机酸之一,主要用于食品、 化工、医药等领域。柠檬酸具有抗氧化、抗菌、提高口感 等作用。
氨基酸
氨基酸是蛋白质的基本组成单位,通过发酵工程生产出的 各种氨基酸,如谷氨酸、赖氨酸等,在食品、饲料、医药 等领域广泛应用。

发酵工程的名词解释解释

发酵工程的名词解释解释

发酵工程的名词解释解释发酵工程是一门研究利用微生物进行发酵生产的科学与技术。

发酵工程可以追溯到人类历史中早期的食品制作和酿酒过程。

近年来,随着生物技术和微生物学的快速发展,发酵工程也不断拓展应用领域,包括药物、食品、化工等各个领域。

发酵可以定义为微生物在正常生理条件下生长和代谢产物的制备过程。

而发酵工程则是将发酵过程可控化、高效化、工艺化的一门学科,涵盖了微生物学、生物工程、化学工程、食品科学等多个学科的知识与技术。

发酵工程的研究对象包括微生物菌种的筛选、发酵过程的调控、代谢产物的优化和提取等。

在发酵工程中,微生物起着至关重要的作用。

发酵工程需要选择适宜的微生物菌种,这些微生物能够在特定的环境条件下进行有效的发酵。

常见的微生物菌种包括酵母菌、乳酸菌、大肠杆菌等。

这些微生物能够通过奈米级的代谢改变原料,产生各种有用的代谢产物,如酒精、酸类、酶等。

因此,选择适宜的微生物菌种对于发酵工程的成功至关重要。

发酵过程的调控也是发酵工程中的关键环节。

为了获得高产、高效的代谢产物,需要对发酵过程进行严格的控制和调节。

控制发酵过程的一种常见方法是调节培养基的成分和条件。

合理的选择基质成分可以促进微生物的生长和代谢活性,提高发酵过程的产量和效率。

此外,调节温度、氧气供应、pH值等操作参数也对发酵过程的效果起到重要作用,需要根据具体微生物和发酵产物的特点进行精确的调控。

发酵工程的另一个重要方面是代谢产物的优化和提取。

代谢产物的优化是指通过调节发酵条件和菌种的选择,使得目标产物在发酵过程中的产量和纯度达到最佳状态。

而代谢产物的提取则是指从发酵液中将目标产物分离出来,以便进一步的利用和加工。

不同的发酵产物可能需要不同的提取方法,包括离心、超滤、浓缩、溶剂萃取等。

还可以利用生物技术手段从微生物中提取基因,用于进一步改良和优化发酵产物。

除了食品和饮料领域的应用,发酵工程在医学、药物、环保和能源等领域也有广泛的应用前景。

例如,发酵工程可以用于生产抗生素、酶、生物燃料等,为人们的生活和工作带来巨大的便利和效益。

发酵工程在工业生产中的应用

发酵工程在工业生产中的应用

发酵工程在工业生产中的应用1. 什么是发酵工程?说到发酵工程,大家可能会想到啤酒、酸奶,甚至是那香气扑鼻的豆腐乳。

其实,发酵工程不仅仅是厨房里的小把戏,它在工业生产中可是大有作为的哦!简单来说,发酵工程就是利用微生物的“魔力”,将原料转变成我们需要的产品,像是食物、药品,甚至是燃料,真是妙不可言!在这个过程中,微生物们就像勤劳的小工人,不停地工作,把那些看似普通的材料变成各种有用的东西。

你瞧,酵母在发酵面包时,释放出的二氧化碳让面团膨胀,变得松软可口;而在啤酒的酿造中,酵母又变成了让我们畅饮的秘密武器,简直是“酒神”附体。

2. 发酵工程的工业应用2.1 食品工业说到食品工业,发酵工程简直是个“大明星”。

你有没有想过,为什么那些酸奶、泡菜总是那么好吃?就是因为发酵!在这个过程中,乳酸菌和其他微生物会把原料中的糖分分解,产生乳酸,让食物不仅好吃,还富含营养。

更别提酱油和醋了,这可是中国饮食文化中的瑰宝。

经过长时间的发酵,这些调味品从豆子和谷物中提取了深厚的风味,像是在和味蕾进行一场交响乐的演出。

而且,发酵的过程中还会产生一些有益的物质,像是维生素B,真是一举多得!2.2 医药工业发酵工程在医药工业中的应用同样不容小觑!很多药物的生产都离不开微生物的帮助。

比如,青霉素的发明,简直是拯救了无数生命。

科学家们从青霉菌中提取了这种神奇的物质,能够有效地对抗细菌感染。

想想看,要是没有发酵技术,我们的医疗水平会下降到什么地步,真是可怕的想象。

更进一步,现代生物技术还让我们能通过发酵生产出大量的疫苗和抗体,真是让人拍手称快。

发酵工程就像是医学领域的一把金钥匙,打开了无数健康的大门。

3. 环境保护与可持续发展3.1 生物燃料除了食品和医药,发酵工程在环保和可持续发展上也是大展拳脚。

现在,大家都在谈论可再生能源,发酵技术就派上了用场。

通过发酵,我们可以把农业废弃物转化为生物燃料,既解决了废物处理的问题,又能为我们的能源需求提供新选择,简直是一箭双雕。

发酵工程全部知识点总结

发酵工程全部知识点总结

发酵工程全部知识点总结一、发酵工程的基本概念1. 发酵的定义发酵是指利用微生物或其代谢物来改变物质的过程。

主要包括酵母、细菌、真菌等微生物。

2. 发酵工程的定义发酵工程是指利用发酵微生物代谢特性,通过合理调控环境条件,进行微生物发酵过程中的相关技术。

二、发酵微生物1. 酵母酵母是发酵工程中最常用的微生物,广泛应用于酒类、面包、啤酒等食品工业中。

2. 细菌细菌在发酵工程中也有重要的应用,如益生菌、酸奶中的乳酸菌等。

3. 真菌真菌发酵应用广泛,包括酵素生产、抗生素生产、食品添加剂等。

三、发酵工程的基本过程1. 液体发酵液体发酵是将发酵微生物培养在液体培养基中,通过控制培养基成分、通气、温度等条件来进行微生物代谢产物的生产。

2. 固体发酵固体发酵是将发酵微生物培养在固体底物中,通过控制底物成分、湿度、通气等条件来进行微生物代谢产物的生产。

3. 半固体发酵半固体发酵是将发酵微生物培养在半固体底物中,采用液态和固态发酵的优点来进行微生物代谢产物的生产。

四、发酵工程的主要设备和工艺1. 发酵罐发酵罐是发酵工程的主要设备之一,根据不同的发酵工艺和需求,可以采用不同类型的发酵罐。

2. 发酵工艺发酵工艺是指在发酵过程中,针对不同的微生物和产物特性,进行合理的发酵条件控制和操作流程。

3. 发酵控制系统发酵控制系统是指在发酵工程中,通过自动化设备和仪器,实现对发酵条件如温度、pH 值、通气、搅拌等的精确控制。

五、发酵工程的应用范围1. 食品工业发酵工程在食品工业中应用广泛,如酿造啤酒、制作酸奶、发酵面包、制作酱油等。

2. 医药工业发酵工程在医药工业中应用广泛,如生产抗生素、激素、酶制剂等。

3. 燃料工业发酵工程在燃料工业中也有应用,如生物乙醇、生物柴油等。

4. 化学工业发酵工程在化学工业中也有应用,如生产乳酸、丙酮、丙二醇等。

六、发酵工程的发展趋势1. 发酵工程技术的进步随着科技的不断进步,发酵工程的技术也在不断提高,发酵设备和工艺不断更新。

发酵工程

发酵工程

发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术.菌种保藏:运用物理、生物手段让菌种处于完全休眠状态,使在长时间储存后仍能保持菌种原有生物特性和生命力的菌种储存的措施。

富集培养:指利用不同微生物间生命活动特点的不同,人为地提供一些特定的环境条件,使特定种(类)微生物旺盛生长,使其在数量上占优势,更利于分离出该特定微生物,并引向纯培养.菌种退化:菌种在培养或保藏过程中,由于自发突变的存在,出现某些原有优良生产性状的劣化、遗传标记的丢失等现象.前体:是被加入培养基的化合物,能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,却能提高产物的产量的一类小分子物质.生长因子:是一类调节微生物正常生长代谢所必需,但不能用简单的碳、氮源自行合成的有机物,包括广义生长因子和狭义生长因子。

产物合成促进剂:指那些非细胞生长所必须的营养物,又非前体,但加入后却能提高产量的添加剂。

如:链霉素生产加巴比妥,赖氨酸生产加红霉素等。

斜面培养基:固体培养基(solid culture medium )的一种形式;制作时应趁热定量分装于试管内,并凝固成斜面的称为斜面培养基,用于菌种扩大转管及菌种保藏。

种子培养基:供孢子发芽、生长和大量繁殖菌丝体,并使菌体长得粗壮,成为活力强的“种子”的培养基,所以种子培养基的营养成分要求比较丰富和完全。

发酵培养基:发酵培养基是供菌种生长、繁殖和合成产物之用。

它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。

空消:指清除空间内不好的或不需要的杂质,使之达到无害化的洁净程度。

实消:就是将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备一起进行灭菌的操作过程,也称实罐灭菌。

连消:即连续灭菌,即培养基的连续灭菌,是灭菌的一种方式。

就是将配制好的并经预热的培养基用泵连续输入由直接蒸汽加热的加热塔,使其在短时间内达到灭菌温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发酵工程
王小威160408424
一、发酵工程的概念
发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。

用来解决按发酵工艺进行工业化生产的工程学问题的学科。

发酵工程从工程学的角度把实现发酵工艺的发酵工业过程分为菌种、发酵和提炼(包括废水处理)等三个阶段。

二、发酵过程的发展史
1857年巴斯德证明了发酵是由于微生物的作用。

20世纪20年代的酒精、甘油和丙酮等发酵工程,属于厌氧发酵。

20世纪40年代初,随着青霉素的发现,抗生素发酵工业逐渐兴起。

1957年,日本用微生物生产谷氨酸成功,如今20种氨基酸都可以用发酵法生产。

20世纪70年代以后,基因工程、细胞工程等生物工程技术的开发,使发酵工程进入了定向育种的新阶段,新产品层出不穷。

20世纪80年代以来,随着学科之间的不断交叉和渗透,微生物学家开始用数学、动力学、化工工程原理、计算机技术对发酵过程进行综合研究,使得对发酵过程的控制更为合理。

三、发酵工程的内容
发酵工程的内容包括菌种的选育(自然界选种、诱变育种、基因工程、细胞工程)、培养基的配制(根据培养基的配制原则制备,实践中需多次试验配方)、灭菌(杀灭胞体、孢子及芽孢)、扩大培养和
接种、发酵过程(检测进程,满足营养需要;严格控制温度、pH、溶氧、转速等)和产品的分离提纯(产物是菌体本身的通过过滤、沉淀等方法,产物是代谢产物通过蒸馏、萃取、离子交换等方法)等方面。

流程图如下:
三、谷氨酸的生产实例
谷氨酸棒状杆菌、黄色短杆菌等在一定的条件下能够利用环境中的营养物质来合成谷氨酸。

菌种的选育:选育谷氨酸棒状杆菌,只有选择细胞膜通透较强的谷氨酸棒状杆菌做菌种,才有可能获得大量的谷氨酸,这就是所讲的优良品种。

怎样得到优良的菌种呢?如果生产的是微生物直接合成的产物,可以从自然界中先分离出相应的菌种,再用物理或化学的方法使菌种产生突变(人工诱变),从突变个体中筛选出符合生产要求的优良
菌种。

如果生产的是一般微生物不能合成的产品,可用基因工程、细胞工程的方法对菌种的遗传特性进行定向改造,以构建工程细胞或工程菌,从而达到生产相应产品的目的。

培养基的配制:我们所需的培养基应该是液体的天然培养基因为液体的培养基能使营养物质在发酵过程中得到充分的利用;还能为菌体提供更大的生存空间;而且有利于生产过程中条件的控制和产物的提取。

天然的培养基能满足菌体的营养需要;能降低生产成本;又能减少对环境的污染。

培养基和设备的灭菌:配制好培养液后,是不能直接接种,需要进行灭菌只要将培养液投放到发酵罐中,通入98kPa的蒸汽进行灭菌即可。

灭菌灭菌的目的是杀死其他的杂菌以免影响发酵过程;杀死所有杂菌的细胞体、芽孢和孢子后视为灭菌完成。

扩大培养和接种:一般情况下(生产车间)不会选择用优良谷氨酸棒状杆菌直接加入发酵罐中(实验室除外)发酵。

大规模的发酵生产需要大量的菌种,先经过多次扩大培养。

这样可以缩短生产周期。

用于生产的菌种应选择处于对数期的谷氨酸棒状杆菌。

发酵过程:发酵过程和灭菌一样稍有不慎会让你前功尽弃。

影响发酵过程的因素有:
(1)温度温度能影响酶的活性,也能影响生物合成的途径。

温度还会影响发酵液的物理性质,以及菌种对营养物质的分解吸收等。

(2)pH pH能够影响酶的活性,以及细胞膜的带电荷状况。

还会影响培养基中营养物质的分解等
(3)溶解氧在发酵过程中菌种只能利用溶解氧。

因此,必须向发酵液中连续补充大量的氧,并要不断地进行搅拌,以提高氧在发酵液中的溶解度。

(4)泡沫发酵过程中,通气、搅拌、微生物的代谢过程及培养基中某些成分的分解等,都有可能产生泡沫。

过多的持久性泡沫对发酵是不利的。

(5)营养物质的浓度发酵液中各种营养物质的浓度,特别是碳氮比、无机盐和维生素的浓度,会直接影响菌体的生长和代谢产物的积累。

产品的分离提纯:如果是菌体本身,如酵母菌和细菌等采用过滤、沉淀等方法将菌体从培养液中分离出来。

如果是代谢产物则采用蒸馏、萃取、离子交换等方法进行提取。

四、发酵过程的应用
在医药工业上的应用
利用微生物工程生产药品:维生素、动物激素、药用氨基酸、核苷酸、抗生素等。

基因工程与发酵工程结合:人的生长激素、胰岛素、生长激素释放抑制因子等。

细胞工程与发酵工程结合:某些单抗等。

在食品工业上的应用
生产传统的发酵产品:啤酒、醋等.
生产各种食品添加剂:色素、甜味剂、酸味剂、鲜味剂等.
帮助解决粮食问题:微生物菌体(单细胞蛋白).
五、发酵过程的优点
(1)生产条件温和;
(2)原料来源丰富且价格低廉;
(3)产物专一;
(4)废弃物对环境的污染小或容易处理。

六、发酵工程的前景
发酵工业的前景是很好的,发酵工程作为最早从事微生物学的研究领域,在过去的3个世纪中为人类的生活、生存、社会的发展作出了重大的贡献。

现今,与其他技术结合起来更是如虎添翼:在菌种选育方面与基因工程相结合,从源头上来发展自己的优势;在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变数与微生物生理状态结合起来;拓展了自己的领域:最明显的例子是交叉学科的出现,如发酵工程与环境工程的交叉形成了环境生物技术,与化工交叉的生物化工,与纺织工业交叉的纺织生物工程等。

所以说发酵工程的前景是非常好的!。

相关文档
最新文档